In spite of the many objections that have been moved against the usefulness of the model (see, e.g., [START_REF] Genna | An accurate numerical integration scheme for solving structural problems in the presence of a ``no tension'' material[END_REF]) the authors believe that it is still of crucial importance in the static analysis of masonry structures, as a necessary reference solution, preliminary to the application of more sophisticated models which, because of their complexity, can lead to misleading solutions: ®rst, the choice itself of an appropriate model depends not only on the material, but also on the nature of the problem being analysed; furthermore, the more complex the model is, the larger the number of parameters that need to be experimentally evaluated. However, it may be very dicult or even impossible to perform accurate estimations of the mechanical parameters on ancient and monumental masonries, both because of the infeasibility of destructive ``in situ'' tests, and because of the large variation in masonry typology within the same element that is often found in ancient structures. On the contrary, the no-tension model only requires knowledge of the elastic parameters, that can easily be obtained with standard nondestructive tests like ¯at jack tests.

The fundamental hypotheses on which the model relies are the existence of an elastic deformation potential, zero tensile strength, enforced by the requirement that the stress tensor be negative semide®nite, and normality between the stress and inelastic deformation ®elds. The no-tension material model has usually been analysed by introducing the hypothesis of small displacements and strains, consequently considering additivity for elastic and inelastic deformations. Four basic approaches are reported in literature:

• total displacement formulations [START_REF] Sacco | Modellazione e calcolo di strutture in materiale non reagente a trazione[END_REF][START_REF] Romano | Sul calcolo di strutture non resistenti a trazione[END_REF];

• displacement rate formulations [START_REF] Lucchesi | On the numerical solution of equilibrium problems for elastic solids with bounded tensile strength[END_REF][START_REF] Genna | An accurate numerical integration scheme for solving structural problems in the presence of a ``no tension'' material[END_REF];

• stress (complementary) formulations with the linearisation of the admissible stress set to achieve a linear complementary problem [START_REF] Maier | A theory of no tension discretized structural systems[END_REF]; • stress (complementary) formulations with no linearisation of the admissible stress set [START_REF] Grimaldi | Energia complementare e metodo penalty per problemi elastici unilaterali[END_REF]. In the present work the hypothesis of small displacements is retained. In view of the nondissipative behaviour of the no-tension model the problem can be formulated in the total variables. For this reason a notension material is a generalised (conewise) elastic material according to the de®nition of Curnier et al. [START_REF] Curnier | Conewise linear elastic materials[END_REF].

Although many authors have proposed computational formulations for no-tension materials, it is generally recognised that it is very dicult to achieve satisfactory eciency in numerical implementations. It is well known that in many cases no solution exists, and when it does, it is often a discontinuous one. Indeed, in no-tension problems even if an equilibrated solution exists and is unique, the displacement ®eld may be indeterminate or may diverge [START_REF] Piero | Recent developments in the mechanics of materials which do not support tension[END_REF]. The main objectives of this work are twofold. First a variational formulation for the problem will be presented, based on a generalisation of the Hellinger Reissner functional, eliminating the displacements from the functional by enforcing the equilibrium equations in a weak form and restating the problem on the set of self-equilibrated stresses only. This allows a signi®cant reduction in the size of the problem while the displacements may be calculated once the solution for the stresses has been found. Secondly, the functional thus obtained a nonregular one due to the presence of the admissibility constraints on the stress ®eld is consistently regularised using an augmented Lagrangian technique, that allows very ecient numerical solution methods to be employed. This technique has been previously used mainly for contact problems, where the number of constraints is much smaller than in the present case. The variational formulation proposed is implemented in an eective computational algorithm, which avoids most of the shortcomings usually found using displacement-based methods, as observed by Genna [START_REF] Genna | An accurate numerical integration scheme for solving structural problems in the presence of a ``no tension'' material[END_REF], without introducing approximations on the hypothesis of zero tensile stress.

