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Abstract

Background: Studies relating long-term exposure to persistent organochlorine pollutants (POPs) with endocrine activities
(endocrine disrupting chemicals) on circulating levels of steroid hormones have been limited to a small number of
hormones and reported conflicting results.

Objective: We examined the relationship between serum concentrations of dehydroepiandrosterone, dehydroepiandros-
terone sulphate, androstenedione, androstenediol, testosterone, free and bioavailable testosterone, dihydrotestosterone,
estrone, estrone sulphate, estradiol, sex-hormone binding globulin, follicle-stimulating hormone, and luteinizing hormone
as a function of level of exposure to three POPs known to interfere with hormone-regulated processes in different way:
dichlorodiphenyl dichloroethene (DDE), polychlorinated biphenyl (PCB) congener 153, and chlordecone.

Methods: We collected fasting, morning serum samples from 277 healthy, non obese, middle-aged men from the French
West Indies. Steroid hormones were determined by gas chromatography-mass spectrometry, except for dehydroepian-
drosterone sulphate, which was determined by immunological assay, as were the concentrations of sex-hormone binding
globulin, follicle-stimulating hormone and luteinizing hormone. Associations were assessed by multiple linear regression
analysis, controlling for confounding factors, in a backward elimination procedure, in multiple bootstrap samples.

Results: DDE exposure was negatively associated to dihydrotestosterone level and positively associated to luteinizing
hormone level. PCB 153 was positively associated to androstenedione and estrone levels. No association was found for
chlordecone.

Conclusions: These results suggested that the endocrine response pattern, estimated by determining blood levels of
steroid hormones, varies depending on the POPs studied, possibly reflecting differences in the modes of action generally
attributed to these compounds. It remains to be investigated whether this response pattern is predictive of the subsequent
occurrence of disease.
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Introduction

An endocrine-disrupting chemical (EDC) is an exogenous

chemical that can interfere with various aspects of hormone

function, synthesis, secretion, regulation, action and elimination

[1,2]. EDCs may thus have deleterious effects on many endocrine

system and outcomes in both humans and wildlife [3]. There is

growing evidence that adverse reproductive outcomes, including

reproductive organ tumors, may result from exposure to EDCs

present at low concentrations in the environment, although

epidemiological evidence of a causal relationship remains limited

[4].

Various EDCs exert their effects through steroid-mediated

pathways, by interfering with the binding of physiological ligands

to steroid receptors and binding proteins and enzymes involved in

the steroid biosynthesis pathway [5]. The synthesis and secretion

of steroid hormones are controlled by positive and negative

feedback mechanisms, but it has been suggested that exposure to

EDCs may also result in slight, but real modifications of circulating

steroid hormone levels.

Several studies have investigated relationships between persis-

tent organochlorine pollutants (POPs) with endocrine properties

and a limited number of steroid hormones, mostly testosterone (T)

and estradiol (E2), in blood samples from populations of adult
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men. These studies have focused mostly on ubiquitous environ-

mental pollutants, such as dichlorodiphenyl dichloroethene (DDE,

the major and most stable metabolite of dichlorodiphenyl

trichloroethane, DDT) and polychlorinated biphenyls (PCBs) [6–

22]. No significant effect was found in most of these studies, but

the overall picture is not uniform. There are several possible

reasons for these discrepancies and for the lack of comparability

between studies: differences in the age range investigated or in the

exposure levels experienced by the populations, lack of controls for

some potentially confounding factors and the use of different

immunological hormone assay methods with different perfor-

mances.

We investigated the possible effects of long-term exposure to

various POPs on blood levels of steroid hormones, binding

proteins and gonadotrophins in healthy, non obese, middle-aged

French West Indian men. We focused on DDE, PCBs and

chlordecone. These chemicals are known to bind to androgen

(AR) and/or estrogen (ER) steroid receptors and to interfere with

hormone-regulated processes in different ways [23–25]. The

effects of these compounds on blood steroid levels may be

mediated by effects on any of the components of the steroid

pathway. We therefore investigated a wide panel of blood

androgens and estrogens, determining the levels of these

compounds mostly by gas chromatography-mass spectrometry

(GC–MS), the gold standard method for steroid hormone assay

[26,27]. Given the interconnection between steroid production by

the testis and hypophyseal hormones, we also determined

circulating follicle-stimulating hormone (FSH) and luteinizing

hormone levels (LH).

