Trois points sur la quantification binaire pour l'estimation

Rodrigo Cabral Farias

Jean-Marc Brossier

gipsa-lab Université de Grenoble

GRETSI, Brest 3 septembre 2013

Un réseau de capteurs simple

Problème simplifié – 1 X constant, 1 capteur et 1 bit

- 1 Comment estimer un paramètre de centrage et quelle performance on peut atteindre?
- 2 Est-ce que la symétrie joue un rôle dans le choix du seuil de quantification ?
- **3** Est-ce que l'asymétrique peut être optimal?

Estimateur

- Problème étudié par Ribeiro 2006 et Papadopoulos 2001
- Soit F (y) la fonction de répartition du bruit :

$$p = \mathbb{P}\left(i_k = -1\right) = F\left(\tau_0 - x\right)$$

• Si k est grand $\mathbb{P}\left(i_{k}=-1
ight)pprox\hat{p}$

 $\hat{X}_{k}=\tau_{0}-F^{-1}\left(\hat{p}\right)$

Point 1 - Estimation

Performance

De façon non rigoureuse (rigoureuse=méthode delta) :

- Distribution de l'histogramme $\sqrt{k}\left(\hat{p}-p
 ight) \mathop{\sim}\limits_{k
 ightarrow\infty}\mathcal{N}\left(0,p\left(1-p
 ight)
 ight)$
- Série de Taylor $\hat{X}(\hat{p}) = \hat{X}(p+\xi) = x - \xi \frac{\mathrm{d}F^{-1}(p)}{\mathrm{d}p} + \cdots = x - \xi \frac{1}{f(\tau_0 - x)} + \cdots$

Pour k suffisamment grand :

• Variance
$$\mathbb{V}ar\left(\hat{X}_k - x\right) \approx \frac{1}{k} \frac{p(1-p)}{f^2(\tau_0 - x)} = \frac{1}{k} \frac{F(\tau_0 - x)[1 - F(\tau_0 - x)]}{f^2(\tau_0 - x)} = \frac{1}{k} B(\varepsilon),$$

où $\varepsilon = \tau_0 - x$

On peut montrer que :

X̂_k − maximum de vraisemblance (MV)
 ¹/_kB(ε) − borne de Cramér−Rao (BCR)

Symétrie – Bruit Gaussien

- Seuil optimal τ₀ = x
 Quantification optimale symétrique
- Perte relative au cas continu ^π/₂ (1.96dB)

Symétrie – Bruits de Cauchy et Laplace

Seuil optimal $\tau_0 = x - Quantification optimale symétrique$

Perte relative d'environ 0.9 dB avec Cauchy et 0 dB avec Laplace

Point 2 - Symétrie

$\tau_0 = x$ optimal pour lois symétriques unimodales?

Réponse de la littérature : oui

 \ll System Identification with Quantized Observations \gg

Condition pour que la borne ait un minimum local à $\varepsilon = 0$: $-f^{(2)}(0) > 4f^{3}(0)$

Maximum local pour les lois plates à zéro !

d.d.p. ad hoc

Asymétrie – la loi de Gauss généralisée

$$f(v) = \frac{\beta}{2\delta\Gamma\left(\frac{1}{\beta}\right)} \exp\left(-\left|\frac{v}{\delta}\right|^{\beta}\right)$$

pour $\beta > 2$
$$f(v) \text{ pour } \beta = 4$$

$$B(\varepsilon) \text{ pour } \beta = 4$$

Vérification pratique I

500 mesures

Vérification pratique II

50 mesures

Gaussienne généralisée

Conclusions

- Quantification symétrique optimale pour Gauss, Cauchy et Laplace avec petite perte
- Mais pas optimale pour toute loi symétrique unimodale (lois plates)

Nos questions :

- pourquoi l'asymétrique est optimal?
- **Q**u'est-ce qu'on perd avec $\tau_0 = x$?
- Et la robustesse?

