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In spite of the many objections that have been moved against the usefulness of the model (see, e.g., [8])
the authors believe that it is still of crucial importance in the static analysis of masonry structures, as a
necessary reference solution, preliminary to the application of more sophisticated models which, because of
their complexity, can lead to misleading solutions: ®rst, the choice itself of an appropriate model depends
not only on the material, but also on the nature of the problem being analysed; furthermore, the more
complex the model is, the larger the number of parameters that need to be experimentally evaluated.
However, it may be very di�cult or even impossible to perform accurate estimations of the mechanical
parameters on ancient and monumental masonries, both because of the infeasibility of destructive ``in situ''
tests, and because of the large variation in masonry typology within the same element that is often found in
ancient structures. On the contrary, the no-tension model only requires knowledge of the elastic parame-
ters, that can easily be obtained with standard nondestructive tests like ¯at jack tests.

The fundamental hypotheses on which the model relies are the existence of an elastic deformation po-
tential, zero tensile strength, enforced by the requirement that the stress tensor be negative semide®nite, and
normality between the stress and inelastic deformation ®elds. The no-tension material model has usually
been analysed by introducing the hypothesis of small displacements and strains, consequently considering
additivity for elastic and inelastic deformations. Four basic approaches are reported in literature:
· total displacement formulations [5,6];
· displacement rate formulations [7,8];
· stress (complementary) formulations with the linearisation of the admissible stress set to achieve a linear

complementary problem [9];
· stress (complementary) formulations with no linearisation of the admissible stress set [10].
In the present work the hypothesis of small displacements is retained. In view of the nondissipative be-
haviour of the no-tension model the problem can be formulated in the total variables. For this reason a no-
tension material is a generalised (conewise) elastic material according to the de®nition of Curnier et al. [11].

Although many authors have proposed computational formulations for no-tension materials, it is
generally recognised that it is very di�cult to achieve satisfactory e�ciency in numerical implementations.
It is well known that in many cases no solution exists, and when it does, it is often a discontinuous one.
Indeed, in no-tension problems even if an equilibrated solution exists and is unique, the displacement ®eld
may be indeterminate or may diverge [14]. The main objectives of this work are twofold. First a variational
formulation for the problem will be presented, based on a generalisation of the Hellinger Reissner func-
tional, eliminating the displacements from the functional by enforcing the equilibrium equations in a weak
form and restating the problem on the set of self-equilibrated stresses only. This allows a signi®cant re-
duction in the size of the problem while the displacements may be calculated once the solution for the
stresses has been found. Secondly, the functional thus obtained a nonregular one due to the presence of
the admissibility constraints on the stress ®eld is consistently regularised using an augmented Lagrangian
technique, that allows very e�cient numerical solution methods to be employed. This technique has been
previously used mainly for contact problems, where the number of constraints is much smaller than in the
present case. The variational formulation proposed is implemented in an e�ective computational algorithm,
which avoids most of the shortcomings usually found using displacement-based methods, as observed by
Genna [8], without introducing approximations on the hypothesis of zero tensile stress.

In Section 2 of the paper the constitutive equation for the no-tension material is revisited, introducing
the elastic and inelastic deformation potentials and their conjugate counterparts. These potentials are used
to extend the Hellinger Reissner variational principle to no-tension solids and a nondi�erentiable mixed
generalised variational principle is derived. From this functional a di�erentiable one is obtained by sub-
stituting the nondi�erentiable inelastic strain potential with its augmented Lagrangian regularisation. The
equivalence of the nonregular and regularised formulations is proved. Maximum principal stress and stress-
invariant forms of the admissibility constraint are considered and their di�erent properties are outlined.

In Section 3 the problem is solved numerically after discretising the stresses and the displacements on a
®nite element mesh and solving the nonlinear saddle point problem on the self-equilibrated stresses and
discrete Lagrangian multipliers using an augmented Lagrangian iteration [26]. This allows a stable and
e�cient numerical implementation of the method to be obtained.

In the ®nal section of the paper some numerical examples are used to illustrate the methodology pro-
posed.
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2. Variational formulation

2.1. Field variables

Let us consider a body occupying a region B and let oB be its boundary, partitioned into two disjoint
parts, oBu where the displacements u are prescribed, and oBq where the surface loads q are applied. The
volume forces applied in Int�B� (the internal part of B� and the reactions on the constrained part oBu of
the body will be indicated by b and r.

The displacements u and the external forces f are elements of dual real linear vector spaces V0 and V0
0,

V0 � u 2 U : uf � 0 on oBug: �1�
Introducing the set V1 of the functions satisfying the nonhomogeneous boundary conditions

V1 � u 2 U : uf � u on oBug; �2�
the admissible displacement set V is given by the sum of the elements of V0 and an arbitrary elementbu 2V1:

u 2V � u0f � bu; u0 2V0 8bu 2V1g: �3�
The space U and its dual has been deeply investigated, from a mathematical point of view, in papers by
Anzelotti [12], Giaquinta and Giusti [13] and Del Piero [14]. The authors gave di�erent de®nitions of these
spaces and the interested reader can ®nd details on this subject in the relative papers. Here it is recalled that in
general it is assumed that the displacement space U is contained in BD�B�, the set of all functions of the
Sobolev spaceL1�B�whose deformations are bounded measures. In [15] Del Piero developed a generalisation
for the Gauss Green formula that can be used to supply a weak formulation of the equilibrium problem.

Calling the traces of u and f on the boundary oB w and r, respectively, and denoting by v the restriction
of u to Int�B�, by h; i0 the scalar product in L2, by h; ioB the duality pairing between traces, and by h; iV the
duality pairing between V0 and V0

0, the virtual work is

u; fh iV � v; bh i0 � w; qh ioB � w; rh ioB
�
Z
B

v � bdV �
Z

oBq

w � qd dS � l
Z

oBq

w � ql dS �
Z

oBu

w � r dS; �4�

� being the standard scalar product, i.e. v � b � vibi. In (4) the surface loads q are split into a permanent or
``dead'' part qd and a part whose intensity is proportional to a scalar loading parameter l. This distinction
is useful especially in analysis of the incremental load problem.