Materials and Methods

Ethics Statement
The study was approved by the Guadeloupe Ethics Committee

for studies involving human subjects. Each participant provided

written informed consent.

Study Population
This study took place in Guadeloupe (French West Indies), a

Caribbean archipelago, most of the inhabitants of which are of

African descent. Subjects were recruited from men participating in

a free yearly systematic health-screening program funded by the

French national health insurance system. Each year, a random

sample of the population, selected so as to be representative of the

age and sex distribution of the general population, is invited to

participate in the program at a single site. As part of the

Karuprostate prostate cancer study, consecutively enlisted men

aged 45 to 69 years of age were invited to participate [28]. The

acceptance rate was around 90%. Information was obtained from

participants about their demographic characteristics, anthropo-

metric measurements, lifestyle, medical records and medication

use. The inclusion criteria for this study were: a) both parents born

on any Caribbean island with a population of predominantly

African descent, b) no history of a chronic medical disorder and

standard biochemical and hematological blood parameters in the

normal range, c) no hormone treatments or drugs known to

influence the hypothalamic-pituitary-gonadal-adrenal axis (includ-

ing inhibitors of 5 a reductase), d) body mass index (BMI),30. A

blood sample was drawn from each participant between 8.00 and

10.00 a.m., after overnight fasting. Serum samples were separated

and frozen at 230u until shipment. Samples were identified only

by a unique sample code and were transferred by airmail, on dry

ice, to Creteil (France) for hormone analysis and to Liege

(Belgium) for organochlorine and lipid analysis. All laboratory

personnel were blind to the identities of subjects.

Given the high cost of the analytical methods used, we limited

the initial sample size to 300 individuals, which, for a statistical

power of 0.8 and a p level of 0.05 gave an anticipated minimum

effect size (f2) of 0.05 for multiple regression studies with eight

predictors, not including the regression constant. We randomly

selected 60 individuals for each five-year age group, from the age

of 45 to 69 years. We excluded the men who did not fulfill the

inclusion criteria or who had provided too little blood to carry out

all the hormonal and chemical assays, resulting in a final sample

size of 277 subjects.

Measurement of hormones
Dehydroepiandrosterone (DHEA), androstenedione (AD), an-

drostenediol (ADIOL), total testosterone (T), dihydrotestosterone

(DHT), estrone (E1), E2, and estrone sulfate (E1S) were assayed

simultaneously by GC-MS, as previously described [29]. Briefly,

deuterated steroid internal standards (CDN Isotopes, Inc., Point-

Claire, Quebec, Canada) were added to all serum samples, which

were then extracted with 1-chlorobutane. The organic extracts

were purified on conditioned high-purity silica LC-Si SPE

columns (Varian, Les Ulis, France). All steroids were derivatized

with pentafluorobenzoyl chloride, except for AD, which was

derivatized with pentafluorobenzylhydroxylamine. The final

extracts were reconstituted in isooctane, then transferred to

conical vials for injection into the GC system (6890N, Agilent

Technologies, Massy, France), equipped with a 50% phenyl-

methylpolysiloxane VF-17MS capillary column (20 m60.15 mm,

internal diameter, 0.15 mm film thickness; Varian). An HP5973

(Agilent Technologies) quadrupole mass spectrometer equipped

with a chemical ionization source and operating in single-ion

monitoring mode was used for detection. E1S was determined as

E1 after acid solvolysis [30]. Free T (fT) concentrations were

calculated from T and SHBG concentrations, as previously

described [31]. Bioavailable T (BT) concentration was determined

as described elsewhere [29,31]. DHEAS was determined by a

radioimmunological method (IM 0729, Beckman Coulter, Mar-

seilles, France). Plasma SHBG, FSH and LH levels were

determined by radioimmunometric methods (using the following

kits: Schering SHBG RIACT, Gif-sur-Yvette, France; FSH kit and

LH kit, Coulter Immunotech, Marseilles, France). The molecular

masses of the derivatized steroids (deuterated and corresponding

non deuterated steroids), as assayed by GC–MS, and the means

and intra- and inter-assay coefficients of variation of four quality

control sera (one with very low concentrations of the assayed

steroids for determination of the lower limit of quantification by

GC-MS, and three with higher concentration levels) are reported

in Supporting Information File S1 (Table S1). The results of BT,

DHEAS, SHBG, FSH and LH quality controls are also reported

in Table S1.

