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December 5, 2014

Abstract

How the neutral diversity is affected by selection and adaptation is investigated
in an eco-evolutionary framework. In our model, we study a finite population in con-
tinuous time, where each individual is characterized by a trait under selection and
a completely linked neutral marker. Population dynamics are driven by births and
deaths, mutations at birth, and competition between individuals. Trait values influ-
ence ecological processes (demographic events, competition), and competition gener-
ates selection on trait variation, thus closing the eco-evolutionary feedback loop. The
demographic effects of the trait are also expected to influence the generation and main-
tenance of neutral variation. We consider a large population limit with rare mutation,
under the assumption that the neutral marker mutates faster than the trait under
selection. We prove the convergence of the stochastic individual-based process to a
new measure-valued diffusive process with jumps that we call Substitution Fleming-
Viot Process (SFVP). When restricted to the trait space this process is the Trait
Substitution Sequence first introduced by Metz et al. (1996). During the invasion of a
favorable mutation, a genetical bottleneck occurs and the marker associated with this
favorable mutant is hitchhiked. By rigorously analysing the hitchhiking effect and how
the neutral diversity is restored afterwards, we obtain the condition for a time-scale
separation; under this condition, we show that the marker distribution is approxi-
mated by a Fleming-Viot distribution between two trait substitutions. We discuss the
implications of the SFVP for our understanding of the dynamics of neutral variation
under eco-evolutionary feedbacks and illustrate the main phenomena with simulations.
Our results highlight the joint importance of mutations, ecological parameters, and
trait values in the restoration of neutral diversity after a selective sweep.
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1 Introduction

The science of biodiversity currently faces the challenge of understanding how ecological
processes shape evolutionary change, and reciprocally how evolution affects the structure
and function of ecological systems (Schoener, 2011). Such eco-evolutionary feedbacks de-
termine the dynamics of so-called adaptive traits -quantitative characters that are heritable
yet mutable from parent to offspring (Dieckmann and Law, 1996; Metz et al, 1996). Under
the combined assumptions of large population and rare mutation scalings, the time evolu-
tion of an adaptive trait can be described as a sequence of mutant invasions, each being
driven by positive selection in the ecological context set by the ‘resident’ value of the adap-
tive trait (Metz et al, 1992). The resulting evolutionary model is a jump process called the
Trait Substitution Sequence (TSS): every new mutant trait either goes extinct, or replaces
the resident, causing the TSS to jump from the former resident population equilibrium
to a new equilibrium (Metz et al, 1996; Champagnat, 2006; Champagnat et al, 2008). In
population genetics, these jumps are known as selective sweeps (Barton, 1998; Stephan
et al, 1992). Previous works support the view that the TSS as a model of long-term phe-
notypic evolution is relatively insensitive to the details of the genetic determination of the
trait (Lloyd, 1977; Christiansen and Loeschcke, 1980; Hammerstein, 1996; Weissing, 1996;
Matessi and Schneider, 2009; Eshel et al, 1998).

Whereas eco-evolutionary feedbacks can result in variation of adaptive traits among pop-
ulations (and even within populations when evolutionary branching occurs, Geritz et al
1998), much of the molecular diversity measured by population geneticists involve DNA
sequences of no known adaptive value, i.e. selectively neutral. A neutral sequence that
is physically linked in the genome to the sequence that codes for the adaptive trait is
called a marker of that trait. A longstanding question in evolutionary theory is under-
standing how variation in such molecular markers evolves, and how patterns of neutral
molecular evolution can be used to infer the history of trait mutation that have driven
past adaptation.

When adaptive mutations are rare, adaptation proceeds as a series of selective sweeps:
a trait mutation occurs while the population is monomorphic for the trait, and increases
rapidly in frequency toward fixation. Following on from Kojima and Schaffer (1967), Smith
and Haigh (1974) pointed out that selective sweeps purge genetic variation at linked sites:
a particular marker allele goes to fixation as a consequence of linkage with the selected
allele, a phenomenon they dubbed the ‘hitchhiking effect’. Maynard Smith and Haigh’s
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deterministic model was revisited in a stochastic approach by Ohta and Kimura (1975).
These seminal studies of hitchhiking focused on the short-term dynamics of an interaction
between two alleles at the locus under selection and two alleles at the neutral locus. Long-
term dynamics were considered first by Kaplan et al (1989) who developed a stochastic
model for finite populations to describe the effect of recurrent hitchhiking. In order to
describe stationary levels of nucleotide diversity at the marker locus, they used the infinite
site model and a coalescent approach under the assumption of constant population size
and constant selection coefficients. This has generated an abundant theoretical literature
on modeling the impact of selection on neutral polymorphism (Barton, 2000; Etheridge
et al, 2006; Durrett and Schweinsberg, 2004, and references therein). Recent deterministic
models have relaxed the assumption of constant selection either because of the presence of
genetic backgrounds (e.g. assuming a quantitative trait, Chevin and Hospital 2008) or in
the case of a parasite, because of the complexity of the demographic events involved in the
life cycle (Schneider and Kim, 2010). All previous models assume constant population size
and constant selection, or that the population size is independent of the selective value of
the individuals.

In this article, our goal is to relax these key assumptions. Under general ecological sce-
narios, eco-evolutionary feedbacks operate: as the adaptive trait evolves, population size
and selection co-vary. The eco-evolutionary process of adaptive trait and neutral marker
dynamics requires a rigorous mathematical framework, the foundation of which we estab-
lish here. We start with a ‘microscopic’, individual-based model where individuals have two
heritable characteristics: (i) an adaptive trait that influences their intrinsic demographic
rates and ecological interactions, and (ii) a genetic marker that has no demographic or
ecological effects, hence, is selectively neutral. This work focuses entirely on asexual popu-
lations and short genomic regions that remain perfectly linked to the loci under selection,
neglecting recombination. The population is described by a measure according to which
each individual is represented by a Dirac mass that weights its characters. This leads to
study the population eco-evolutionary dynamics as a measure-valued stochastic process.

The dynamics are driven by competition between individuals, asexual reproduction
without or with mutation, and death. Variation in population size and selection as the
trait evolves are mediated by the demographic effects of change in the trait. These effects
are expected to influence the generation and maintenance of neutral variation.

The effect of mutation on the marker can be continuous or discrete. Our framework
thus encompasses a variety of conventional mutation models such as the two-allele model,
the stepwise mutation model, and the continuous state mutation model. Our distinctive
assumption here is that the marker mutation process is much faster than the trait mutation
process but much slower than the ecological time-scale of birth and death events. This is
supported by the fact that most mutations are neutral or nearly neutral (such as mutations
involved in microsatellite variation). Therefore, there are three time scales in the model:
the fast ecological time scale of birth and death events, the slow time scale of trait mutation,
and an intermediate time scale of marker mutation. We study the joint process of trait
and marker dynamics on the trait mutation time scale.

We are interested in limit theorems when the population carrying capacity goes to
infinity. Then, the population size stabilizes in a neighborhood of the ecological equilibrium
and jumps to another equilibrium when a successful trait mutant goes to fixation in the
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population. This is the TSS dynamics of the adaptive trait. It does not depend on the
marker and has been mathematically proved by Champagnat (2006). The novelty in the
model and in the proofs comes from the time-scales difference for the marker and trait
mutations. The study of the marker distribution during the invasion period requires careful
consideration of the individual process and of the different scales involved. In a first period,
starting with the single invading mutant, we prove that the marker distribution remains
close to a Dirac mass at the value of the initial mutant. Until the next jump of the TSS, the
marker evolves as a stochastic distribution-valued process. In the case where the marker
mutation effects are continuous and small, this is a Fleming-Viot process whose drift and
covariance depend on the resident adaptive trait. In every cases, for any marker mutation
model, the collated dynamics define a measure-valued diffusive process with jumps that
we call Substitution Fleming-Viot Process (SFVP). The convergence of the microscopic
process to the SFVP is shown both in the sense of finite dimensional distributions and in
the sense of convergence of trait-marker-time measures, thus improving previous results of
Champagnat (2006).

From a biological standpoint, we recover the conventional hitchhiking phenomenon:
when a new mutant trait appears and sweeps through the population to fixation, the marker
carried by the mutant individual is hitchhiked, and the marker distribution undergoes
a genetical bottleneck. The mathematical construction of the SFVP process has new
implications of biological relevance. Neutral diversity is restored after each adaptive jump,
but as the adaptive trait evolves, population size, the mutation rate, genetic drift and
demographic fluctuations change, which causes the rate of neutral polymorphism build-up
and the moments of the marker distribution to change too. This suggests that the nature
and structure of the whole eco-evolutionary feedback loop (i.e. how adaptive traits influence
demographic rates and ecological interactions, and how ecological processes shape selection
pressures on adaptive traits) may be important to explain the extreme disparities in genetic
neutral diversity observed among species, even closely related ones and in the absence of
differences in recombination profiles (Cutter and Payseur, 2013). In fact, it is well-known
that demographic differences due to external causes (demographic bottleneck or population
expansion due to environmental changes) can affect neutral diversity of a population and
that closely related species can show very different neutral diversity patterns. Here, we
show that internal causes of demographic variation involved in adaptation can also affect
species differently.