The deformation tensor e and the stress tensor r are elements of the dual linear vector spaces D and D0

e 2 D � symmetric second-order tensors on R3 whose components are elements of L2
� 	

; �5�
r 2 D0: �6�

The duality pairing between D and D0 is de®ned by

e; rh iD �
Z
B

e � rdV ; �7�

where � is the standard inner product between tensors, given by

e � r � eijrji � tr�rTe�: �8�

2.2. The no-tension material constitutive equation

The no-tension constitutive behaviour is founded on three physical hypotheses
(a) the material cannot resist any tensile stress;
(b) the strains can be decomposed into an elastic part and an inelastic one, due to crack openings that
develop perpendicularly to the plane of maximum (nonnegative) stress;
(c) the material is elastic in compression.
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From hypotheses (a) and (b) it follows that during the fracture process there is no dissipation of energy.
Hypothesis (c) is not essential; however, in real situations compressive stresses are well below the elastic
limit, so that inelastic phenomena can be neglected. These hypotheses can be formally expressed through
the following assumptions

Assumption 1. The stress tensor must be negative semide®nite

r 2Kr � r 2 D0 : r negative semidefinite
n o

: �9�

This assumption ensures the nonexistence of tensile principal stresses �r1; r2; r3� and states that the
admissible stress domain Kr is a closed convex cone in the stress space D0 (Fig. 1). If n is the generic normal
at a point, from the de®nition of Kr it follows that

Kr � r 2 D0 : rn � n
n

6 0 8n
o

� r 2 D0 : r1

n
6 0; r26 0; r36 0

o
: �10�

Assumption 2. The total (in®nitesimal) deformation ®eld e can be additively decomposed into an elastic
part ee and an inelastic one ea

e � ee � ea: �11�
Because of hypothesis (b) the inelastic deformation tensor must be positive semide®nite

ea 2Ke � e 2 D : e positive semidefinitef g: �12�
It follows then that the scalar product between any two elements belonging to Kr and Ke, respectively,
is always nonpositive

r � ea6 0 8r 2Kr 8ea 2Ke �13�
and that the scalar product of the inelastic deformation eaconjugate to a stress state r is zero, i.e. the
inelastic deformation is nondissipative

r � ea � 0 for any conjugate admissible pair r; ea� �: �14�
From (13) and (14) it follows by subtraction that the inelastic deformation is such that

r� ÿ r� � ea6 0 8r 2Kr 8 r; ea� � conjugate admissible pair: �15�

Fig. 1. The admissible stress space in two dimensions.
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Inequality (15) is satis®ed, by de®nition, by all the deformations belonging to NKr�r�, the outward normal
cone to Kr at the point r. The constitutive equation for inelastic deformation can be reformulated as

ea 2NKr�r� � o indKr�r�: �16�
In (14) o denotes the subdi�erential set and the function indKr�r� is equal to zero if r 2Kr and is equal to
�1 otherwise.

Eq. (15) has the same form as the maximum dissipation postulate in plasticity with total deformations in
place of rates, and is equivalent to the so-called hypothesis of normality to the boundary of the admissible
stress domain Kr (Fig. 2).

From (14) it is observed that in a no-tension material the conjugate pair �r; ea� is orthogonal and that the
stress and inelastic deformation tensors have the same principal directions. Expressing (14) in the principal
reference system the following Kuhn Tucker optimality conditions are obtained

rie
a
i � 0; ri6 0; ea

i P 0 i � 1 . . . 3 �no sum on i�: �17�
The no-tension constitutive law can be derived following an alternate path. Note, in fact, that it is possible
to de®ne a work functional D analogous to the dissipated power functional in elastoplasticity

D ea� � � indKe ea� � () ea 2Ke; r � ea � 0 8 r; ea� �; �18�
r; ea� � being a conjugate admissible pair. Since

indKe ea� � � sup
r2K0

e

r � ea; �19�

where K0
e is the polar cone to Ke, coincident with Kr by de®nition, the following formulation of the

maximum dissipation postulate (15) is obtained

D ea� � � sup
r2Kr

r � ea � suppKr
ea� �: �20�

Eq. (20) states that the dissipation functional D ea� � is a potential whose conjugate is

D0 r� � � indKr r� � �21�
and the constitutive equations are therefore

ea 2 oD0 r� � � o indKr r� �; �22�
r 2 oD ea� � � o suppKr

ea� �: �23�
This latter path is especially useful when some dissipation mechanism, such as damage or plasticity, is to be
introduced into the formulation of the constitutive law. Furthermore, Eqs. (22) and (23) allow the present
formulation to be placed within the framework of unilateral mechanics, so that the results obtained in that
®eld can easily be extended to the problem at hand.

Fig. 2. Normality hypothesis in two dimensions.
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Assumption 3. There exists a convex lower semicontinuous (l.s.c.) elastic potential whose complementary
form /e�r� is such that

ee � o/e�r�: �24�
Since from (16) the inelastic complementary potential is given by /a�r� � indKr�r�, from Eq. (11) the

total stress potential is

/�r� � /e�r� � /a�r�: �25�
In fact, since /a�r� is continuous throughout its proper domain, and dom�/e� \ dom�/a� 6� ; it turns out
that o /e � /a� � � o/e � o/a. The potential /�r� is convex and l.s.c. and the no-tension material model
under assumptions 1 . . . 3 is therefore a generalized elastic material in the sense indicated by Curnier et al.
[11].

If the elastic potential is the linear elastic one and E is the elastic operator, then

/e�r� � 1
2
Eÿ1r � r: �26�

In this particular case the deformation is given by the equations

ee � Eÿ1r; r 2Kr; �27�
ea 2 o indKr : �28�

Once the local potential /�r� is de®ned, the complementary deformation energy for the whole body is given
by its Lebesgue integral

U�r� �
Z
B

/�r�dV : �29�

2.3. Equilibrium and compatibility equations

Throughout this work the assumption of in®nitesimal deformation is retained. The compatibility and
equilibrium equations can therefore be expressed by a linear operator C : V0 ! D and its adjoint
C0 : D0 !V0

0 in the form

Cu � e � ee � ea in B; �30�
C0r � f in B [ oBq: �31�

In the following it will be assumed that

C � symgrad; C0 � ÿdiv in B;
P on;

�
�32�

where P is the mapping that gives the stress vector at a point on the surface of the body, i.e. if n denotes the
outward unit normal at a point, Pr � rn.

The structural problem de®ned by (30), (31), (16) and (24) admits a solution if and only if the applied
forces are compatible, that is, if their virtual work is nonpositive for any virtual displacement ®eld pro-
ducing only admissible inelastic deformations [6]

f compatible () u; fh iV6 0 8u 2V : Cu 2Ke: �33�
This condition stems from the statement that a solution exists if it is possible to ®nd at least one stress ®eld
r satisfying both the equilibrium equations and the admissibility condition (9) in B, i.e. if the intersection of
the set of equilibrated stress ®elds

Ke � r 2 D0 :
n

ÿ divr � b in B; Pr � qd � lql on oBq

o
� r 2 D0 : C0r
n

� f
o

�34�
and of the set of admissible stress ®elds Kr is nonempty, Ke \Kr 6� ;.
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Other load compatibility conditions regarding the resultant and the moments over parts of the solid
bounded by planar surfaces are reported in literature [16,17] and they allow the load compatibility in simple
cases to be immediately assessed.