Measurement of organochlorines
A high-resolution gas chromatograph (Thermo Quest Trace

2000, Milan, Italy) equipped with a Ni63 electron capture

detection system was used to assess the serum concentrations of

seven indicator PCB congeners (28, 52, 101, 118, 138, 153, and

180); p,p9-DDT, p,p9-dichlorodiphenyl dichloroethane (DDD) and

p,p9-DDE; the a, b, and c isomers of hexachlorocyclohexane

(HCH) and chlordecone. The limits of detection (LD) were

0.05 mg/l for all organochlorine compounds except chlordecone

(0.06 mg/l). Detailed information about sampling, analysis and

quality assurance and control have been provided elsewhere

[28,32]. Plasma total cholesterol and total triglyceride concentra-
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tions were determined enzymatically (DiaSys Diagnostic Systems

GmbH; Holzheim, Germany) and total lipid concentration was

calculated as previously described [33].

Data and statistical analysis
Continuous measurements were described in terms of the

median, range, mean and percentiles. We restricted our analysis to

pollutants with a detection frequency greater than 80%: DDE

(97%), PCB congeners 138 (96%), 153 (98%) and 180 (97%) and

chlordecone (87%). Values below the LD were estimated by a

maximum likelihood estimation method [34]. Correlations

between the concentrations of frequently detected pollutants were

explored by Spearman’s rank correlation analysis (Supporting

Information File S1, Table S2). The concentrations of the various

PCBs were highly correlated, so we restricted further analysis to

PCB 153.

The effects of exposure variables on the outcome variables were

evaluated by linear regression analyses. Scatter plots were used for

bivariate comparisons between exposure and outcome variables,

to ensure that linear associations were reasonable. Model

assumptions were checked by residual analysis. A normal

distribution of the residuals was achieved by natural log

transformations of outcomes and hormone ratios (DHEA,

DHEAS, T, AD, E2, E1, E1S, LH, FSH, and T/E2) or by

square root transformations (ADIOL, fT, BT, SHBG, and T/LH).

The exposure variables were treated as continuous variables and

were subjected to natural log transformation. The regression

coefficient (b) represented the change of naturally-log or square

root transformed outcomes variables per one unit of naturally-log

transformed serum organochlorine concentration The following

covariates were considered as potential confounding factors: age

(years, as a continuous variable), body mass index (BMI) (kg/m2),

waist-to-hip ratio (continuous), alcohol (current or past alcohol use

vs never) and tobacco consumption (current or past smoking vs

never), education (elementary/middle/high school), season of

blood collection (spring, summer, autumn, winter) and total lipid

concentration (mg/dl). For each exposure predictor, we also

considered the other contaminants as potential confounders. A

parsimonious and stable regression model was obtained, by the use

of a data-dependent procedure based on backward variable

elimination (PROC GLMSELECT) in multiple bootstrap samples

[35,36]. Variables were retained if they were selected in at least

30% of the 1000 bootstrap samples with a= 0.05. All analyses

were carried out with SAS software version 9.3 (SAS Institute,

Inc., Cary, NC, USA). All tests were two-tailed, and p values#0.05

were considered statistically significant.

Results

The participants were Caribbean men of African descent aged

between 45 and 69 years (median: 58 years). Overall, 61% had

never smoked and 15% were teetotal. The characteristics of the

study population with respect to potential confounders and

outcome variables are given in Table 1. Detection and concen-

trations of POPs in the serum samples of the study population are

presented in Table 2

The results of linear regression analysis for continuous exposure

variables are given in Table 3 for DDE, Table 4 for PCB 153, and

Table 5 for chlordecone. For each exposure, we present a crude

nonadjusted model and a backward adjusted model coupled to

bootstrap selection covariates.

We found a significant negative relationship between DDE and

DHT concentration in both crude and adjusted models

(b= 20.063, 95% confidence interval (CI) = 20.109 to 20.016,

p = 0.008) and a positive relationship between DDE and LH in

both crude (b= 0.053, CI = 0.001 to 0.106, p = 0.04) and adjusted

(b= 0.057, CI = 0.005 to 0.109; p = 0.03) models (Table 3). T/LH

ratio was negatively associated with DDE concentration in both

crude (b= 20.066, CI = 20.118 to 20.013, p = 0.01) and adjusted

(b= 20.061, CI = 20.112 to 20.010, p = 0.02) models.