The article is organized as follows. In Section 2, we start with the model description.
The stochastic individual-based process and its key assumptions are carefully described
and examples are provided. A key parameter is K, an integer that gives the order of
the population size and is used to rescale the mutation rates and kernels. By letting K
go to infinity we study the large population limit of the stochastic process. The main
theorem is enounced and discussed in Section 3, where biological implications are also
highlighted. Time scale separations implied by the dependence in K of the trait and marker
mutations lead to homogenization phenomena and then to the SFVP. Our mathematical
analysis provides a precise description of the genetical bottleneck that occurs at each trait
substitution. We show that the marker of the initial mutant individual dominates in the
marker distribution of the mutant population until this population reaches a neighborhood
of the new ecological equilibrium. Then, we present two numerical examples based on an
ecological model adapted from Dieckmann and Doebeli (1999). In the first example, marker
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mutation is described by a continuous state model that leads to a piecewise Fleming-Viot
process (section 3.3) for the marker. In the second example, marker mutation follows
a discrete two-allele model and the classical Wright-Fisher diffusion (3.5) is recovered.
Further generalizations are discussed. The proof of the main theorem in the adaptive
dynamics scaling is in Section 4. After having introduced a semi-martingale decomposition
of our stochastic measure-valued process, we start with recalling and refining the result of
Champagnat (2006) for the convergence of trait-marginals. For this purpose, we introduce
the M1-topology on the Skorokhod space where the TSS lives, using some ideas of Collet
et al (2013). The second part of the proof focuses on the marker distribution in an invading
mutant population. This gives the result on the genetical bottleneck. Then, between two
trait substitutions, the dynamics of the marker converges to a diffusive measure-valued
process. As a conclusion of the proof, we show the convergence to the SFVP in the space
of trait-marker-time measures.

2 The stochastic model

We consider an asexual population driven by births and deaths where each individual is
characterized by hereditary types: a phenotypic trait under selection and a neutral marker.
The trait and marker spaces X and U are assumed to be compact subsets of R. The type
of individual i is thus a pair (xi, ui), xi ∈ X being the trait value and ui ∈ U its neutral
marker. The individual-based microscopic model from which we start is a stochastic birth
and death process with density-dependence whose demographic parameters are functions of
the trait under selection and are independent of the marker. We assume that the population
size scales with an integer parameter K tending to infinity while individuals are weighted
with 1

K . At any time t ≥ 0, we have a finite number NK
t of individuals, each of them

holding trait and marker values in X ×U . Let us denote by ((x1, u1), . . . , (xNK
t
, uNK

t
)) the

trait and marker values of these individuals. The state of the population at time t ≥ 0,
rescaled by K, is described by the point measure

νKt =
1

K

NK
t∑

i=1

δ(xi,ui), (2.1)

where δ(x,u) is the Dirac measure at (x, u). This measure belongs to the set of finite point
measures on X × U with mass 1/K. This set is a subset of the set MF (X × U) of finite
measures on X × U , which is embedded with the weak convergence topology. We denote
by 〈ν, f〉 the integral of the measurable function f with respect to the measure ν and by

Supp(ν) the support of ν. Then 〈νKt ,1〉 = NK
t

K .

For any t ≥ 0, we also introduce the trait marginal of the measure νKt on X , denoted by
XK

t and defined by

XK
t =

1

K

NK
t∑

i=1

δxi
.

Therefore, the population measure νKt writes

νKt (dx, du) = XK
t (dx)πK

t (x, du) (2.2)
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where πK
t (x, du) is the marker distribution for a given trait value x defined by

πK
t (x, du) =

∑NK
t

i=1 1lxi=xδui

∑NK
t

i=1 1lxi=x

. (2.3)

Our purpose is to study the asymptotic behavior of the measure-valued process νK at large
times, when the trait and marker are inherited but mutations occur. The main interest of
our model is that these mutations happen at different time scales for trait and marker, but
both longer than the individuals lifetime scale. The trait mutates much slower than the
marker and drives the evolution time scale. Thus, the limiting behavior results from the
interplay of three time scales: births and deaths, trait mutations and marker mutations.

We describe the individuals’ life history. The trait has an influence on the ability of
individuals to survive (including competition with other ones) and to reproduce but the
marker is neutral. The demographic parameters are thus functions of the trait only and
are defined on X .

Assumption 2.1 • An individual with trait x and marker u reproduces with birth rate
given by 0 ≤ b(x) ≤ b̄, the function b being continuous.

• Reproduction produces a single offspring which usually inherits the trait and marker
of its ancestor except when a mutation occurs. Mutations on trait and marker occur
independently with probabilities pK and qK respectively. Mutations are rare and the
marker mutates much more often than the trait. We assume that

qK = pK rK , with pK =
1

K2
, qK(logK)2 →K→∞ 0 , rK →K→∞ +∞. (2.4)

• When a trait mutation occurs, the new trait of the descendant is x + k ∈ X with k
chosen according to the probability measure m(x, k)dk.

• When a marker mutation occurs, the new marker of the descendant is u+h ∈ U with
h chosen according to the probability measure GK(u, dh).

For any u ∈ U , GK(u, .) is approximated as follows when K tends to infinity:

lim
K→+∞

sup
u∈U

∣∣∣∣
rK
K

∫

U
(φ(u+ h)− φ(u))GK(u, dh)−Aφ(u)

∣∣∣∣ = 0, (2.5)

where (A,D(A)) is the generator of a Feller semigroup and φ ∈ D(A) ⊆ Cb(U ,R),
the set of continuous bounded real functions on U .

• An individual with trait x and marker u dies with intrinsic death rate 0 ≤ d(x) ≤ d̄,
the function d being continuous. Moreover the individual experiences competition the

effect of which is an additional death rate η(x) C ∗ νKt (x) = η(x)
K

∑NK
t

i=1 C(x − xi).
The quantity C(x − xi) describes the competition pressure exerted by an individual
with trait xi on an individual with trait x. We assume that the functions C and η
are continuous and that there exists η > 0 such that

∀x, y ∈ X , η(x) C(x− y) ≥ η > 0. (2.6)
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A classical choice of competition function is C ≡ 1 which is called “mean field case" or
“logistic case". In that case the competition death rate is η(x)NK

t /K.

Remark 2.2 Let us insist on the generality of Assumption (2.5) which allows a larger set
of possible dynamics.

• Equation (2.5) is for example true for U = [u1, u2], GK a centered Gaussian law

(conditioned to U) with variance σK → 0 such that limK σ2
K

rK
K = σ2 and Aφ = σ2

2 φ′′

for φ ∈ C2 with φ′(u1) = φ′(u2) = 0.

Choosing for example rK = K3/2, qK = 1/
√
K and σ2

K = 1/
√
K works. This choice

can be seen as a continuous state generalization of the stepwise mutation model (Ohta
and Kimura, 1973).

• If in addition the distribution GK has a non zero mean µK such that rKµK

K → µ > 0
corresponding to a mutational directional drift, then the operator A will be defined by
Aφ = σ2

2 φ′′ + µφ′.

• If we relax the compactness of U and assume that U = R, a third example consists
in taking for GK the law of a Pareto variable with index α ∈ (1, 2) divided by Kη/α,
for η ∈ (0, 1]. Then it has been proved by Jourdain et al (2012) that

lim
K

sup
u

∣∣∣∣K
η

∫

R

(φ(u+ h)− φ(u))GK(u, dh)− α

2
Dαφ(u)

∣∣∣∣ = 0,

where

Dαφ(u) =

∫

R

(φ(u+ h)− φ(u)− hφ′(u)1l|h|≤1)
dh

|h|1+α

is the fractional Laplacian with index α. Thus if we take rK such that rK
K1+η converges

as K tends to infinity, and choose A = Dα in (2.5), Assumptions (2.4)-(2.5) will be
satisfied as soon as η < 1.

• Another very interesting case is the discrete case when U = {a,A} is a set of two
alleles. The mutation kernel is given by

GK(u, dv) = 1lu=a qa δA(dv) + 1lu=A qA δa(dv). (2.7)

In this case, (2.5) implies that rK/K has a limit when K → +∞. Let r̄ be this limit,
then

Aφ(u) = r̄
(
1lu=a qa

(
φ(A)− φ(a)

)
+ 1lu=A qA

(
φ(a)− φ(A)

))
. (2.8)

We see that the ratio between the two mutation probabilities rK = qK/pK that allows
convergence is highly dependent on the mutation distribution.

Note that since the demographic rates do not depend on the marker, the dynamics of the
population distribution of the trait is independent of the marker distribution. But the

7



dynamics of the marker distribution cannot be separated from the trait distribution as we
shall see.

The process (νKt , t ≥ 0) is a càdlàg MF (X × U)-valued Markov process. Existence and
uniqueness in law of the process can be adapted from Fournier and Méléard (2004) and
Champagnat et al (2008) under the assumption that E(〈νK0 ,1〉) < +∞.
Moreover, Assumption (2.6) allows to prove as by Champagnat citet[Lemma 1]champag-
nat06 that if for p ≥ 1, supK∈N∗ E(〈νK0 ,1〉p) < +∞, then

sup
t∈R+,K∈N∗

E
(
〈νKt ,1〉p

)
< +∞ (2.9)

which will be useful to study the tightness and convergence of the sequence.

3 Convergence to the Substitution Fleming-Viot Process

The adaptive trait mutation time scale is the slowest, equal to 1
KpK

= K by Assumptions

(2.4). It scales the evolutionary time. So we shall consider the limiting behavior of (νKKt, t ≥
0). We will see in section 4.2.1 that pK of order 1/K2 is the only choice which leads to a
non-trivial or non-degenerate marker dynamics.