2.4. Variational principles nondi�erentiable form

In [6] extensions of the variational principles in elastostatics to the case of generalized elasticity were
given. The solution of the structural problem represented by Eqs. (30), (31), (16), (24) and the relevant
kinematic boundary conditions can be obtained as the saddle point of the following generalized Reissner
functional, concave on r, linear on uand de®ned in V�D0

PR�r; u� � ÿU�r� � r;Cvh iD ÿ b; vh i0 ÿ qd;wh ioBq
ÿ l ql;wh ioBq

: �35�

The ®rst Euler Lagrange equation of PR, obtained by equating its ®rst variation to zero w.r.t. the variable
r, yields the weak form of the kinematic compatibility equation (30)

r;Cvh iD � r; eh iD 8r 2 D0 subject to e 2 o/�r� � o/e�r� � o/a�r�: �36�
Integrating by parts the term r;Cvh iD in (35) the functional becomes

PR�r; u� � ÿU�r� � C0r; v

 �

0
� Pr;wh ioB ÿ b; vh i0 ÿ qd;wh ioBq

ÿ l ql;wh ioBq

� ÿU�r� � C0r

 ÿ b; v

�
0
� r; uh ioBu

� Prh ÿ qd ÿ lql;wioBq
; �37�

r � Pr being the constraint reactions on oBu. The variation of (37) w.r.t. u yields the weak form of the
equilibrium condition (31) as a second Euler Lagrange equation of the Reissner functional

C0r; v

 �

0
� Pr;wh ioBq

� b; vh i0 � qdh � lql;wioBq
8u 2V: �38�

Under the hypothesis of load compatibility (33) the solution of the structural problem is given by the saddle
point of (35)

sup
r2D0

stat
u2V

PR�r; u�: �39�

The solution of the structural problem is also determined by the maximum of the complementary
energy functional PC�r� stemming from (37) when the weak form of the equilibrium equations (38) is
satis®ed

PC�r� � ÿU�r� � r; uh ioBu
r 2Ke: �40�

The functional (40) is the complementary energy functional generalized to no-tension solids and di�ers
from the classical one by the presence of the term

R
B

indKr dV in the complementary deformation
energy U�r�. The subsidiary conditions are given by the domain of de®nition of the independent
variables.

Anzelotti [12] and Giaquinta and Giusti [13] studied the complementary energy functional and
the total potential energy functional for no-tension solids and in their papers the following properties are
proved:
· The total potential energy (TPE) functional is convex and l.s.c. and its coercivity depends on the applied

loads (i.e. load compatibility is equivalent to inducing TPE coercivity). It is not strictly convex,
· The complementary energy (CE) functional is strictly concave and coercive, provided that loads are com-

patible.
Therefore, if the loads are compatible there exists a minimum ~u of the TPE functional that represents the
solution of the problem, but it is in general nonunique. From ~u a unique stress ®eld ~r can be derived and ~r
is the unique maximizer of the CE functional.

The convenience of adopting a CE formulation is apparent from the fact that the solution is charac-
terized by a unique stress ®eld while the displacements are in general indeterminate.
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2.5. Regularisations of the indicator functional

The functionals introduced in the previous paragraph are nonsmooth and nondi�erentiable because of
the presence of the indicator functional of the admissible stress domain Kr. Since the solution of the
problem is expected to lie on the boundary of Kr (apart from trivial cases) it is necessary, for numerical
computations, to regularize the indicator functional. It is ®rst observed that the set Kr can be expressed in
the following equivalent ways:

Kr � r 2 D0 : rn � n
n

6 0 8n
o

�41�

� r 2 D0 : max eig�r�� �
n

6 0
o

�42�

� r 2 D0 : tr�r�
(

6 0;
tr�r�2 ÿ tr�r2�

2
P 0; det�r�6 0

)
�43�

or also, in the plane stress case,

Kr � r 2 D0 : tr�r�
(

6 0;
tr�r�2 ÿ tr�r2�

2
P 0

)
�44�

i.e. the admissibility of the stress state can be enforced through the sign of the maximum principal stress
rM � max eig�r�� � or through the stress invariants. Although in principle Eqs. (41) (44) are totally
equivalent, in practical applications they di�er because of the convexity and di�erentiability properties of
the functions involved. The convexity properties can easily be veri®ed using the principal stresses r1; r2; r3.
Results obtained are presented in Table 1.

The set Kr is thus described by one or more inequalities of the kind h�r�6 0. Three commonly used
regularisations for the functional indKr are

indKr � lim
a!�1

1
2
a h�r�h i2; �45�

indKr � sup
k P 0

kh�r�; �46�

indKr � sup
k2R

kh�r��
�

� 1
2
a h�r��ÿ �2

�
8a > 0; �47�

respectively, called penalty, Lagrangian and augmented Lagrangian regularisation. In (45) h i is the
McCauley bracket ( xh i � x if x P 0, xh i � 0 otherwise) and in (47) the inequality constraint h�r�6 0 is
converted into an equality one. In fact, the following equivalences hold

h�r�6 0 is equivalent to h�r�� � max h�r�;� ÿ k=a� � 0; �48�
h�r�P 0 is equivalent to h�r�ÿ � min h�r�;� ÿ k=a�

� ÿmax � ÿ h�r�; k=a� � 0; �49�
where provided h�r� is di�erentiable in its admissible subspace, the functions h�r�� and h�r�ÿ are di�er-
entiable as well [18]. Equivalence (47) is proved below.

Table 1

Convexity of the constraint functionals and their squares

Convex rM tr �r� tr�r�2

Nonconvex r2
M �tr�r�2 tr�r2��=2 �tr�r�2 tr�r2��=2

h i2

det�r� det�r�2
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For equivalence (47) to hold we must have

h�r� > 0 ) sup
k2R

kh�r��
h

� 1
2
a h�r��ÿ �2

i
� �1; �50�

h�r�6 0 ) sup
k2R

kh�r��
h

� 1
2
a h�r��ÿ �2

i
� 0: �51�

By de®nition

h��r� � h�r� if kP ÿ ah�r�;
ÿk=a if k < ÿah�r�:

�
�52�

If k < ÿah�r�, by substitution into (47) we ®nd

sup
k2R

k< ah�r�

kh�r��
h

� 1
2
a h�r��ÿ �2

i
� sup

k2R
k< ah�r�

h
ÿ 1

2
ah�r�2

i
� 0: �53�

If kP ÿ ah�r�, we ®nd

sup
k2R

kP ah�r�

kh�r��
h

� 1
2
a h�r��ÿ �2

i
� sup

k2R
k P ah�r�

kh�r�
h

� 1
2
ah�r�2

i

� ÿ1
2
ah�r�2 if h�r�6 0;

�1 if h�r� > 0:

(
�54�

From (53) and (54) the thesis that immediately follows is

sup
k2R

kh�r��
h

� 1
2
a h�r��ÿ �2

i
� 0 if h�r�6 0;
�1 if h�r� > 0:

�
�55�

Penalty methods have been extensively used in unilateral and no-tension problems [19,10]. However, since
the limit (45) cannot be computed exactly to avoid ill conditioning, it leads to a relaxation of the constraint
condition. Lagrangian multiplier methods are less frequently adopted in no-tension problems in con-
junction with displacement formulations. Augmented Lagrangian methods are well established in contact
problems where they have proved to be very e�cient and reliable [20,21] and their ®rst application to no-
tension problems was presented in Cuomo and Ventura [22,23]. They allow the admissibility constraint to
be strictly enforced, at the same time avoiding the drawbacks of both the penalty and the Lagrangian
multiplier approaches.