PCB 153 concentration was positively associated to AD

concentration at the limit of significance in the crude model

(b= 0.045, CI = 0.0002 to 0.090, p = 0.05), and this relationship

was significant in the adjusted model (b= 0.054, CI = 0.010 to

0.098, p = 0.02). PCB 153 concentration was also significantly and

positively associated with E1 levels in the crude (b= 0.047,

CI = 0.004 to 0.090, p = 0.03) and adjusted (b= 0.048, CI = 0.005

to 0.092, p = 0.03) models (Table 4).

No association was observed between chlordecone and any

outcome in either the crude or the adjusted model (Table 5).

Discussion

We investigated associations between POPs with endocrine

activities and the levels of a large panel of hormones involved

primarily in the steroid pathway, in middle-aged French West

Indian men.

As expected and found in most populations worldwide, DDE

and PCB congeners 138, 153 and 180 were the most prevalent

POPs found in the blood in our population. Moreover, blood

concentrations of these pollutants are in the range of background

environmental levels currently found in US populations of similar

age range [37]. This is not surprising because the French West

Indies has and has had only very limited industrial activities

involving significant use or emission of PCBs. The use of DDT in

agricultural supplies or for disease vector control was anecdotic.

Consequently, exposure to these chemicals is likely to be associated

with background contamination of the food chain. The only POPs

that have been spread in French West Indies were technical grade

HCH, a mixture of a, b, and c isomers, mainly before 1970, and

chlordecone, intensively from 1973 to 1993; both were used to

control the banana root borer. Unlike HCH, chlordecone

undergoes no significant biotic or abiotic degradation in the

environment, and permanently polluted soils and waterways has

been and are still nowadays the major source of human

contamination in French West Indies, through the consumption

of contaminated foodstuffs [38]. The occupational profile of our

population study reflects that of the general male Guadeloupean

population aged from 45 to 70 years old. Among the 277 men

included in the study, only 29 are or have been workers on banana

farms and only 15 of these were occupationally exposed to

chlordecone during the period 1973–1993 (data not shown). This

unique situation provided us with an opportunity to study the

effects of three prevalent POPs with different endocrine modes of

action, at environmental exposure levels.

Our study population was randomly selected from among the

general population of Guadeloupe and we excluded any subjects

with abnormalities or medical conditions that may alter systemic

levels of steroid hormones. As a consequence, the values reported

may be considered as the normal range of values for the local male

population and for the age range investigated (45–70 years old)

[29].

Our findings provided some evidence of significant dose-

dependent effects. However, the association between exposure

and outcome differed between pollutants. DDE exposure levels

were negatively associated to DHT levels and positively associated

to LH concentration. Levels of PCB 153 were positively associated

to AD and E1 concentrations. By contrast, no association was

Organochlorine Pollutants and Steroid Hormones
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Table 1. Characteristics of the study population in terms of potential confounders and outcome variables.

Potential confounders

Age (years)a 58.3, 58.1 (45.1–69.9)

Education (%), high school, middle school, elementary school 9.3, 37.4, 53.3

BMI (kg/m2)a 24.7, 24.9 (17.9–29.8)

Waist-to-hip ratioa 0.90, 0.90 (0.72–1.29)

Current or past alcohol use (%) 84.8

Current or past smoking (%) 38.6

Total lipids (mg/dl)b 5.6 (3.7–8.6)

Season of blood sampling (%) summer, autumn, winter, spring 24.1, 29.0, 24.9, 22.0

Outcome variablesb, c

DHEA (nmol/l) 9.8 (4.3–19.8)

DHEAS (mmol/l) 2.8 (1.0–6.9)

AD (nmol/l) 4.0 (2.4–7.7)

ADIOL (nmol/l) 5.3 (1.5–12.4)

E1 (pmol/l) 152.2 (89.1–282.2)

E1S (nmol/l) 1.6 (0.6–4.5)

E2 (pmol/l) 110.1 (60.6–189.3)

T (nmol/l) 18.1 (9.4–31.4)

fT (nmol/l) 0.33 (0.16–0.61)

BT (nmol/l) 6.5 (3.4–10.6)

DHT (nmol/l) 1.9 (0.8–4.1)

SHBG (nmol/l) 35.2 (13.1–73.8)

FSH (IU/l) 6.6 (2.2–24.3)