Before stating our main result, we introduce several important ingredients which are used
to describe the limit of (νKKt, t ≥ 0) when K → +∞. We conclude the section with
extensions and simulations.

3.1 Invasion fitness function

The large population behavior of the process (νKt , t ≥ 0) as K tends to infinity, can be
studied by classical arguments and is given in the appendix. At the ecological time scale
(of order 1), no mutation occurs in the asymptotic K → +∞. If the initial population has
a single adaptive trait x, then, in the limit K → +∞, the trait distribution remains δx
since pK and qK vanish in the limit. The rescaled population size process (NK

t /K, t ≥ 0)
converges to the solution (nt, t ≥ 0) of the ordinary differential equation

dnt

dt
=

(
b(x)− d(x)− η(x)C(0)nt

)
nt (3.1)

which converges when t tends to infinity to the equilibrium

n̂x =
b(x)− d(x)

η(x)C(0)
. (3.2)

Conversely, at the adaptive trait-mutation time scale Kt, new mutant traits can invade.
If they replace the previous traits, then the corresponding event is called “fixation”.
The probability of fixation of a mutant trait y in a trait resident population x at equilibrium
depends on the invasion fitness function f(y;x):

f(y;x) = b(y)− d(y)− η(y)C(y − x) n̂x. (3.3)
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This fitness function describes the initial growth of the mutant population. It does not
depend on the neutral marker.

By simplicity we work under the assumption of ‘invasion implies fixation’, but this as-
sumption will be relaxed in Section 3.5. When a mutant trait appears, either its line of
descent replaces the resident population or it disappears. As a consequence, two traits can
not coexist in the long term.

Assumption 3.1 (“Invasion implies fixation") For all x ∈ X and for almost every
y ∈ X ,

either
b(y)− d(y)

η(y)C(y − x)
<

b(x)− d(x)

η(x)C(0)
,

or
b(y)− d(y)

η(y)C(y − x)
>

b(x)− d(x)

η(x)C(0)
and

b(x)− d(x)

η(x)C(x− y)
<

b(y)− d(y)

η(y)C(0)
.

Remark 3.2 In the case of logistic populations with C ≡ 1, this assumption is satisfied as
soon as x 7→ n̂x is strictly monotonous.

3.2 Main theorem

Let us first give the definition of the Fleming-Viot process which will appear in our setting
(see e.g. Dawson and Hochberg 1982; Dawson 1993; Donnelly and Kurtz 1996; Etheridge
2000). We recall that the operator A has been introduced in (2.5).

In the sequel, we denote by P(U) and P(X×U) the probability measure spaces respectively
on U and on X × U .

Definition 3.3 Let us fix x ∈ X and u ∈ U . The Fleming-Viot process (F u
t (x, .), t ≥ 0)

indexed by x, started at time 0 with initial condition δu and associated with the mutation
operator A is the P(U)-valued process whose law is characterized as the unique solution of
the following martingale problem. For any φ ∈ D(A),

Mx
t (φ) = 〈F u

t (x, .), φ〉 − φ(u)− b(x)

∫ t

0
〈F u

s (x, .), Aφ〉ds (3.4)

is a continuous square integrable martingale with quadratic variation process

〈Mx(φ)〉t =
b(x) + d(x) + η(x)C(0)n̂x

n̂x

∫ t

0

(
〈F u

s (x, .), φ
2〉 − 〈F u

s (x, .), φ〉2
)
ds

=
2b(x)

n̂x

∫ t

0

(
〈F u

s (x, .), φ
2〉 − 〈F u

s (x, .), φ〉2
)
ds. (3.5)

Let us now state our main theorem that describes the slow-fast dynamics of adaptive traits
and neutral markers at the (trait) evolutionary time scale.
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Theorem 3.4 We work under Assumptions 2.1 and 3.1. The initial conditions are
νK0 (dy, dv) = nK

0 δ(x0,u0)(dy, dv) with limK→∞ nK
0 = n̂x0

and for any ǫ > 0, supK∈N∗ E((nK
0 )2+ǫ) <

+∞.

Then, the population process (νKKt, t ≥ 0) converges in law to the MF (X × U))-valued
process (Vt(dy, dv), t ≥ 0) defined by

Vt(dy, dv) = n̂Yt δYt(dy)F
Ut
t (Yt, dv), (3.6)

where the process ((Yt, Ut), t ≥ 0) on X ×U , started at (x0, u0), jumps at time t from (x, u)
to (x+ k, v) with the jump measure

b(x)n̂x
[f(x+ k;x)]+

b(x+ k)
F u
t (x, dv)m(x, k)dk. (3.7)

The convergence holds in the sense of finite dimensional distributions on MF (X × U).
In addition, the convergence also holds in the space of trait-marker-time measures, i.e. the
measure νKKt(dy, dv)dt on X×U×[0, T ] converges weakly to the measure n̂Yt δYt(dy)F

Ut
t (Yt, dv)dt

for any T > 0. �

Definition 3.5 The limiting measure-valued process (Vt(dy, dv), t ≥ 0) is called Substitu-
tion Fleming-Viot Process. It generalizes the Trait Substitution Sequence (TSS) introduced
by Metz et al (1996).

We observe that the Substitution Fleming-Viot Process includes the three qualitative be-
haviors due to the three different time scales: deterministic equilibrium for the size of the
population (driven by the ecological birth and death events), transitory diffusive behav-
ior for the marker distribution (driven by marker mutation), jump process for the trait
distribution (driven by adaptive trait mutation).

Remark 3.6 Equations (3.4)-(3.5) have important biological implications regarding neu-
tral genetic diversity. Once the fixation of a favorable mutation has occurred and the
population is monomorphic for the selected trait, the evolution of the neutral marker distri-
bution is described by a Fleming-Viot process whose law is given by the martingale in (3.4).
The bracket of the martingale in (3.5) shows that the stochastic fluctuations with time of
the marker distribution are due to randomness in births and deaths and mutations. The
multiplicative factor 2b(x)/n̂x in (3.5) depends on the trait value x, and on the assumed
ecological model which determines the relationships between x, the death and birth rates
and the competition kernel. Notice that 2b(x)/n̂x corresponds to the quotient of variance
(here 2b(x)) divided by effective size Ne (here n̂x) that appears in the usual Wright Fisher
equation. The quantity n̂x corresponds to the mass of the population when there is an
infinite number of small individuals; if the size of the population is of order K, it means
that there is approximately n̂xK individuals of weights 1/K. The right term in (3.4), (i.e.
the drift term in a mathematical sense) involves the generator A and is associated with the
mutation model as seen in Assumption (2.5). The generator A describes the speed at which

the neutral diversity is restored. For instance in a continuous state model, if Aφ = σ2

2 φ′′,
we recover the heat equation whose solutions have a variance in t. In a discrete state model
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similar to (2.8), this equation gives the growth of the support.
In short, (3.4)-(3.5) shows that the distribution of the neutral marker depends on ecological
processes and their parameters: every changes in x will result in changes in the distribution
of the neutral marker, through changes in birth, death and mutation rates, in competition
and equilibrium population size. This result is biologically relevant and important since it
differs from the assumptions of classical genetic hitchhiking models, in which selection and
population size remain constant, leading to the fact that the neutral diversity restoration
will not depend on the trait substitution and its history. In examples below, we will give
more detailed results regarding the distribution of the neutral marker changes.

The proof of Theorem 3.4 is the subject of Section 4.

The trait dynamics in the limit of Theorem 3.4 is the Trait Substitution Sequence ob-
tained by the Theorem 1 in Champagnat (2006) whose assumptions are satisfied. Our
main contribution in Theorem 3.4 is to prove that at the adaptive trait mutation time
scale, a homogeneization phenomenon takes place. There is a deterministic limit for the
fastest process (the births and deaths leading to n̂x), and stochastic limits for the two
slower processes. The limiting process (Vt, t ≥ 0) is a measure-valued process with jumps
(corresponding to trait mutations) and diffusion (corresponding to marker dynamics). If
the population is trait-monomorphic with trait x, the jump measure is

b(x)n̂x

∫

X−{x}

[f(x+ k;x)]+
b(x+ k)

m(x, k)dk,

where X − {x} = {y − x, y ∈ X}. When a jump occurs at t, the process jumps from
(x, u) to (x+ k, v) where k is chosen in m(x, k)dk and v is chosen at time t in the marker
distribution F u

t (x, dv).

The marker distribution is the second fastest-evolving component, but marker mutations
are assumed small (2.5), allowing to recover a non-degenerate Fleming-Viot superprocess
parameterized by the trait of the population but with jumps. Between the jumps, this
superprocess is the pathwise limit of the marker dynamics where traits are fixed. The
jumps are hitchhiking events due to the trait mutations (see in another context Etheridge
et al 2006). There is a bottleneck at each successful invasion-fixation of mutant traits.
Indeed, the individuals present at the fixation time are all descendants of the successful
initial mutant. The trait and marker of the latter alone determine the state of the new
mutant population, hence creating the bottleneck for the whole population genealogy. This
result is biologically intuitive since we assume that the neutral marker and the trait are
completely linked, but the mathematical proof of these phenomena is the hardest part of
the proof of Theorem 3.4, and we will show that our results still have biological interest.
Extending this model to the case of recombination is a challenging problem for future work
(see Smadi 2014 in this direction).
It is also worth to notice that contrarily to other extensions of the TSS (e.g. the TSS
with age-structure of Méléard and Tran 2009 or the Polymorphic Evolution Sequence for a
multi-resource chemostat in Champagnat et al 2014) that usually jump from an equilibrium
to another, the marker distribution is here described by a stochastic process and not an
equilibrium measure. This is due to the fact that the time scales of the trait and marker
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mutations are assumed different: in the time scale of marker mutations, the trait mutations
are too rare and not seen.