In the following subsections the augmented Lagrangian regularisations for the di�erent constraints
(42) (44) will be considered.

2.5.1. Regularisation in the stress invariants
Introducing the following notations

I1 � tr�r�;

I2 � tr�r�2 ÿ tr�r2�
2

; �56�
I3 � det�r�;

the augmented Lagrangian regularisation of expression (43) for the indicator functional is obtained

indKr�r� � sup
k1;k2;k32R

k1I�1 � k2Iÿ2 � k3I�3 � 1
2
a I�

2

1

h
� Iÿ

2

2 � I�
2

3

i
�57�

or, in the plane stress case,

indKr�r� � sup
k1;k22R

k1I�1 � k2Iÿ2 � 1
2
a I�

2

1

h
� Iÿ

2

2

i2

: �58�

M. Cuomo, G. Ventura / Comput. Methods Appl. Mech. Engrg. 189 (2000) 313 339 321



In (57) and (58) a single penalty parameter a has been used for all the constraints for the sake of simplicity,
but di�erent penalty parameters for each constraint are sometimes convenient.

2.5.2. Regularisation in the maximum principal stress
Let rM be the maximum principal stress. The following regularisation is considered:

indKr�r� � sup
k2R

kr�M

�
� 1

2
a r�M
ÿ �2

�
: �59�

In the plane stress case, assuming xy to be the stress plane, rM is given by the real quantity

rM � rx � ry

2
� rx ÿ ry

ÿ �2

4
� s2

xy

s
: �60�

In the triaxial case algebraic expressions for the principal stresses can be obtained in a closed form.
Let I1; I2; I3 be the stress invariants de®ned in the previous paragraph and let us de®ne the following
quantities

a � 3I2 ÿ I2
1 ; �61�

b � 2I3
1 ÿ 9I1I2 � 27I3; �62�

c � b� b2 � 4a
p

3

q
: �63�

The principal stresses are thus given by

r1 � I1

3
ÿ a 23
p

c
� c

323
p ; �64�

r2 � I1

3
� a 1� i 3

pÿ �
c 3223
p ÿ c 1ÿ i 3

pÿ �
623
p ; �65�

r3 � I1

3
� a 1ÿ i 3

pÿ �
c 3223
p ÿ c 1� i 3

pÿ �
623
p �66�

and rM � max r1; r2; r3� �. In the preceding equations it should be noted that, even if the imaginary quantity
i appears, the principal stresses are of course real numbers (being the eigenvalues of a symmetric real tensor)
and the quantity c turns out to be a complex number (otherwise Im�c� � 0) r2 � r3).

2.6. Variational principles di�erentiable form

As pointed out in the preceding sections, the generalized Hellinger Reissner functional (35) and the CE
functional (40) are nondi�erentiable because of the presence of the indicator function of the admissible
stress domain. Equivalent smooth and di�erentiable functional and variational principles can easily be
obtained by substituting the augmented Lagrangian regularisations of indKr .

If principal stress regularisation is chosen, by introducing (59) into the CE functional (40) and changing
the sign of all the terms, a functional Pal

C�r; k� is obtained and the following saddle point characterizes the
solution of the equilibrium problem for a no-tension solid

sup
k2R

min
r2Ke

Pal
C�r; k�: �67�

In (67) both the function rM and r2
M appear, Eq. (59). While rM is a convex function and it can easily be

veri®ed that its Hessian r2rM is positive semide®nite in the whole stress space, it should be noted, as
pointed out in Table 1, that its square is positive semide®nite only when rM P 0 (i.e. whenever the con-
straint is active), as r2�r2

M� � 2rMr2rM. This observation must to be taken into account in the numerical
implementation of solution algorithms, as the square of rM is the only nonconvex term in the stress
variables.
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In the same way, if stress invariant regularisation is chosen, by introducing Eqs. (57) into the CE
functional (40) and changing the sign of all the terms, a functional Pal

C�r; k1; k2; k3� is obtained and again the
following saddle point characterizes the solution of the equilibrium problem

sup
k1;k2;k32R

min
r2Ke

Pal
C�r; k1; k2; k3� �68�

or, in the plane stress case, by introducing (58),

sup
k1;k22R

min
r2Ke

Pal
C�r; k1; k2�: �69�

Although the stress invariants, as compared to the principal stresses, have a simpler mathematical form,
regularisations (57) and (58) involve di�erent convexity properties of the constraints (see Table 1).

2.7. Stress space reduction

The CE functionals and the saddle point problems introduced in the previous section are de®ned on the
space of equilibrated stresses, r 2Ke. However, the de®nition of the set Ke is too strong and can be
relaxed. In fact, in the de®nition of the CE functional the equilibrium equations only need to be satis®ed in
a weak form and a considerably larger stress space can be considered, i.e. Ke can be more conveniently
rede®ned as

Ke � r 2 D0 : C0r

n

ÿ b; v
�

0
� Prh ÿ qd ÿ lql; vioBq

� 0 8u 2V
o
: �70�

Introducing the space K0
e � ker�C0� of the self-equilibrated stresses and the complementary space K1

e of the
stresses in equilibrium with the external loads

K0
e � r 2 D0 : C0r; v


 �
0

n
� Pr; vh ioBq

� 0 8u 2V
o
; �71�

K1
e � r 2 D0 : C0r


n
ÿ b; v

�
0
� Prh ÿ qd ÿ lql; vioBq

� 0 8u 2V
o

�72�

the space Ke �K0
e� K1

e can be generated through the elements of K0
e and an arbitrary ®xed element

belonging to K1
e

Ke � r
� � r0 � r1 : r0 2K0

e ; given r1 2K1
e

	
: �73�

In the ®nite element implementation of the problem the decomposition (73) of the set Ke is especially
useful, as it leads to a signi®cant reduction in the number of discrete stress variables.

2.8. Computation of the inelastic deformation ®eld

Inelastic deformations can be readily determined by introducing augmented Lagrangian regularisations
of the indicator functional in the constitutive equation (16). As the regularisations are di�erentiable the
explicit expressions of the inelastic deformations are obtained from (16) taking their gradients w.r.t. the
stress components. The constraint functional appearing in the regularisation of indKr thus plays a role
similar to that of the yield functional in the classical theory of associated plasticity, except that, in the
present case, the total value of the inelastic deformation appears instead of its rate. This is a direct con-
sequence of the fact that no-tension materials exhibit reversible behaviour. The explicit evaluation of (16) is
reported distinguishing between principal stress and invariant regularisations.