LH (IU/l) 4.9 (2.0–12.0)

aValues are mean, median (minimum – maximum).
bValues are mean (5th–95th percentiles).
cBack-transformed values.
Abbreviations, DHEA: dehydroepiandrosterone; DHEAS: dehydroepiandrosterone sulfate; AD: androstenedione; ADIOL: androstenediol; E1: estrone; E1S: estrone sulfate;
E2: estradiol; T: testosterone; fT: free testosterone; BT: bioavailable; DHT: dihydrotestosterone; SHBG: sex hormone binding protein; FSH: follicle-stimulating hormone;
LH: luteinizing hormone.
doi:10.1371/journal.pone.0066460.t001

Table 2. Detection and concentrations (mg/l) of persistent organochlorine pollutants in serum samples of the study population.

Organochlorine

Detection
frequency Geometric mean Min Percentiles Max

(%) (mg/l) (mg/l) (mg/l) (mg/l)

10th 25th 50th 75th 90th

p,p9- DDT 34.9 - ,LD ,LD ,LD ,LD 0.06 0.17 1.71

p,p9- DDD 27.5 - ,LD ,LD ,LD ,LD 0.06 0.10 0.79

p,p9- DDE 96.9 1.77 ,LD 0.38 0.96 2.06 4.03 7.22 27.4

PCB 28 51.0 - ,LD ,LD ,LD 0.05 0.22 0.64 2.97

PCB 52 38.0 - ,LD ,LD ,LD ,LD 0.20 0.57 3.02

PCB 101 58.0 - ,LD ,LD ,LD ,LD 0.15 0.25 0.62

PCB 118 59.6 - ,LD ,LD ,LD ,LD 0.19 0.38 4.64

PCB 138 96.1 0.50 ,LD 0.16 0.33 0.53 0.94 1.45 4.12

PCB 153 98.5 0.75 ,LD 0.21 0.49 0.87 1.48 2.32 6.46

PCB 180 96.8 0.64 ,LD 0.24 0.42 0.67 1.08 1.66 5.52

a - HCH 39.6 - ,LD ,LD ,LD ,LD 0.09 0.15 1.20

b - HCH 41.6 - ,LD ,LD ,LD ,LD 0.08 0.12 0.69

c - HCH 38.0 - ,LD ,LD ,LD ,LD 0.08 0.14 1.12

Chlordecone 86.7 0.40 ,LD ,LD 0.20 0.45 0.95 1.74 44.1

Abbreviations, LD: limits of detection; DDT: dichlorodiphenyl trichloroethane; DDD: dichlorodiphenyl dichloroethane; DDE: dichlorodiphenyl dichloroethene; PCB:
polychlorinated biphenyl; HCH: hexachlorocyclohexane.
doi:10.1371/journal.pone.0066460.t002
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found between chlordecone exposure and any of the steroids,

binding proteins or gonadotrophins investigated.

Our findings are consistent with most previous studies,

regardless of the range of age and exposure levels considered,

showing an absence of association between the levels of DDE and

PCB 153 and those of T, E2, SHBG or FSH. However, some

conflicting results have been published, including lower testoster-

one levels with increasing PCB 153 levels in Native American men

aged 18 to 88 [17], lower E2 levels with increasing DDE levels in

Swedish fisherman aged 18 to 45 [15] and in Thai men aged 48 to

82 [13], and higher SHBG levels with increasing DDE and PCB

153 concentrations in Ukrainian men aged 19 to 45 years [14].

Haugen et al. [19] also reported an increase in SHBG

concentration with increasing PCB 153 levels, but not with

increasing DDE levels, in Norwegian men aged 19 to 40.

This study differs from previous studies in the field in several

ways. Major changes in blood steroid hormone levels occur during

adulthood, and studies covering broad age ranges, from early to

late adulthood may be inappropriate. By restricting our investi-

gation to the 45–69 year age range, we focused on a period in

which hormonal imbalance is known to play a key role in some

aging-related diseases. Other strengths of this study include the

simultaneous determination of serum concentrations of a large

number of steroid hormones, mostly by GC–MS. This sensitive

and specific method is currently considered the most accurate

approach to the determination of steroid hormones [26,27]. We

excluded obese subjects and those with acute or chronic

pathological conditions thought to have a strong impact on

hormone metabolism. We also collected extensive data for

adjustment on the basis of factors associated with changes in

blood steroid hormone levels and to reduce the bias of the

estimates.