An illustration of the invasion and fixation phenomena is summed up in Fig. 3.1.

✲

✻

0

ε

n̂x+k

n̂x

n̂xδx ⊗ F u
t2(x, dv)

1
K δ(x+k,v)

population size

t2
✲logK

σ1 tτ1

n̂x+k δ(x+k,v)

Figure 3.1: Invasion and fixation of a successful trait mutant. In the population of resident

trait x and marker distribution Fu
t (x, dv), a mutant trait x + k appears at time τ1. Let v be the

marker of the mutant individual. As in Champagnat et al (2008), the fluctuations of the resident

population can be neglected in first approximation and the mutant population evolves as a birth

and death process with rates b(x+ k) and d(x+ k) + η(x+ k)C(k)n̂x, independent of the marker

distribution. When the mutant population reaches a sufficient size ε at time t2, with probability

[f(x+ k, x)]+/b(x+ k), the ‘invasion implies fixation’ assumption leads to the replacement of the

former population in a time tK such that tK/ log(K) → ∞. This time interval is too short to allow

other marker mutant to appear in non-negligible proportion, with large probability. Thus, when

the mutant population has fixed, at time σ1, it is close to n̂x+kδ(x+k,v). Before the next adaptive

trait mutation occurs, the marker mutates a lot, since marker mutations happen on a faster scale.

The dynamics of the marker distribution is then the one of a Fleming-Viot superprocess started

at δv and with statistics depending on x+ k.

3.3 An example from Dieckmann and Doebeli (1999)

Let us first illustrate our model by simulations based on an example inspired from Rough-
garden (1979) and Dieckmann and Doebeli (1999). Here X = [−1, 1], U = [−2, 2] and
K = 1000 in all the simulations. The individual dynamics is characterized by

• the birth rate b(x) = exp(−x2/2σ2
b ) with σb = 0.9. The probability of mutation of

the trait and marker are respectively pK = 1/K2 and qK = 1/
√
K. The adaptive

trait mutation kernel m(x, k)dk is a Gaussian law with mean 0 and variance 0.1,
conditioned to [−1, 1]. The marker mutation kernel GK(u, dh) is a Gaussian law
with mean 0 and variance σ2

K = 1/
√
K, conditioned to [−2, 2].

• symmetric competition for resources, with η(x) = 1 and C(x − y) = exp(−(x −
y)2/2σ2

C), σC = 0.8.
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Here, the ‘optimal trait’ is x = 0 where the birth rate has its maximum and the popula-
tion is governed by local competition. We start with the initial condition: x0 = −1, u0 = 0.

(a) (b)

Figure 3.2: We consider a resident trait-monomorphic population (black) in which a mutant
trait (orange) appears and goes to fixation. Here the intrinsic death rate d(x) = 0. (a)
Evolution of the support of the marker distribution with respect to time; the support of the
resident trait-monomorphic population is in black while the support of the mutant population
is in orange. The mutant and resident populations are shown separately and together. (b)
Distributions of the traits (left) and markers (right) in the population at three times during
the invasion. The marker and trait values are in abscissa and frequencies are in ordinate.
The marker value of the initial mutant is indicated by the red line. When the mutant
trait appears, the resident population is quickly invaded by the mutant population during
a transition period. In (b), we can see that if the support of the marker distribution for
the resident population remains wide (see also (a)), the size of the resident population
decreases quickly. In the second column of (b), we see that the marker distribution in the
mutant population remains spiked at the marker value of the first mutant individual during
the whole transition period. After invasion (see (a)), the spread of the marker distribution
follows the Fleming-Viot process (3.4)-(3.5). On (a), we see that for the Fleming-Viot
process, the support of the marker distribution spreads slowly.

The simulations (see Fig. 3.2) illustrate Theorem 3.4. They show the replacement of a
resident population by a mutant population. In Fig. 3.2 (a), the dynamics of the support of
the marker distribution is represented. The mutant and resident populations are pictured
together and separately to better observe the extinction of the resident population (black)
and the expansion of the mutant population from one individual (orange). The invasion
started around time 3175, and after time 3250, the mutant population has totally replaced
the resident one.
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In Fig. 3.2 (b), the histograms of traits and markers at three times during the invasion are
represented simultaneously, to underline the hitchhiking effect of the marker during the
‘invasion implies fixation’ phase. We can see that the distribution of the marker during the
fixation remains close to a Dirac mass at the marker value of the initial mutant (red line).
This illustrates the bottleneck phenomenon, the existence of which we prove rigorously
(Equation (4.8) of Proposition 4.5).

Let now focus on the Dieckmann-Doebeli’s example and highlight the biological implica-
tions regarding the eco-evolutionary feedback on the distribution of the neutral marker.
Here, n̂x = b(x)−d(x) and therefore the Fleming-Viot process F u

t (x, .) is the solution of the

martingale problem (3.4) with Aφ = σ2

2 φ′′ and with bracket (3.5) given for all φ ∈ C(U ,R)
by 2 b(x)

b(x)−d(x)

∫ t
0

(
〈F u

s (x, .), φ
2〉 − 〈F u

s (x, .), φ〉2
)
ds.

If the death rate is a constant d(x) = d, then the multiplicative factor in the bracket (3.5),
b(x)/(b(x)− d), decreases when b(x) increases. Heuristically we expect that the stochastic
fluctuations in time of the distribution of the neutral marker decrease when the trait x
approaches the evolutionary stable strategy (ESS, see Maynard Smith 1982) and b(x) in-
creases, since the equilibrium size is greater and the diffusion coefficient is lower. The drift
term is b(x)σ

2

2

∫ t
0 〈F u

s (x, .), φ
′′〉ds and thus the multiplicative factor b(x) increases when ap-

proaching the ESS, contrarily to the multiplicative factor of the bracket (3.5). In the case
d ≡ 0, the Fleming-Viot process has a constant diffusion coefficient and the bracket (3.5)
does not depend on x. The Fleming-Viot process depends only on the trait x through the
drift term. Notice that this is true for any mutation model satisfying (2.5). This simple
result illustrates how the ecological processes can shape the neutral diversity.

3.4 Corollary: the Wright-Fisher Evolutionary Process

There exists a version of the SFVP in the case when the marker space U is discrete. Assume
for instance that there exist only two alleles of the marker trait, denoted by a and A, so
that U = {a,A}. In this case, we apply Theorem 3.4 with the mutation kernel GK defined
in (2.7) and rK/K → r̄ > 0 when K → +∞.

Proposition 3.7 We work under Assumptions 2.1 and 3.1 with probabilities qA and qa
to mutate from marker A to marker a and from marker a to marker A. Moreover, we
consider similar initial conditions νK0 as in Theorem 3.4. Then, the population process
(νKKt, t ≥ 0) converges in law to the MF (X × {a,A})-valued process

(n̂Yt

(
W a

t δ(Yt,a)(dy, du) + (1−W a
t ) δ(Yt,A)(dy, du)

)
, t ≥ 0),

where (Yt, t ≥ 0) is the TSS process that jumps from x to x+k in X with the jump measure

b(x) n̂x
[f(x+k;x)]+

b(x+k) m(x, k)dk and where (W a
t , t ≥ 0) is the following Wright-Fisher jump

process that represents the proportion of alleles a in the population of trait Yt at time t.
Between jumps, it satisfies the usual Wright-Fisher equation with mutations

dW a
t = r̄ b(Yt)

(
qA(1−W a

t )− qaW
a
t

)
dt+

√
2b(Yt)

n̂Yt

W a
t

(
1−W a

t

)
dBt (3.8)

(Bt, t ≥ 0) being a standard Brownian motion. It jumps with the TSS and at jump time t,
the process (W a

t , 1 − W a
t ) goes to (1, 0) with probability W a

t and to (0, 1) with probability
1−W a

t . �
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An illustration of this proposition is given in Fig. 3.3.

This result can be generalized to discrete marker spaces U = {a1, . . . am}, by intro-
ducing the transition probabilities qij to mutate from ai to aj , i, j ∈ {1, . . . ,m}. An
application is when the marker corresponds to the genetical sequence of n nucleotides (A,
T , G or C for each position). In this case, m = Card U = 4n.