2.8.1. Regularisation in the maximum principal stress
From (16) and the augmented Lagrangian regularisation (59) the inelastic deformation takes the

form

ea � k
ÿ � ar�M

�rr�M: �74�
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When the solution of the problem is obtained, r�M � 0 and
· if the constraint is active then rM � 0, k > 0,
· if the constraint is not active then rM < 0, k � 0
so expression (74) can be simpli®ed into

ea � krrM; �75�

which can be written in tensor form

ea � k

orM

orx

1
2

orM

osxy

1
2
orM

osxz

1
2
orM

osxy

orM

ory

1
2
orM

osyz

1
2
orM

osxz

1
2

orM

osyz

orM

orz

2666664

3777775 � kW �r�: �76�

It can be veri®ed that the eigenvalues of W �r� are �0; 0; 1� and its eigenvectors coincide with the principal
stress directions. This means that the Lagrangian multiplier k has the physical meaning of the inelastic
deformation dual to rM, i.e. k � ea

M.

2.8.2. Regularisation in the stress invariants
Using (57) the following expression for the inelastic deformation is obtained

ea � k1

ÿ � aI�1
�rI�1 � k2

ÿ � aIÿ2
�rIÿ2 � k3

ÿ � aI�3
�rI�3 �77�

and, in the plane stress case,

ea � k1

ÿ � aI�1
�rI�1 � k2

ÿ � aIÿ2
�rIÿ2 : �78�

When the solution is obtained, r16 0, r26 0, r36 0. Except for the trivial case when r1 � r2 � r3 � 0 and
the deformation ®eld is indeterminate I1 � tr�r� < 0 always holds and it is therefore an inactive constraint.
Thus the following cases can occur:
· r1 < 0, r2 � r3 � 0 : both I2 and I3 are active constraints, but rI3 � 0;
· r1 < 0, r2 < 0; r3 � 0 : the only active constraint is I3;
· r1 < 0, r2 < 0; r3 < 0 : no constraints are active.

Summarising in bidimensional analysis we have

ea � k2rI2 �79�
and in three-dimensional analysis, if the solution gives a plane stress state,

ea � k3rI3 �80�
while, if the solution gives a uniaxial stress state,

ea � k2rI2: �81�

3. Finite element formulation

3.1. Discretisation of the ®eld variables

The numerical solution of the saddle point problem arising from the regularized forms of
the CE functionals (67) (69) can be obtained in the framework of the ®nite element method through
the introduction of suitable interpolation functions for all the ®elds appearing in the continuous formu-
lation.

Indicating with G the matrix of element shape functions the following stress interpolation is
assumed:
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r � Grs �82�
The displacement ®eld u is interpolated for the sake of convenience by separating the displacements in
Int�B�[ oBq and those on its frontier oBu

u � v
u

� �
� Gutut � Gu 0

0 Gu

� �
u
u

� �
: �83�

3.2. Discretisation of equilibrium and compatibility equations

The Gauss formula

r;Cvh iD � ÿ C0r; v

 �

0
� Pr;wh ioB �84�

does not hold in the F.E. framework as the derivatives of the shape functions are in general discontinuous
across the interelement boundaries. Eq. (84) is therefore valid at the element level but not on the whole
mesh. In order to avoid the undesirable boundary terms appearing on the RHS of (84) the equilibrium
equations are obtained directly from the discretised form of the Hellinger Reissner functional (35)

Pd
R�s; ut� � ÿ 1

2

Z
B

Eÿ1Grs �GrsdBÿ
Z
B

indKr dB�
Z
B

Grs � CGuudB�
Z
B

Grs � CGuudB

ÿ
Z
B

b �GuudBÿ
Z

oBq

qd� � lql� �Guu dS ÿ
Z

oBu

indW dS; �85�

where W � u 2 U : u � �u on oBuf g and the last integral enforces the boundary conditions on the dis-
cretised displacements in a variational form. The nodal boundary displacements u also appear in the
volume integral as they determine the displacements of the region of Int�B� covered by the elements ad-
jacent to the boundary. The discrete form of the term

R
B

indKr dB will be discussed in the next subsection.
Denoting with F � R

B
GT

r Eÿ1Gr dB the ¯exibility matrix and letting b � R
B

GT
u bdB, qd �

R
oBq

GT
u qd dS,

ql �
R

oBq
GT

u ql dS , C � R
B

CGu� �TGr dB , H � R
B

CG�u� �TGr dB, using the Lagrangian regularisation for the

boundary constraint, expression (85) becomes

Pd
R�s; ut� � ÿ 1

2
Fs � sÿ b � uÿ qd� � lql� � u� Cu � s�Hu � s

ÿ r � u�
Z

oBu

q � �udS ÿ
Z
B

indKr dB �86�

with r � RoBu
GT

�u qdS and r � u � RoBu
q � �udS.

By equating to zero the variations of Pd
R w.r.t. the unknown displacements u and the prescribed ones u,

the discrete equilibrium equations are determined:

CTs � b� qd � lql; �87�
HTs � r: �88�

Using (87) and (88) in (86) and performing a sign reversal the following CE functional is obtained:

Pd
C�s� �

1

2
Fs � sÿ r � u�

Z
B

indKr dB; s 2 Ye; �89�

Ye � s : CTs
� � b� qd � lql

	
; �90�

Ye being the set of nodal equilibrated stresses, i.e. the discretised counterpart of Ke. In general Ke 6� Ye

and, as observed in the continuum formulation, the set Ye can be split into the set Y0
e of self-equilibrated

nodal stresses and the set Y1
e of nodal stresses in equilibrium with the prescribed body and surface loads.

Y0
e � s : CTs

� � 0
	
; �91�

Y1
e � s : CTs

� � b� qd � lql

	
: �92�
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The a�ne linear manifold Ye is generated by the elements of Y0
e and an arbitrary ®xed element belonging

to Y1
e

Ye � s
� � s0 � s1 : s0 2 Y0

e ; given s1 2 Y1
e

	
: �93�

While in the continuum problem the subsets K0
e and K1

e cannot be given an explicit representation (Ke not
being ®nite dimensional), the decomposition (93) can be expressed in a closed form. In fact, if n is the
number of nodes, nd the number of space dimensions and m is the number of constrained degrees of freedom
(®xed displacement components) then the above-de®ned matrices and vectors have the following dimen-
sions

In the hypothesis that no rigid body motion is allowed, the equilibrium matrix CT has a rank of nnd ÿ m. In
fact nnd ÿ m6 ns and if rank�CT� < nnd ÿ m then the image of CT would not cover the entire space Rn ndÿm

and 1�n ndÿm�ÿrank�CT� equivalent nodal load vectors could be found such that no equilibrating nodal stress
vector s exists. It follows that there is at least one suitable ordering of the components of s such that

CTs � CT
0 CT

1

� � s0

s1

� �
� CT

0 s0 � CT
1 s1; �94�

where the matrix CT
1 is nnd ÿ m� nnd ÿ m and has full rank (i.e. it is nonsingular) and s0, s1 are vectors of

order nnd ÿ m and ns ÿ nnd � m, respectively. The equilibrium equations (87) are condensed as follows:

CT
0 s0 � CT

1 s1 � b� qd � lql; �95�
s1 � CÿT

1

ÿÿ CT
0 s0 � b� qd � lql

�
; �96�

s �
s0

s1

" #
�

I

ÿCÿT
1 CT

0

" #
s0 �

0

CÿT
1 b� qd � lql� �

" #
: �97�

Introducing the positions

R � I

ÿCÿT
1 CT

0

� �
; td � 0

CÿT
1 b� qd� �

� �
; tl � 0

CÿT
1 ql

� �
; �98�

Eq. (97) is rewritten in compact form as

s � Rs0 � td � ltl: �99�
The form of (97) can be conveniently determined in computations through a suitable Gaussian reduction
which is also numerically very stable. In this way a considerable reduction in the number of unknowns is
obtained.