Our cross-sectional study also presents several limitations. Given

the years during which DDT and PCBs were used worldwide, the

study population had been exposed to these chemicals or their

metabolites throughout much of their lifetimes. For chlordecone,

the exposure period began in 1973, at a median age of 30 years.

Single blood determinations to estimate exposure to these

contaminants may not adequately reflect past exposure. However,

unlike women, men are not subject to the mobilization of fat-

soluble pollutants during pregnancy or breastfeeding that can

significantly alter the pollutant load of the whole body. Any

previous weight loss or gain, particularly if large, may modify the

blood concentration of these pollutants, but we believe that this

factor had a weak influence overall in our free-chronic disease and

non-obese population study. Consequently, in adult healthy males,

and for chemicals with long half-lives in the body, single blood

determinations may be considered a satisfactory surrogate of past

exposure. Finally, we cannot exclude the possibility of confounding

with other undetermined chemicals, due to a lack of consideration

of interactions between chemicals or factors known to influence

blood steroid levels, such as diet and physical activity, or chance

findings.

Table 3. Regression coefficients (b) for association between serum pp9 DDE levels and the outcome variables.

Outcomes Crude Adjusted

b 95% CI (b) b 95% CI (b)

ln DHEA (nmol/l) 20.027 20.076 to 0.021 20.021a,b 20.067 to 0.026

ln DHEAS (mmol/l) 20.027 20.081 to 0.027 20.020a,c 20.073 to 0.033

ln AD (nmol/l) 0.014 20.021 to 0.050 0.010a,c–e,g 20.026 to 0.045

sqrt ADIOL (nmol/l) 20.017 20.080 to 0.047 20.010a–c,e 20.071 to 0.050

ln E2 (pmol/l) 0.022 20.008 to 0.052 0.018c 20.012 to 0.047

ln E1 (pmol/l) 0.016 20.018 to 0.050 0.004c,g 20.030 to 0.039

ln E1S (nmol/l) 0.052 20.009 to 0.112 0.037d,h 20.023 to 0.097

ln T (nmol/l) 20.010 20.043 to 0.023 20.003c,d 20.036 to 0.030

sqrt fT (nmol/l) 0.003 20.008 to 0.014 0.007a,g,i 20.003 to 0.017

sqrt BT (nmol/l) 20.003 20.044 to 0.037 0.013a,c,g 20.027 to 0.053

ln DHT (nmol/l) 20.062* 20.109 to 20.015 20.063* a,c–f 20.109 to 20.016

sqrt SHBG (nmol/l) 20.099 20.240 to 0.041 20.102a,d,f,i,j 20.230 to 0.026

ln LH (IU/l) 0.053* 0.001 to 0.106 0.057* a–d,h 0.005 to 0.109

ln FSH (IU/l) 0.023 20.042 to 0.088 0.001a,c,j 20.063 to 0.065

sqrt T/LH 20.066* 20.118 to–0.013 20.061*a–c,h 20.112 to 20.010

ln T/E2 20.032 20.065 to 0.0009 20.022c–e,g 20.054 to 0.010

a: age;
b: alcohol;
c: season of blood sampling;
d: BMI;
e: education;
f: chlordecone;
g: PCB-153;
h: smoking;
i: waist-to-hip-ratio;
j: blood total lipids.
*Statistically significant association because 95% CI (b) does not include zero.
doi:10.1371/journal.pone.0066460.t003
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We focused on steroid hormone levels in the general circulation,

but the results obtained may not be entirely representative of what

occurs in target tissues. Steroid hormones may act on tissues where

they are synthesized or be secreted into the blood and act remotely

on other target tissues [39,40]. Also, reduced T metabolites (DHT)

which are produced locally in target tissues may reenter the

general circulation. Endocrine-disrupting chemicals may exert

endocrine effects by a multitude of mechanisms that are not yet

fully understood and the pathways altering steroid hormone levels

may be unpredictable.