Traditionally in a population genetics framework, the evolution in finite populations of the
diversity at a neutral marker is described as a diffusion process with two fixed parameters:
the population size and the mutation “rate” (e.g. Crow and Kimura 1970). The population
size is related to what is called the “genetic drift” and generally refers to the random
sampling of gametes performed for reproduction at the beginning of each generation, and
the higher the population size, the lower the genetic drift. Under this framework, genetic
drift induces stochastic fluctuations in the frequencies of the alleles A and a and can cause
the decrease of the neutral genetic diversity when an allele is randomly lost. On the other
hand, mutation introduces continuously alleles A and a in the population and thus allows
the restoration and the maintenance of the neutral genetic diversity. It is important to
note that under the population genetics framework, mutation rates and population size
are fixed and do not depend on the ecological processes and their parameters, neither on
the trait value when the population is monomorphic for the trait under selection. As a
consequence, those parameters do not change as successive selective sweeps occur especially
during the adaptation process. Here we can use Equation (3.8) and try to compare the
classical population genetics results about the distribution of neutral diversity and the one
in our model.
In an eco-evolutionary framework, (3.8) first shows that mutation rates and population
size, i.e. the genetic drift, are not fixed and depend on the ecological processes and on the
trait value x. The mutation rates are r̄ b(Yt)qA and r̄ b(Yt)qa in our framework while it is
only qA and qa under a population genetics framework (e.g. Crow and Kimura 1970). The
genetic drift, i.e. the equilibrium population size, is given by 1/n̂Yt while it is a constant
1/n in population genetics framework. Second, (3.8) shows that extra ecological processes
affect the distribution of the neutral marker since in the left-hand side there is the term
2b(Yt). This term can be interpreted as the effect of demographic stochasticity, which is
not taken into account in population genetics.

3.5 Extensions to co-existing traits

The work of Champagnat and Méléard (2011) generalizes the TSS to the case of coexisting
trait values, when Assumption 3.1 is relaxed. They define a polymorphic TSS called poly-
morphic evolutionary sequence (PES) and denoted by (Xt)t≥0 ∈ D(R+,MF (X )). When a
mutant trait y appears in a resident population of trait x0 at time t1, either its descendent
line is killed with probability 1 − [f(y;x0)/b(y)]+, or it survives. In that case, we can
have coexistence of y and x0 when there is a positive globally stable non-trivial equilib-
rium (n∗

x0,y, n
∗
y,x0

) to the Lotka-Volterra system defined in (A.4). Therefore the population
jumps from Xt1− = n̂x0

δx0
to

Xt1 = n∗
x0,yδx0

(dx) + n∗
y,x0

δy(dx).

15



Figure 3.3: Evolution of sizes of the subpopulations with markers a and A. The simulation
uses individual-based algorithms. The proportions of marker alleles a and A follow Wright-
Fisher diffusions while the size of the population stabilizes around the equilibrium given
by the trait value. A trait mutant appears around time 18290, invades and fixes into
the population. Before the appearance of this mutant trait, fluctuations in the marker
distribution are due to (fast) marker mutation, birth and death stochastic events. At the
time when the mutant trait appears, the A-allele frequency is 85%, giving a high probability
for an A-allele hitchhike. This is the case in the simulation. After fixation time (around
time 18490), the a-allele population is extinct. It is regenerated by mutations of the marker
but get extinct three times before taking up around time 19600.

For a probability π, a trait measure X and x ∈ X , let us denote by Ft(π, x,X, du) the
Fleming-Viot process started at π, evolving in the trait distribution X and parameterized
by x.

Let π0 be the initial marker distribution of the monomorphic population of trait x0.
Before the time t1 of appearance of the first mutant, the marker distribution evolves as
(Ft(π0, x0, n̂x0

δx0
, du))t≥0. Let πt1 = Ft1(π0, x0, n̂x0

δx0
, du) be the marker distribution at

t1 and let V1 be a random variable drawn in the distribution πt1 . After t1 and before the
occurence of the second trait-mutation at t2, the population evolves as

n∗
x0,yδx0

(dx)Ft−t1(πt1 , x0, Xt1 , du) + n∗
y,x0

δy(dx)Ft−t1(δV1
, y,Xt1 , du).

The processes Ft(πt1 , x0, Xt1 , du) and Ft(δV1
, y,Xt1 , du) are independent generalizations

of the Fleming-Viot process defined in Definition 3.3, conditionally on πt1 , Xt1 and V1.
Indeed their semimartingale decompositions are respectively:

〈Ft(πt1 , x0, Xt1 , .), φ〉 = 〈πt1 , φ〉+ b(x0)

∫ t

0
〈Fs(πt1 , x0, Xt1 , .), Aφ〉 ds+M1

t (φ) ;

〈Ft(δV1
, y,Xt1 , .), φ〉 = φ(V1) + b(y)

∫ t

0
〈Fs(δV1

, y,Xt1 , .), Aφ〉 ds+M2
t (φ), (3.9)
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where M1(φ) and M2(φ) are independent square integrable martingales such that

〈M1(φ)〉t =
b(x0) + d(x0) + η(x0)C(0)n∗

x0,y + η(x0)C(x0 − y)n∗
y,x0

n∗
x0,y + n∗

y,x0∫ t

0

(
〈Fs(πt1 , x0, Xt1 , .), φ

2〉 − 〈Fs(πt1 , x0, Xt1 , .), φ〉2
)
ds

=
2b(x0)

n∗
x0,y + n∗

y,x0

∫ t

0

(
〈Fs(πt1 , x0, Xt1 , .), φ

2〉 − 〈Fs(πt1 , x0, Xt1 , .), φ〉2
)
ds,

〈M2(φ)〉t =
b(y) + d(y) + η(y)C(y − x0)n

∗
x0,y + η(y)C(0)n∗

y,x0

n∗
x0,y + n∗

y,x0∫ t

0

(
〈Fs(δV1

, y,Xt1 , .), φ
2〉 − 〈Fs(δV1

, y,Xt1 , .), φ〉2
)
ds

=
2b(y)

n∗
x0,y + n∗

y,x0

∫ t

0

(
〈Fs(δV1

, y,Xt1 , .), φ
2〉 − 〈Fs(δV1

, y,Xt1 , .), φ〉2
)
ds. (3.10)

At time t2, when a third trait appears in the population, the system can evolve to three two
or just one coexisting traits, depending on the new trait equilibrium of the Lotka equations
that is reached. For each of the traits, the marker distribution evolves as a generalization
of the Fleming-Viot processes above.

Remark 3.8 The above equations show that, when there is coexistence of two traits in the
population, the markers in the subpopulations defined by the two traits evolve independently
but with parameters depending on the two co-existing traits. Thus, when there is a diversi-
fication event in the population, the distribution of the neutral diversity in one of the two
subpopulations does not evolve as completely forgetting the other one. The parameters of
the underlying Fleming-Viot process depend on the complete trait distribution.

We present in Figure 3.4 simulations in the case of coexistence, with the same model and
parameters as in Section 3.3, except σC = 0.7 and the initial condition: x0 = −0.1.
The simulations (see Fig. 3.4) show the appearance of a new mutant trait (yellow) in a
population of two coexisting traits (black and blue).

4 Proof of Theorem 3.4

Let us sketch the proof. In this section, we will suppose that Assumptions 2.1, 3.1 are
satisfied and the initial conditions are νK0 (dy, dv) = nK

0 δ(x0,u0)(dy, dv) with limK→∞ nK
0 =

n̂x0
and supK∈N∗ E((nK

0 )3) < +∞.

First, we recall results due to Champagnat et al (2008) that provide the finite marginal
convergence of the trait process (XK

Kt; t ≥ 0). We extend these results to obtain the weak
convergence of the measures (XK

Kt(dx)dt;K ≥ 0) in MF (X × [0, T ]) embedded with the
weak convergence topology. This corresponds to the convergence of (XK

Kt; t ≥ 0) as a
trait-marker-time measure, as developed by Kurtz (1992). Secondly, we include the fast
component (the marker) and prove the tightness of the sequence (νKKt(dx, du)dt;K ≥ 0) in
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(a) (b)

Figure 3.4: Neutral marker dynamics in a trait-dimorphic population. Evolution of markers
with respect to time. (a) The mutant population (yellow) and resident populations (black
and blue) are shown separately and together. (b) Distributions of the traits and markers in
the population at three times during the invasion. The marker value of the initial mutant
is indicated by the red line.

MF (X×U×[0, T ]). We then consider a subsequence, again denoted by (νKKt(dx, du)dt,K ≥
0) with an abuse of notation, that converges to a limit Γ(dt, dx, du) ∈ MF ([0, T ]×X ×U)
that we have to identify. This derivation is done in several steps. When a successful mutant
appears in the monomorphic population with trait x, the transition period to fixation is to
be considered carefully. It has been proved by Champagnat (2006) that these transitions
are of order log(K). We prove that during this time interval, the marker distribution in
the mutant subpopulation remains a Dirac mass at the value of the initial mutant. This
results from the combined effects of small or rare marker mutations, large population and
slow take-off of the new mutant population. Then, we show that in a trait monomorphic
population with value x, the marker distribution converges to a Fleming-Viot superprocess
parameterized by x.
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4.1 Semimartingale decomposition of ν
K

Let us introduce some notation to keep forthcoming formula simple. For ν ∈ MF (X ×U)
and φ(x, u) ∈ C(X ×U ,R), we define the (nonlinear) generators BK and DK(ν) such that

BKφ(x, u) =(1− pK)(1− qK)b(x)φ(x, u)

+pK(1− qK)b(x)

∫

X
φ(x+ k, u)m(x, k)dk

+qK(1− pK)b(x)

∫

U
φ(x, u+ h)GK(u, dh)

+pK qK b(x)

∫

X×U
φ(x+ k, u+ h)m(x, k)dk GK(u, dh) (4.1)

DK(ν)φ(x, u) =
(
d(x) + η(x)C ∗ ν(x)

)
φ(x, u). (4.2)

The process 〈νK. , φ〉 is a square integrable semi-martingale and we give its characteristics.