The column reordering performed on CT is reproduced on the ¯exibility matrix F and on the reaction
operator HT. The discretised CE functional (89) can be given the form

Pd
C�s0� � 1

2

F00 F10

F01 F11

� �
s0

s1�s0�
� �

� s0

s1�s0�
� �

ÿ HT
0 HT

1

� � s0

s1�s0�
� �

� u�
Z
B

indKr dB: �100�

Symbol Description Dimensions (rows by columns)

s nodal stresses ns � n, 3n, 6n for nd � 1; 2; 3
u prescribed displacements on oBu m
b, qd, ql equivalent nodal loads nnd ÿ m
CT equilibrium matrix nnd ÿ m� ns

HT constraint reaction operator m� ns

F ¯exibility matrix ns � ns

r constraint reactions m
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By introducing (99), calculating the products and dropping the inessential constant terms, the following
®nal form is obtained

Pd
C�s0� � 1

2
RTFRs0 � s0 � RT F td�� � ltl� ÿHu� � s0 �

Z
B

indKr dB: �101�

The functional (101) just obtained is made up of a quadratic and a linear term in the self-equilibrated nodal
stresses s0 and the nonlinear, nondi�erentiable and l.s.c. term

R
B

indKr dB.

3.3. Discrete form of the indicator functional

As pointed out in the previous section, the indicator functional indKr is replaced by the augmented
Lagrangian forms (57) (59). To achieve a uniform and clearer notation let

indKr � sup
K

Q � K� � 1
2
aQ � Q�; �102�

where the meaning of the vectors Q (constraint functions) and K (Lagrangian multipliers) varies as shown
in Table 2.

The integral of (102) is evaluated by adopting an appropriate number of Dirac delta functions for the
multipliers, so that a collocation method is obtained. This approach leads to enforcement of the constraint
at a discrete number of points, usually denominated as control points.

The discretised regularisation is thereforeZ
B

indKr dB � sup
K

Q � K� � 1
2
aQ �Q�; �103�

where QT�s0� � �QT
1 ;Q

T
2 ; . . . ;QT

ncp
� is the vector of the constraint functions evaluated at the ncp control points

and K � �KT
1 ;K

T
2 ; . . . ;KT

ncp
� is the vector of the corresponding discrete Lagrangian multipliers. The vectors Q

and K have dimensions equal to ncp dim�K�, dim�K� being the dimension of the K vector.
Note that in Eq. (103) the Jacobian and the Gauss weights do not appear. More detailed comments on

this point will be found in a forthcoming paper.

3.4. Discrete form of the variational principle

By introducing the approximation (103) the nonlinear augmented Lagrangian form of the comple-
mentary functional (101) is obtained:

Pal
C�s0;K� � 1

2
RTFRs0 � s0 � RT F td�� � ltl� ÿHu� � s0 �Q � K� 1

2
aQ �Q: �104�

The solution of the discretised problem, provided it exists, is given by the saddle point

min
s0

sup
K

Pal
C�s0;K�: �105�

The functional Pal
C�s0;K� is linear on the Lagrangian multipliers K but is nonlinear and in general non-

convex on the self-equilibrated stresses s0 as is evident from Table 1. However, as the admissible domain
Kr is convex, in practical applications properly chosen algorithms for the computation of the saddle point
(105) can preserve the local convexity of Pal

C�s0;K� during iterations.

Table 2

Meaning of Q and K vectors

Regularisation Q K

Maximum principal stress QT r�n
� �

KT k� �
Invariants (plane stress case) QT I�1 ; I2

� �
KT k1; k2� �

Invariants (triaxial case) QT I�1 ; I2 ; I�3
� �

KT k1; k2; k3� �
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3.5. Determination of the nodal displacement ®eld

Consistent nodal deformation de®nitions are obtained from the virtual work equalityZ
B

ee� � ea� � rdB � ee� � ea� � s �106�

after introducing the F.E. interpolations and the constitutive equations for elastic and inelastic deforma-
tions (24) and (16)Z

B
GT

r Eÿ1GrsdB � s�
Z

B
GT

ro indKr dB � s � ee� � ea� � s: �107�

The ®rst term on the LHS of (107) yields the ¯exibility matrix F. The second term is evaluated using (103)
and the linearity of the subdi�erential as followsZ

B
GT

ro indKr dB �
Z

B
rT

s ro indKr r s� �� �dB �
Z

B
osindKr r s� �� �dB � os

Z
B

indKr r s� �� �dB

� os�Q � K� 1
2
aQ �Q� � K �GT

rrrQ� aQ �GT
rrrQ � K� � aQ� �GT

rrrQ: �108�

Inserting (108) into (107) the following de®nitions of elastic, inelastic and total nodal deformations are
obtained:

ee � Fs; �109�

ea � K� � aQ� �GT
rrrQ; �110�

e � ee � ea: �111�

Note that the quantities appearing in the de®nition of the inelastic deformations ea, referring to the nodes of
the mesh, are evaluated at the control points.

The displacements can be evaluated from the compatibility equations obtained by equating to zero the
variation w.r.t. s of the discretised Reissner functional (86). Using regularisation (103) we obtain

Cu � Fs�rsrrr�Q � K� 1
2
aQ �Q� ÿHu � eÿHu �112�

that is easily interpreted in the light of de®nitions (109) (111). By introducing partition (94) for C and the
corresponding ones for e and H the following two matrix equations are obtained:

C0

C1

� �
u � e0

e1

� �
ÿ H0

H1

� �
u: �113�

C1 being nonsingular the second row of Eq. (113) can be inverted to yield the displacement ®eld at the
solution as a function of the stress state through e1

u � Cÿ1
1 e1 ÿ Cÿ1

1 H1u: �114�

The ®rst row of Eq. (113) is identically satis®ed since it is the Euler Lagrange equation obtained from the
variation of (104) w.r.t. s0. In fact, by substituting (114) into the ®rst row of (113) one has

e0 ÿ C0Cÿ1
1 e1 � C0Cÿ1

1 H1uÿ H0u � 0: �115�

This equation, observing that RT � Iÿ C0Cÿ1
1

� �
, can be rewritten as

RT e� ÿHu� � 0: �116�
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On the other hand, equating to zero the variation of (104) w.r.t. s0 and using (99), it follows that

RTFRs0 � RT F�td� � ltl� ÿHu� � rs0
srsrrr�Q � K� 1

2
aQ �Q� � 0;

RTFRs0 � RT F td�� � ltl� ÿHu� � RTGT
rrr�Q � K� 1

2
aQ �Q� � 0;

RT�FRs0 � F td� � ltl� ÿHu�GT
rrr�Q � K� 1

2
aQ �Q�� � 0;

RT�FsÿHu�GT
rrr�Q � K� 1

2
aQ �Q�� � 0: �117�

The last equation, introducing de®nitions (109) (111) is identical to (116).