DDE has antiandrogenic effects in vivo, as assessed from

changes in the weights of androgen-responsive tissues [41]. Such

effects are likely to be mediated by inhibition of AR binding and/

or AR-dependent gene expression [23,42]. These properties

cannot directly explain the relationship between increased DDE

exposure and decreased serum DHT levels observed in our study

population. However, our findings provide a different type of

confirmation of the antiandrogenic properties of DDE. Interest-

ingly, Lo et al [43] have shown that DDE is able to inhibit 5a-

reductase in human prostate tissue homogenates. Because serum T

did not seem to be affected by DDE exposure and 5a-reductase is

involved in the conversion of T to DHT, it is plausible that

decreased serum DHT levels may be explained by 5a-reductase

inhibition. High levels of DDE also appeared to be associated with

high levels of LH. This finding may be related with the feedback

provided by circulating DHT, directly at the pituitary and

centrally at the level of the hypothalamus [44].

Many of the known endocrine activities of PCBs involve steroid

hormone signaling systems including estrogens, androgens, pro-

gestins and adrenal steroids [45]. Individual congeners may have

different, and in some cases even opposite effects. Some PCBs

have estrogenic activities, whereas others are antiestrogenic. The

most prevalent non dioxin-like PCBs (138, 153, and 180) have

been reported to be antiestrogenic in both reporter gene and

MCF-7 cell proliferation assays [46,47] and to decrease ER-

mediated activity in ER-CALUX bioassays (24). These studies led

to suggestions that these compounds might decrease the amounts

of E2 in the circulation [24,47]. However, other authors [48],

based on the observation that various environmentally relevant

PCB-hydroxylated metabolites are potent inhibitors of human

estrogen sulfotransferase, have suggested that PCBs may increase

E2 bioavailability in target tissues. Here, consistent with most

previous studies on adult men, we observed no change in blood E2

concentration as a function of non dioxin-like PCB levels. By

contrast, we found that PCB exposure was associated with high

levels of AD in the blood, an observation not previously reported

in humans. However, high levels of AD production have been

reported in the liver and testis of bulls chronically exposed to PCBs

[49]. There are two major pathways for the production of AD

from pregnenolone, one involving DHEA and the other,

progesterone. Because DHEA levels are not modified by PCBs

exposure, we can hypothesize that increased AD levels may have

its origin in any upstream step arising from the progesterone

pathway. The positive association between PCB 153 and E1 may

Table 4. Regression coefficients (b) for association between serum PCB-153 levels and the outcome variables.

Outcomes Crude Adjusted

b 95% CI (b) b 95% CI (b)

ln DHEA (nmol/l) 0.013 20.048 to 0.075 0.030a,b 20.029 to 0.088

ln DHEAS (mmol/l) 20.029 20.097 to 0.040 20.003a,c 20.072 to 0.065

ln AD (nmol/l) 0.045 20.0002 to 0.090 0.054*a,c–e 0.010 to 0.098

sqrt ADIOL (nmol/l) 0.022 20.059 to 0.102 0.032a–c,e 20.047 to 0.110

ln E2 (pmol/l) 0.018 20.020 to 0.056 0.025c 20.013 to 0.063

ln E1 (pmol/l) 0.047* 0.004 to 0.090 0.048*c 0.005 to 0.092

ln E1S (nmol/l) 0.030 20.047 to 0.108 0.037d,g 20.039 to 0.113

ln T (nmol/l) 20.015 20.057 to 0.027 20.006c,d 20.048 to 0.036

sqrt fT (nmol/l) 20.012 20.025 to 0.002 20.011a,f 20.023 to 0.002

sqrt BT (nmol/l) 20.046 20.098 to 0.005 20.029a,c 20.079 to 0.021

ln DHT (nmol/l) 20.051 20.112 to 0.009 20.031a,c–f 20.092 to 0.030

sqrt SHBG (nmol/l) 0.043 20.136 to 0.222 0.010a,d,f,h–j 20.072 to 0.272

ln LH (IU/l) 0.064 20.002 to 0.131 0.041a–d,g 20.029 to 0.110

ln FSH (IU/l) 0.071 20.011 to 0.153 0.051a–c,e 20.035 to 0.136

sqrt T/LH 20.071 20.138 to 20.005 20.037a–c, f–g 20.106 to 0.031

ln T/E2 20.032 20.074 to 0.009 20.036c–e 20.078 to 0.005

a: age;
b: alcohol;
c: season of blood sampling;
d: BMI;
e: education;
f: pp9-DDE;
g: smoking;
h: waist-to-hip-ratio;
i: blood total lipids;
j: chlordecone.
*Statistically significant association because 95% CI (b) does not include zero.
doi:10.1371/journal.pone.0066460.t004
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result from an increase in AD precursor levels, consistent with

mass action rather than an increase in aromatase activity.