Proposition 4.1 For a continuous bounded function φ(x, u) on X × U , the process

MK,φ
t =〈νKt , φ〉 − 〈νK0 , φ〉 −

∫ t

0
ds

∫

X×U
νKs (dx, du)

(
BK −DK(XK

s )
)
φ(x, u) (4.3)

is a square integrable martingale with previsible quadratic variation

〈MK,φ〉t =
1

K

∫ t

0
ds

∫

X×U
νKs (dx, du)

(
BK +DK(XK

s )
)
φ2(x, u). (4.4)

Proof The dynamics being given in Section 2, the proof can be adapted from (Fournier
and Méléard, 2004, Lemma 5.2). One main step consists in showing that there exists a
Poisson point measure driving the measure-valued processes νK for all K ∈ N∗. �

4.2 Convergence of the trait-marginal in the trait mutation time scale

As previously emphasized, the trait dynamics is described by the measure-valued process
XK which does not depend on the markers. This process has been fully studied in Cham-
pagnat (2006) and Champagnat et al (2008). In this section, we recall the finite marginal
convergence result obtained in these papers. We give some additional properties concerning
the topology involved. This result shows a time scale separation with successive fixations of
successful mutants, under Assumptions 2.1 and 3.1. Notice that the time scale assumption
is

∀V > 0, logK ≪ 1

KpK
≪ exp(V K), as K → ∞, (4.5)

which is realized in our case for pK = 1/K2.
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Theorem 4.2 Under Assumptions 2.1 and 3.1, let us also assume that the initial pop-
ulation is trait-monomorphic: XK

0 = nK
0 δx for x ∈ X and nK

0 → n̂x in probability and
supK∈N∗ E((nK

0 )3) < +∞.

Then, the sequence (XK
Kt; t ≥ 0) converges to the pure jumps singleton measure-valued

Markov process (n̂Yt δYt ; t ≥ 0) defined as follows: Y0 = x, and the process Y jumps from

x to x+ k with jump measure b(x) n̂x
[f(x+k;x)]+

b(x+k) m(x, k)dk.

The convergence holds in the sense of finite dimensional distributions on MF (X ) equipped
with the topology of total variation.

This theorem has been proved by Champagnat (2006) for the logistic case and generalized
by Champagnat et al (2008).

The trait-marginal process (XK
Kt; t ∈ [0, T ]) does not converge in D([0, T ],MF (X )) embed-

ded with the Skorokhod topology. Indeed, the size of jumps is upperbounded by 1
K and

nevertheless the limiting total mass process has jumps, preventing trajectorial tightness
(at least in the J1-topology). Following the idea of Kurtz (1992) and as developed in
Méléard and Tran (2012) and Gupta et al (2014), a weaker topology consists in forgetting
the process point of view and considering the measure XK

Kt(dx)dt in MF ([0, T ]× X ) em-
bedded with the topology of weak convergence. This convergence strengthens the result of
Theorem 4.2 but in a topology weaker than the Skorohod topology.
To achieve this, as in Collet et al (2013), we first introduce the M1-topology on D([0, T ],R+).
It is weaker than the usual J1-topology and allows monotonous processes with jumps tend-
ing to 0 to converge to processes with jumps (see Skorohod 1956). For a càdlàg function h
on [0, T ], the continuity modulus for the M1-topology is given by

wδ(h) = sup
0≤t1≤t≤t2≤T ;
0≤t2−t1≤δ

d(h(t), [h(t1), h(t2)]). (4.6)

Note that if the function h is monotone, then wδ(h) = 0.

Proposition 4.3 Let us consider a continuous function g. Then, under Assumptions 2.1
and 3.1, the process (RK

t , t ∈ [0, T ]) defined by

RK
t =

∫
g(x)XK

Kt(dx)

converges in law in the sense of the Skorohod M1-topology to the process (Rt, t ∈ [0, T ])
where Rt = n̂Yt g(Yt).

Proof From Theorem 4.2, finite dimensional distributions of (RK
t , t ∈ [0, T ]) converge

to those of (n̂Yt g(Yt), t ∈ [0, T ]). By Skorohod (1956, Theorem 3.2.1), it remains to prove
that for all η > 0,

lim
δ→0

lim sup
K→∞

P(wδ(R
K
. ) > η) = 0,

where wδ has been defined in (4.6).
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The mutation rate in (RK
t , t ∈ [0, T ]) being bounded, the probability that two mutations

occur within a time less than δ is o(δ). It is therefore enough to study the case where
there is at most one mutation in the time interval [0, δ]. Following Champagnat (2006),
the path of RK can be decomposed into several subpaths, each of them being closed to
a large population deterministic measure-valued function ξ (See Proposition A.1 in the
appendix) with a probability tending to 1. Away from invading mutations and for a trait-
monomorphic population with trait x, 〈ξKt, g〉 = g(x)nKt(x) where n.(x) is the solution of
the logistic equation (3.1). We can easily check that t → nt(x) converges monotonously to
its stable equilibrium n̂x and then 〈ξKt, g〉 is monotonous and the modulus of continuity
tends to 0. Around an invading mutant y , 〈ξKt, g〉 is close to nKt(x)g(x) + nKt(y)g(y)
where (nt(x), nt(y)) is solution of the Lotka-Volterra system (A.4) with an initial condition
close to (n̂x, 0). The mutant y invades if the fitness function f(y;x) is positive (and f(x; y)
is negative). From Assumption 3.1, an easy study of the Lotka-Volterra system (see for
example the appendix in Champagnat 2004, Figure (b) p.187), shows that either nt(x) and
nt(y) are increasing or ṅt(x) < 0; ṅt(y) > 0. In that case, nt(x)g(x) + nt(y)g(y) is the
sum of two monotonous functions and the modulus of continuity tends also to 0. �

Corollary 4.4 The sequence of random measures XK
Kt(dx)dt converges in law to the ran-

dom measure n̂Yt δYt(dx)dt in MF ([0, T ]×X ) embedded with the weak convergence topology.

Proof It is enough to prove the convergence in law of
∫
h(t)e−qxXK

Kt(dx)dt to
∫
h(t)e−qxn̂Yt δYt(dx)dt

for a measurable bounded function h and q ∈ Q. In Skorohod (1956), it is proved that
if xK converges to x in D([0, T ],R) embedded with the M1-topology, then for t outside
a denumerable set, xK(t) converges to x(t). Then it follows by Lebesgue’s Theorem that∫ T
0 H(t, xK(t))dt converges to

∫ T
0 H(t, x(t))dt, as soon as H is bounded and continuous.

We apply this result to the process (
∫
X e−qxXK

Kt(dx), t ≥ 0) and the function

HM (t, y) = h(t)(y ∧M),

for any M > 0. Estimate (2.9) (with p = 1) allows to conclude. �

4.2.1 Marker distribution in a new adaptive trait mutant population

In this section, we study the transition of the marker distribution when a new mutant
adaptive trait appears in a monomorphic population with trait x0. We consider this
phenomenon at the ecological time scale and we prove that the fixation of the mutant
trait creates a genetical bottleneck.

Let K be fixed. Initially we have a trait monomorphic population with trait x0 and a
marker distribution πK(x0, du). Then an individual (x0, v) from this population gives
birth to an individual with mutant trait y and marker v (v has been chosen according to
πK(x0, du)). We consider the process (νKt ; t ≥ 0) started at

νK0 (dx, du) =XK
0 (dx)πK

0 (x, du)

=
1

K
δ(y,v)(dx, du) +

NK
0 − 1

K
δx0

(dx)πK
0 (x0, du).
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Proposition 4.5 Under Assumptions 2.1 and 3.1, let us consider a mutant (y, v) appear-
ing in a monomorphic population with trait x0 and marker distribution πK

0 (x0, du). Let
us assume that f(y;x0) > 0, where the fitness function has been defined in (3.3). There
exists ε > 0 such that for any sequence (tK ;K ∈ N∗) with limK→+∞ tK/ logK = +∞ and
limK→+∞ tK/K = 0 (for example tK = (logK)2), we have

lim
K→+∞

P
(
〈νKtK , 1ly〉 > ε

)
=

f(y;x0)

b(y)
and lim

K→+∞
P
(
〈νKtK , 1ly〉 = 0

)
= 1− f(y;x0)

b(y)
. (4.7)

Further, for the marker distribution, we can prove that

lim
K→+∞

P
(
πK
tK
(y, du) = δv(du)

)
=

f(y;x0)

b(y)
. (4.8)

The equation (4.8) tells us that when the mutant trait survives in the resident population
of trait x0, then by the time tK it needs to reach a non-negligible size, its marker distribu-
tion is still a Dirac mass at y. The assumption qK(logK)2 in Assumption 2.1 ensures this.
This assumption is not very restrictive as (logK)2 is a very slow growth rate. Additional
comments are given after the proof.