3.6. Augmented Lagrangian iteration

The core of the augmented Lagrangian method (ALM) is to allow for distinct iterations on direct and
dual variables. When iteration is made on a set of variables the others are considered to be constant
according to the general iterative scheme

s0k�1
� Us0

�Kk�1; s0�; �118�
Kk�1 � UK�K; s0k ; ak�; �119�
ak�1 � Ua�Kk�1; s0k�1

; ak�; �120�

where Us0
, UK, Ua, respectively, are called the Lagrangian multiplier update formula, the direct variable

update formula and the penalty parameter increment scheme. Eqs. (118) (120) are evaluated in sequence
until convergence on the direct and dual variables is achieved. One of the most widely used versions of the
augmented Lagrangian iteration (118) (120) is the Hestenes [24] and Powell [25] form. This has been
adopted in the present work and iterates as follows:

s0k�1
� arg min

s0

Pal
C�s0;Kk�; �121�

Kk�1 � Kk � akQ�s0k�1
�; �122�

ak�1 � Ua�Kk�1; s0k�1
; ak�: �123�

Given initial values for the multipliers K and the penalty parameter a, Eq. (122) is equivalent to a steepest-
ascent iteration with a stepsize equal to a, [18] while the minimisation w.r.t. the self-equilibrated stresses is
implemented using the Newton method. Formula (122) is known as the Hestenes Powell update formula.
Finally, the penalty parameter is incremented as follows, modifying the classical scheme reported in
Fletcher [26],

ak�1 � 10ak if Q�s0k�1
�

 

 < Q�s0k �



 

 and Q�s0k�1
�

 

 > 0:25 Q�s0k �



 

;
ak otherwise

�
�124�

that is, the penalty parameter is increased by an order of magnitude if the norm of the constraint functions
between two subsequent iterations decreases but does not decrease ``su�ciently''. The ®rst condition has
been introduced because, if some numerical instability arises, incrementing the penalty parameter causes
nonconvergence even if convergence could be achieved. The penalty parameter increment scheme is of
fundamental importance when the Hestenes Powell formula is used and its optimal value is not known. In
fact, the magnitude of the penalty parameter strongly a�ects both the rate of convergence on the
Lagrangian multipliers [18] and the conditioning of the direct problem. In this sense the scheme (124)
determines an optimal value to satisfy both requisites and it can be shown that the sequence akf g generated
by (124) is bounded whenever the multiplier values at the solution are bounded.

In the present work maximum principal stress regularisation of the indicator functional has been used in
order to obtain a strictly convex minimisation problem in the direct step (121) of the iteration. In this case,
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in fact, the only nonconvex term of the functional Pal
C�s0� is the square of the constraint functions

�1=2�aQ �Q (see Table 1) but, provided that the ®rst iteration w.r.t the variables s0, Eq. (121), is made with
the values of the multipliers equal to zero (K � 0), the augmented Lagrangian iteration generates a se-
quence of points s0k

� 	
where the Hessian of the term �1=2�aQ �Q is always positive de®nite. The same

result does not hold if stress invariant regularisation is used, as is shown below:
Consider, for the sake of simplicity, the scalar constraint function r�M � max rM;ÿk=a� �. The Hessian of

r2
M is

r2�r2
M� � 2rMr2rM if rM P ÿ k=a;

0 otherwise:

�
�125�

As r2rM is positive semide®nite (Kr being a cone) r2�r2
M� is negative de®nite whenever rM < 0 and

ÿk=a6 rM < 0, that is, when kP ÿ arM > 0. The Hestenes and Powell update formula in this particular
case is given by

kk�1 � kk � a max rM�s0k �;� ÿ kk=ak� �126�
and therefore if the initial value of k is zero k > 0 can only hold if rM > 0. If during the iterations rM < 0
(i.e. the constraint becomes inactive), Eq. (126) immediately sets k � 0 so that r2�r2

M� is always positive
de®nite whenever the constraint is active.In the numerical implementation of the augmented Lagrangian
algorithm step (121) has been realised by a pure Newton scheme and presents high rates of convergence.
The nonexistence of the solution because of load incompatibility is revealed by an oscillation of the Newton
iteration between two ®xed points.

4. Numerical examples

In this section the proposed approach is applied to some two-dimensional tests in order to assess its
e�ectiveness. The examples have been selected in order to explore the ability of the model to simulate the
various aspects of no-tension material behaviour, and particularly the continuity/discontinuity of the so-
lution and the problem of limit load determination. The results of these tests are of course not exhaustive,
and their intent is to show the main features of the computational model. Therefore the following four
solution typologies have been considered:
· continuous stresses and displacements;
· discontinuous displacements and stresses;
· continuous stresses and discontinuous displacements;
· limit load evaluation.
For the ®rst three cases, examples for which the exact solution is known have been used for comparison; in
the last case the collapse multiplier has also been determined by means of classical limit analysis.

The analyses have been carried out using a four-node isoparametric element with linear interpolation
functions on both the displacements and the stresses. A control point for the admissibility constraint lo-
cated at the centre of each element has been considered. Therefore, at the solution the principal stress tensor
is always negative semide®nite at the centre of each element, while tractions can be observed at the corners.
It should be noted, however, that the analytical and graphical results presented in the following subsections
have not been ®ltered (as is usually done in common ®nite element restitutions) in order to provide the
reader with the detailed solution properties.

4.1. Anular section with internal external pressure

An anular tube with an internal radius of ri � 0:2 m and an external radius of re � 1:0 m, subjected to
an internal pressure of pi � 1:0 MPa and an external one of pe � 0:22 MPa was analysed. The exact so-
lution of the problem was given by Bennati and Padovani [27] and is used here for comparison. Moreover,
considering the axial symmetry of the problem, a quarter of the tube was discretised and the following
values for the elastic constants were assumed: E � 104 MPa, m � 0:1. The discretisation was made using 10
elements in the hoop direction, and four meshes were analysed, with 8, 10, 16, 25 elements in the radial
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direction. Fig. 3 shows the mesh in the case of 16 elements in the radial direction, for a total of 160 ele-
ments. The mesh is constrained for horizontal displacements along the vertical edge and for vertical dis-
placements along the horizontal one. The dimension of the self-equilibrated stress vector s0 (i.e. the number
of direct variables) for the discretisations examined is equal to 117, 143, 221, 338 while one Lagrangian
multiplier for each element of the mesh has to be controlled.