Chlordecone binds ERa and ERb, acting as an agonist of ERa
and an antagonist of ERb [25,50]. In addition to its interaction

with nuclear ER, chlordecone may activate alternative estrogen

signaling pathways or other enzymes and receptors involved in

steroid homeostasis [51–54]. However, such modes of action did

not appear to affect circulating steroid levels in our population

study. Few studies have addressed the issue of the effect of

chlordecone exposure on the blood levels of steroid hormones or

gonadotrophins. Subchronic exposure of male rats to chlordecone

do not affect serum testosterone levels [55]. When primary rat

pituitary cell cultures were treated with chlordecone, basal

secretion of FSH and LH were not altered [56]. To our

knowledge, there have been no studies on humans to investigate

the effects of chlordecone on circulating levels of steroid hormones,

binding proteins or gonadotropins. Here, as in a preliminary study

we carried out in 100 healthy male subje[ts aged 20 to 50 years

[57], we found no significant association between chlordecone

exposure at environmental levels and the concentrations of

steroids, binding proteins or gonadotrophins investigated.

The ethnic origin of study populations must also be taken into

account. Most previous studies were carried out on men of

European descent, whereas our study population was of African

descent. We recently reported differences in the concentrations of

certain steroids in the blood (particularly AD and E1) between our

study population and healthy European men of similar age [29].

This may be explained by different levels of transcription or allele

frequency of polymorphisms of steroid hormone related genes

[58]. Consequently, we cannot exclude that EDCs effects on

steroid hormone levels may be at least partially ethnically sensitive.

In summary, in this cross-sectional study performed in middle-

age men, we found that the pattern of endocrine response,

estimated by blood levels of steroid hormones, to long-term

exposure of POPs with endocrine activity varies depending on the

pollutant studied. Such differential pattern could be related to the

different modes of action that are usually attributed to them. It

remains unclear whether such changes in circulating steroid

hormone levels are predictive of the subsequent occurrence of

disease.
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Table 5. Regression coefficients (b) for association between serum chlordecone levels and the outcomes variables.

Outcomes Crude Adjusted

b 95% CI (b) b 95% CI (b)

ln DHEA (nmol/l) 0.001 20.044 to 0.040 20.005a,b 20.053 to 0.042

ln DHEAS (mmol/l) 20.006 20.058 to 0.046 20.016a–d 20.069 to 0.036

ln AD (nmol/l) 0.020 20.014 to 0.054 0.013b–d,f,g 20.021 to 0.048

sqrt ADIOL (nmol/l) 0.048 20.013 to 0.108 0.041c,d,g 20.022 to 0.105

ln E2 (pmol/l) 0.003 20.025 to 0.032 20.011a,c–e,g,h 20.018 to 0.041

ln E1 (pmol/l) 0.007 20.026 to 0.039 0.016b–d,h 20.019 to 0.050

ln E1S (nmol/l) 0.014 20.044 to 0.072 20.014 20.044 to 0.072

ln T (nmol/l) 0.014 20.018 to 0.046 0.009a,d,e 20.025 to 0.042

sqrt fT (nmol/l) 20.004 20.014 to 0.007 20.004c,g,h,j 20.005 to 0.013

sqrt BT (nmol/l) 0.0004 20.040 to 0.041 20.001d,i,j 20.042 to 0.039

ln DHT (nmol/l) 0.030 20.016 to 0.075 0.027a,b,d,e 20.029 to 0.061

sqrt SHBG (nmol/l) 0.067 20.064 to 0.198 0.061b,d 20.074 to 0.196

ln LH (IU/l) 20.022 20.071 to 0.025 20.019d 20.071 to 0.031

ln FSH (IU/l) 20.023 20.073 to 0.026 20.018c 20.082 to 0.045

sqrt T/LH 0.043 20.020 to 0.106 0.059c,d,i 20.003 to 0.123

ln T/E2 0.012 20.020 to 0.044 0.007d,g 20.025 to 0.040

a: education;
b: smoking;
c: age;
d: season of blood sampling;
e: BMI;
f: blood total lipids;
g: PCB-153;
h: pp9-DDE;
i: alcohol;
j: waist-to-hip-ratio.
doi:10.1371/journal.pone.0066460.t005
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