Proof Properties (4.7) have been proved in Champagnat (2006) and Champagnat et al
(2008) and depend only on the trait distribution. We consider test functions φ(x, u) of the
form 1ly(x)g(u) with g ∈ C2(U ,R) such that ‖g‖∞+‖g′′‖∞ ≤ 1. Starting from Proposition
4.1 and using Itô’s formula with jumps, we obtain as soon as the population with trait y
survives,

∫

U
g(u)πK

tK
(y, du) =

〈νKtK , 1lyg〉
〈νKtK , 1ly〉

=g(v) +MK,g
tK

+ qK(1− pK) b(y)

∫ tK

0

(
1− 1

K〈νKs , 1ly〉+ 1

)
(4.9)

×
∫

U
πK
s (y, du)

∫

U

(
g(u+ h)− g(u)

)
GK(u, dh) ds

where MK,g is a square integrable martingale with previsible quadratic variation:

〈MK,g〉tK =
1

K

∫ tK

0
ds
{

b(y)(1− qK)(1− pK)
〈νKs , 1ly〉(

〈νKs , 1ly〉+ 1
K

)2
∫

U

(
g(u)− 〈πK

s , g〉
)2
πK
s (y, du)

+
(
d(y) + η(y)C ∗ νKs (y)

) 〈νKs , 1ly〉(
〈νKs , 1ly〉 − 1

K

)2
∫

U

(
g(u)− 〈πK

s , g〉
)2
πK
s (y, du)

+b(y)qK(1− pK)
〈νKs , 1ly〉(

〈νKs , 1ly〉+ 1
K

)2
∫

U
πK
s (y, du)

∫

U
GK(u, dh)

(
g(u+ h)− 〈πK

s , g〉
)2
}
.

(4.10)
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The third term in the right hand side of (4.9) is of order tK/K. Indeed thanks to (2.4)
and (2.5), it is upper bounded by

tK
K

b̄ ‖Ag‖∞.

Equation (4.10) needs more attention. As soon as the mass 〈νKs , 1ly〉 of the mutant popu-

lation is of order 1, the variance of MK,g
tK

is in tK/K which tends to zero when K → +∞.
However, since we start from 1 individual, we have to separate the time interval [0, tK ] into
2 parts. Let us introduce a sequence (sK) such that sK ≤ tK for any K and

logK ≪ sK ≪ 1√
qK

.

This is possible thanks to the assumption that qK(logK)2 → 0. Notice that sK can be
equal to tK . Using Assumption 3.1, we can prove as in Champagnat (2006, Lemma 3) that
there exists ε0 > 0 such that

lim
K→∞

P

(
∀s ∈ [sK , tK ], 〈νKs , 1ly〉 ≥ ε0

)
=

f(y;x0)

b(y)
.

It turns immediately out that

E

(
1l{∀s∈[sK ,tK ], 〈νKs ,1ly〉>0}

K

∫ tK

sK

b(y) + d(y) + η(y)C ∗ νKs (y)

〈νKs , 1ly〉

∫

U

(
g(u)− 〈πK

s , g〉
)2
πK
s (y, du)ds

)

≤ C
tK
K

. (4.11)

Before time sK , the population size with trait y is not large enough and 1
K 〈νKs ,1ly〉

can only

be upper bounded by 1. Therefore we have to control the expectation of the variance of
g under πK

s . The expected number of marker mutations at time s along a lineage is sqK
and the variance of such mutation is bounded by ‖g‖2∞ = sup{g(h)2, h ∈ U}. Then

E

(∫

U

(
g(u)− 〈πK

s , g〉
)2
πK
s (y, du)

)
≤ s qK ‖g‖2∞, (4.12)

and

E

(
1

K

∫ sK

0

b(y) + d(y) + η(y)C ∗ νKs (y)

〈νKs , 1ly〉

∫

U

(
g(u)− 〈πK

s , g〉
)2
πK
s (y, du)ds

)
≤ C

(sK)2rK
K2

.

The upper bound converges to 0 by the assumption on qK . The third term of (4.10) is
treated similarly. This concludes the proof. �

Remark 4.6 For qK = 1/
√
K, let us notice that the rate of appearance of mutant markers

in a population of size K is of order KqK =
√
K which does not tend to zero. This

means that many mutant markers appear in the population of trait y during the tK time
interval following the first mutant (y, v). However, heuristically, since in a tree the mass is
concentrated around the leaves, the mutants do not appear with the same probability along
the time interval and mutations are mostly observed after the time sK when the mutant
population (y, v) is already large. Moreover, using that the marker mutation step and/or
marker mutation frequency is small we obtain that the mutant markers remain in negligible
proportion between sK and tK .
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4.3 Convergence of the marker distribution process in a trait-monomorphic
population

For K ∈ N∗, we introduce, as in Champagnat (2006), the following sequence of stopping
times τKk and θKk :

τK0 = 0, θK0 = 0

τKk+1 = inf{t > τKk , Card
(
supp(X̄K

t )
)
= Card

(
supp(X̄K

t−)
)
+ 1}

θKk = inf{t > τKk , Card
(
supp(X̄K

t )
)
= 1}.

The times τKk ’s are the times of appearance of the successive mutant traits in the pop-
ulation and the θKk ’s are the times at which the population returns to monomorphic
state. These times are possibly infinite, if the corresponding sets are empty. It has been
proved in Champagnat (2006) that for tK be such that limK→+∞ tK/ log(K) = +∞ and
limK→+∞ tK/K = 0,

lim
K→+∞

P

(
∀k ≥ 0, τKk ∧KT ≤ θKk ∧KT ≤

(
τKk + tK

)
∧KT ≤ τKk+1 ∧KT

)
= 1. (4.13)

Proposition 4.7 Take the process (νKKt; t ∈ [0, T ]) started with the monomorphic initial
condition νK0 (dx, du) = nK

0 δ(x0,u0)(dx, du), where limK→+∞ nK
0 = n̂x0

> 0 and

supK∈N∗ E((nK
0 )3) < +∞.

(i) In the trait-mutation time scale, the time of first mutation converges in distribution as
follows:

lim
K→+∞

τK1 /K = τ1, (4.14)

where τ1 is an exponential time with parameter b(x0)n̂x0
.

(ii) Let us consider the processes (πK
K(t∧τK

1
)
; t ∈ [0, T ]) stopped at the time of first mutation.

When K → +∞, this sequence converges in distribution in D([0, T ],P(U)) to the Fleming-
Viot process F u0(x0, du) (see Definition 3.3) and stopped at the independent exponential
time τ1.

Proof First of all, the trait and marker mutations are independent. Thus, the stopping
time τK1 is independent of the marker distribution πK(x0, du). The results of Champagnat
and coauthors Champagnat (2006) and Champagnat et al (2008) are unchanged and give
(4.14). Moreover, by Champagnat et al (2008, Lemma 5.4)

lim
K→+∞

P

(
sup

s∈[logK,τK
1
]

〈XK
s ,1〉 ≥ n̂x0

2

)
= 1. (4.15)

Let φ ∈ C(U ,R). Since the population is trait-monomorphic with trait x0, then

〈πK
Kt(x0, du), φ(u)〉 =

〈νKKt,φ〉

〈νK
Kt

,1〉
. Thus, from Proposition 4.1 and Itô’s formula, we get that in

the time scale Kt

〈πK
K(t∧τK

1
)
(x0, .), φ〉 = 〈πK

0 (x0, .), φ〉+HK,φ

K(t∧τK
1
)
+ b(x0)qK(1− pK)

×
∫ t∧τK

1

0

(
1− 1

K〈νKKs, 1〉+ 1

)rK
K

∫

U×U

(
φ(u+ h)− φ(u)

)
GK(u, dh)KπK

Ks(x0, du)ds

(4.16)
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where HK,φ is a square integrable martingale with quadratic variation is

〈HK,φ〉K(t∧τK
1
) =

∫ t∧τK
1

0
b(x0)(1− qK)(1− pK)

〈νKKs, 1lx0
〉

(
〈νKKs,1〉+ 1

K

)2×
∫

U
πK
Ks(x0, du)

(
φ(u)− 〈πK

Ks(x0, .), φ〉
)2

+
(
d(x0) + η(x0)C ∗XK

Ks(x0)
) 〈νKKs, 1lx0

〉
(
〈νKKs,1〉 − 1

K

)2×
∫

U

(
φ(u)− 〈πK

Ks(x0, .), φ〉
)2

+b(x0)qK(1− pK)
〈νKKs, 1lx0

〉
(
〈νKKs,1〉+ 1

K

)2
∫

U
πK
Ks(x0, du)

(
φ(u+ h)− 〈πK

Ks(x0, .), φ〉
)2

(4.17)

The computation shows that the order of the quadratic variation of πK
t is 1

K . Thus at time
scale Kt, this order will be 1. That justifies Assumption (2.4) for pK which is the only
choice to get a non degenerate diffusive limit.

Let us introduce a process (π̃K,x0

t (du), t ≥ 0) coupled with (πK
t (x0, du), t ≥ 0), on the

same probability space and driven by the same Poisson point measures, that satisfies the
following properties. The dynamics of π̃K,x0

. (du) is given by (4.16)-(4.17) but without
the stopping times τK1 and we have that ∀t ≥ 0, πK

K(t∧τK
1
)
(x0, du) = π̃K,x0

K(t∧τK
1
)
(du). In a

nutshell, (π̃K,x0

t , t ≥ 0) corresponds to the process (πK
t (x0, .), t ≥ 0) that is obtained by

setting the trait mutation kernel to the Dirac mass at 0.