In Figs. 4 6 the computed displacements and stresses are plotted vs. the exact ones. The results for the
radial stress and displacements are very close for any of the discretisations used. The hoop stress presents an
oscillatory behaviour about the zero value in the inner part, where the solid presents the cracked zone and
the stress admissibility constraint is active. As noticed before, this is due to the fact that the no-tension
constraint is enforced at the element centres and can be violated elsewhere, due to linear variation in the
stress ®eld. This drawback can be removed by developing suitable ®ltering techniques for the solution. In

Fig. 4. Radial displacements for the anular tube problem.

Fig. 3. Discretisation of the anular tube problem with 16 radial elements.
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fact, the oscillatory behaviour of the solution decreases when more elements in the radial direction are used.
Moreover, it must be noted that the results presented refer to the nodes placed on the horizontal edge of the
meshes, and not to a line through the Gauss points of the elements. For this reason the solution shown in
Fig. 6 is characterised by small tensile stresses in the inner part of the anular tube and does not have zero
crossings.

Fig. 5. Radial stress for the anular tube problem.

Fig. 6. Hoop stress for the anular tube problem.
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The oscillations near the zero value and the expected polar symmetry of the solution can also be
observed from the contour plots of the stresses, Figs. 7 and 8, relating to the 16 radial element case.

4.2. Vertically loaded panels

The behaviour of the proposed approach in approximation of the discontinuous ®eld is illustrated here
with the aid of two examples: (a) a homogeneous square panel vertically loaded by two uniform loads of
di�erent intensity, Fig. 9, and (b) a two-material panel with a uniform vertical load, Fig. 10. These two
examples were analysed using a mesh of 16� 8 elements in the horizontal and vertical direction, respec-
tively. The mesh has 153 nodes, while the number of direct variables is equal to 171.

Fig. 7. Contours of the radial stress for the anular tube problem.

Fig. 8. Contours of the hoop stress for the anular tube problem.
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In example (a) the elastic constants were set to E � 5:0 103 MPa, and m � 0:0 and the vertical loads have
the values p1 � 0:2 MPa, and p2 � 0:1 MPa. The exact solution is characterised by the independent uni-
axial behaviour of the two halves of the panel, and a comparison with the computed and linear elastic
solutions is shown in Figs. 11 and 12.

The no-tension solution is very close to the exact one and is almost constant at every section. Similar
behaviour is observed for the top panel displacements, Fig. 12. Here the elastic solution is smoothed all
over the width of the panel while the no-tension solution approximates the discontinuous solution far
better.

Example (b), Fig. 10, is characterised by a continuous (and constant) vertical stress and a discontinuous
displacement ®eld. The problem data are a vertical load of p � 0:1 MPa, and the elastic constants
E1 � 1:0 104 MPa, m1 � 0:0 for the left part and E2 � 5:0 103 MPa, m2 � 0:0 for the right part.

The computed solution for the vertical stress at midheight shows an almost constant stress for the no-
tension model, while the linear elastic solution presents sharp oscillations near the material discontinuity,
Fig. 13.

The top vertical displacement, Fig. 14, follows the same qualitative behaviour described for example (a),
Fig. 12.

Fig. 9. Homogeneous panel with nonuniform load (a).

Fig. 10. Two material panel with uniform load (b).
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4.3. Circular arch with lateral force

The problem of determining the limit load has been solved for a circular arch subjected to an external
hydrostatic pressure pe � 0:1 MPa and a horizontal force F, as illustrated in Fig. 15, where the deformed
geometry immediately before collapse is also shown.

Fig. 11. Vertical stress for example (a) at the bottom of the panel.

Fig. 12. Top vertical displacement for example (a).
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The arch is characterised by an internal radius ri of 0.4 m, an external radius re of 0.5 m, a thickness
re ÿ ri of 0.1 m and the elastic constants E � 104 MPa, m � 0:1. It was discretised using 80 elements and 105
nodes, for a total of 121 direct variables. The load displacement curve was constructed until convergence
was lost and is shown in Fig. 16.

The last convergent step of the program was obtained for a value of F � 0:215 KN, and is, of course,
independent from the value of the elastic constants (apart from excessively high and low values introducing
numerical ill conditioning). The computed limit load can be compared to the one obtained by classical limit

Fig. 13. Vertical stress for panel (b).

Fig. 14. Top vertical displacement for panel (b).
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load analysis, carried out by the lower bound theorem assuming the collapse mechanism of Fig. 17 with
three ®xed hinges and determining the fourth by minimising the collapse multiplier. Of course, since the
program enforces the admissibility constraint at the centres of the elements, the thickness of the arch to be
used to determine the collapse load must be set accordingly, i.e. t � re ÿ ri ÿ �re ÿ ri�=4, 4 being the number

Fig. 17. Limit load problem for the circular arch.

Fig. 16. Load displacement curve for the circular arch problem.

Fig. 15. Undeformed and deformed geometry for the circular arch problem.
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of ®nite elements along the thickness. In this way, a limit load of F � 0:272 KN was determined, which is
comparable to the value computed by the no-tension model.

5. Conclusions

A computational formulation for the problem of no-tension solids based on CE has been presented.
Similar approaches have been previously proposed in literature. However these methods, as well as those
based on displacement formulations, have a particularly slow rate of convergence and are sometimes nu-
merically unstable. The proposed method di�ers from previous ones both in the variational formulation
and in the ®nite element implementation. The functionals stemming from the variational formulation have
been regularised using the augmented Lagrangian technique, obtaining a continuous and di�erentiable
functional. From the continuum variational formulation a complementary ®nite element form of the
problem has been developed, where the equilibrium equations are imposed in a weak sense and the con-
straint multipliers are determined using augmented Lagrangian algorithms. This has allowed the discretised
problem in nodal self-equilibrated stresses to be restated as primal (direct) variables. A particularly e�cient
and stable solution scheme based on alternate iteration over the direct variables and the Lagrangian
multipliers is obtained. In particular, it has been demonstrated that regularisation based on the maximum
principal stress has the property of generating in the augmented Lagrangian iteration a sequence of points
for which the direct and dual problems are, respectively, strictly convex and concave (provided that a
solution exists), and is therefore particularly suitable for numerical applications.

The numerical e�ciency of the algorithm, in the formulation presented , is strongly in¯uenced by certain
factors: the Hessian of the complementary energy functional generally has a sparse structure, so that its
inversion is time consuming. Although the ®rst-order Lagrangian multiplier update formula (122) by
Hestenes and Powell is computationally very convenient, it presents a linear convergence rate. Further
analysis of the numerical aspects of the problem, as well as improvements to the present scheme, will be
presented in a forthcoming paper.
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