Thanks to (2.5), (4.15) and using that π̃K,x0 is a probability-valued process, (4.16) and
(4.17) imply that for any φ ∈ C(U ,R), the distribution sequence of (〈π̃K,x0

K. , φ〉;K ∈ N∗)
is uniformly tight in D([0, T ],R). By Roelly’s criterion (Roelly, 1986, Theorem 2.1), this
implies the tightness of the sequence of the laws of (π̃K,x0

K. ;K ∈ N∗) in D([0, T ],P(U)).
Let us consider a limiting value (π̄t(du); t ∈ [0, T ]) of the tight sequence and a subsequence,
again denoted by π̃K,x0

K. (du), that converges to π̄.(du). By Assumption (4.15) and since
individuals have weight 1/K, the limiting laws only charge C([0, T ],P(U)).
It remains to identify π̄.(du). Let 0 < s < t < T , let k ∈ N and 0 < s1 ≤ · · · sk < s < t, let
φ1, · · ·φk be bounded continuous function on P(X × U) and φ ∈ C(U ,R). We define the
following bounded functional on D([0, T ],P(U))

Ψs,t(Y ) =φ1(Ys1) · · ·φk(Ysk)
{
〈Yt, φ〉 − 〈Ys, φ〉 −

∫ t

s
du

∫

U
Yu(du)b(x0)Aφ(u)

}

On the one hand, using (4.16), we obtain that

Ψs,t(π̃
K,x0

K. ) = φ1(π̃
K,x0

Ks1
) · · ·φK

k (π̃K,x0

Ksk
)
{
HK,φ

Kt −HK,φ
Ks + εKKt

}

where

εKKt =

∫ t

0
ds

∫

U
π̃K,x0

Ks (du)
[
b(x0)

rK
K

∫

U

(
φ(u+ h)− φ(u)

)
GK(u, dh)

]

−
∫ t

0
ds

∫

U
π̃K,x0

Ks (du)b(x0)Aφ(u) (4.18)
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tends to 0 in L1 when K → +∞. Thus,

lim
K→+∞

E

(
Ψs,t(π̃

K,x0

K. )
)
= 0. (4.19)

On the other hand, using (2.9) and the convergence of (π̃K,x0

K(.∧τK
1
)
(du);K ∈ N∗) to π̄ ∈

C([0, T ],MF (U)), we get

E
(
Ψs,t(π̄)

)
= lim

K→+∞
E
(
Ψs,t(π̃

K,x0

K. (du))
)
. (4.20)

This shows that E
(
Ψs,t(π̄)

)
= 0 and hence the process Mx0(φ) defined in (3.4) is a mar-

tingale obtained as the uniform limit in time of HK,φ
Kt , when K → +∞. Moreover, the

bracket (4.17) converges to

∫ t

0

b(x0) + d(x0) + η(x0)n̂x0

n̂x0

∫

U
π̄(du)

[(
φ(u)− 〈π̄s, φ〉

)2]
ds

=

∫ t

0

2b(x0)

n̂x0

[
〈π̄s, φ2〉 − 〈π̄, φ〉2

]
ds. (4.21)

Indeed, the integral in (4.17) can be separated into two integrals, one between 0 and
logK
K ∧ t ∧ τK1 and the other between logK

K ∧ t ∧ τK1 and t ∧ τK1 . The second integral
converges to (4.21), but some caution is needed for the first integral since the ratios

〈νKKs, 1lx0
〉/
(
〈νKKs,1〉± 1

K

)2
are of order K. Using the same arguments as for (4.12), we can

upper bound the integral between 0 and logK
K ∧ t ∧ τK1 by

CK

∫ logK/K

0
sqKds = C

(logK)2

K
qK →K→+∞ 0.

Using Theorem 3.12 p. 432 of (Jacod and Shiryaev, 1987), that provides the conver-

gence of HK,φ
K. to the solution of the martingale problem (3.4)-(3.5) with x = x0.

By the independence of π̃K,x0

K. (du) and τK1 , τ1 is independent of π̄.(du) and π̄.∧τ1 =
πu0

.∧τ1(x0, du). This concludes the proof. �

4.4 Conclusion

Using Theorem 4.2, Proposition 4.5 and Proposition 4.7, we prove the first part of Theorem
3.4, for the convergence in finite distribution. Let us now consider the convergence in the
space of trait-marker-time measures.

Corollary 4.8 The family (νKKt(dx, du) dt,K ∈ N∗) is uniformly tight in MF (X × U ×
[0, T ]) embedded with the weak convergence topology and converges in distribution to the
measure Vt(dx, du)dt, where V is defined in Theorem 3.4.

Proof Since the space X × U × [0, T ] is compact, it is sufficient to prove that

sup
K∈N∗

E
( ∫ T

0
〈νKKt, 1〉dt

)
< +∞
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which is a consequence of Fubini’s theorem since

E
( ∫ T

0
〈νKKt, 1〉dt

)
≤ T sup

K∈N∗,t∈R+

E
(
〈νKt , 1〉

)
.

Estimate (2.9) concludes the proof of tightness.

Let us now consider continuous functions φ ∈ C(X × [0, T ],R) and g ∈ C(U ,R), where the
stopping times τKk and θKk have been introduced in Section 4.3. Then

∫ T

0

∫

X×U
φ(x, t)g(u)νKKt(dx, du) dt =

∫ T

0
〈πK

Kt(x, .), g〉φ(x, t)XK
Kt(dx)dt

=
∑

k≥0

∫ (τK
k+1

∧T )/K

(θK
k
∧T )/K

〈πK
Kt(x, .), g〉φ(x, t)XK

Kt(dx)dt+

∫ (θK
k+1

∧T )/K

(τK
k+1

∧T )/K
〈πK

Kt(x, .), g〉φ(x, t)XK
Kt(dx)dt,

(4.22)

The limit (4.13) implies that the second term of the right hand side of (4.22) converges to 0.
Given XK , the processes (πK

Kt(x, .); t ∈ [θKk /K, τKk+1/K)), for k ≥ 0, in the first term of the
r.h.s. of (4.22) are independent and, by Proposition 4.7, they converge in distribution in
D([0, T ],R) to the Fleming-Viot processes (3.4)-(3.5) with the initial conditions described
by the jumps of the extended TSS (Y, U). Corollary 4.4 and dominated convergence
theorem allows us to conclude the proof. �
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A Limit theorems for the trait and marker distributions in

the ecological time scale

If we let K → +∞ without changing the time scale, we obtain:

29



Proposition A.1 Assume that the sequence (νK0 (dx, du);K ∈ N∗) converges in probability
to the measure ξ0(dx, du) when K → +∞. Then the sequence of processes (νKt (dx, du); t ≥
0)K∈N∗ converges in D(R+,MF (X × U)) to the deterministic process ξ ∈ C(R+,MF (X ×
U)) defined for every φ(x, u) ∈ C(X × U ,R) by:

〈ξt, φ〉 = 〈ξ0, φ〉+
∫ t

0

∫

X×U

(
b(x)− d(x)− η(x)C ∗ ξs(x)

)
φ(x, u)ξs(dx, du) ds. (A.1)

Proof The proofs proceed in a classical tightness-uniqueness way (cf. Fournier and
Méléard 2004). �

Notice that no mutation can be seen at this scale. To see the trait mutations, we have to
consider the process at the mutation scale Kt (cf. Champagnat et al 2008).

Trait-monomorphic case From Proposition A.1:

Corollary A.2 Assume that the initial population is trait-monomorphic νK0 (dx, du) =
nK
0 δx0

(dx)πK
0 (x0, du) where limK→+∞ nK

0 = n0 and limK→+∞ πK(x0, du) = π0(x0, du) in
probability. Then the sequence (νK ;K ∈ N∗) converges, in probability and uniformly on
every compact time interval [0, T ] with T > 0, to (νt(dx, du) = nt(x)δx0

(dx)π0(x0, du); t ≥
0) where nt(x) is the deterministic solution of the logistic equation

dnt

dt
=

(
b(x)− d(x)− η(x)C(0)nt(x)

)
nt(x) (A.2)

which converges when t tends to infinity to

n̂x =
b(x)− d(x)

η(x)C(0)
. (A.3)

Proof For the part of the proof dealing with ξ, we refer to (Champagnat et al, 2008). �

Trait-dimorphic case From Proposition A.1:

Corollary A.3 Assume that the initial population is trait-dimorphic

νK0 (dx, du) = nK
0 (x1)δx1

(dx)πK
0 (x1, du) + nK

0 (x2)δx2
(dx)πK

0 (x2, du)

where nK
0 (x) is the number of individuals with trait x renormalized by K. We assume that

for x ∈ {x1, x2}, limK→+∞ nK
0 (x) = n0(x) > 0 and limK→+∞ πK(x, du) = π0(x, du) in

probability. We also assume that (x1, x2) satisfies the Assumption 3.1.
Then the sequence (νK ;K ∈ N∗) converges, in probability and uniformly on every compact
time interval [0, T ] with T > 0, to
(νt(dx, du) = nt(x1)δx1

(dx)π0(x1, du) + nt(x2)δx2
(dx)π0(x2, du); t ≥ 0)

where (nt(x1), nt(x2)) solves the system

dnt(x1)

dt
=

(
b(x1)− d(x1)− η(x1)(C(0)nt(x1) + C(x1 − x2)nt(x2))

)
nt(x1)

dnt(x2)

dt
=

(
b(x2)− d(x2)− η(x2)(C(x2 − x1)nt(x1) + C(0)nt(x2))

)
nt(x2). (A.4)

whose only stable equilibrium is (0, n̂x2
), with n̂x2

defined in (3.2).
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It can be seen that the conditional distributions of the marker, given the trait x1 or x2
remain constant.

Proof The convergence in large population of (νK ;K ∈ N∗) is a consequence of Propo-
sition A.1. �
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