In Section 2 of the paper the constitutive equation for the no-tension material is revisited, introducing the elastic and inelastic deformation potentials and their conjugate counterparts. These potentials are used to extend the Hellinger Reissner variational principle to no-tension solids and a nondierentiable mixed generalised variational principle is derived. From this functional a dierentiable one is obtained by substituting the nondierentiable inelastic strain potential with its augmented Lagrangian regularisation. The equivalence of the nonregular and regularised formulations is proved. Maximum principal stress and stressinvariant forms of the admissibility constraint are considered and their dierent properties are outlined.

In Section 3 the problem is solved numerically after discretising the stresses and the displacements on a ®nite element mesh and solving the nonlinear saddle point problem on the self-equilibrated stresses and discrete Lagrangian multipliers using an augmented Lagrangian iteration [START_REF] Fletcher | Practical Methods of Optimization[END_REF]. This allows a stable and ecient numerical implementation of the method to be obtained.

In the ®nal section of the paper some numerical examples are used to illustrate the methodology proposed.

Variational formulation

Field variables

Let us consider a body occupying a region B and let oB be its boundary, partitioned into two disjoint parts, oB u where the displacements u are prescribed, and oB q where the surface loads q are applied. The volume forces applied in IntB (the internal part of B and the reactions on the constrained part oB u of the body will be indicated by b and r.

The displacements u and the external forces f are elements of dual real linear vector spaces V 0 and V H 0 , V 0 u P U X u f 0 on oB u gX 1

Introducing the set V 1 of the functions satisfying the nonhomogeneous boundary conditions

V 1 u P U X u f u on oB u gY 2
the admissible displacement set V is given by the sum of the elements of V 0 and an arbitrary element u P V 1 :

u P V u 0 f uY u 0 P V 0 V u P V 1 gX 3 
The space U and its dual has been deeply investigated, from a mathematical point of view, in papers by Anzelotti [START_REF] Anzelotti | Elasticity with unilateral constraints on the stress[END_REF], Giaquinta and Giusti [START_REF] Giaquinta | Researches on the equilibrium of masonry structures[END_REF] and Del Piero [START_REF] Piero | Recent developments in the mechanics of materials which do not support tension[END_REF]. The authors gave dierent de®nitions of these spaces and the interested reader can ®nd details on this subject in the relative papers. Here it is recalled that in general it is assumed that the displacement space U is contained in BDB, the set of all functions of the Sobolev space L 1 B whose deformations are bounded measures. In [START_REF] Piero | A generalized Gauss Green formula for the Mathematical Theory of Plasticity[END_REF] Del Piero developed a generalisation for the Gauss Green formula that can be used to supply a weak formulation of the equilibrium problem.

Calling the traces of u and f on the boundary oB w and r, respectively, and denoting by v the restriction of u to IntB, by hY i 0 the scalar product in L 2 , by hY i oB the duality pairing between traces, and by hY i V the duality pairing between V 0 and V H 0 , the virtual work is

uY f h i V vY b h i 0 wY q h i oB wY r h i oB B v Á b dV oBq w Á q d dS l oBq w Á q l dS oBu w Á r dSY 4 
Á being the standard scalar product, i.e. v Á b v i b i . In (4) the surface loads q are split into a permanent or ``dead'' part q d and a part whose intensity is proportional to a scalar loading parameter l. This distinction is useful especially in analysis of the incremental load problem.

The deformation tensor e and the stress tensor r are elements of the dual linear vector spaces D and D H e P D symmetric second-order tensors on R 3 whose components are elements of

L 2 È É Y 5 r P D H X 6 
The duality pairing between D and D H is de®ned by

eY r h i D B e à r dV Y 7
where à is the standard inner product between tensors, given by e à r e ij r ji trr T eX 8

The no-tension material constitutive equation

The no-tension constitutive behaviour is founded on three physical hypotheses (a) the material cannot resist any tensile stress; (b) the strains can be decomposed into an elastic part and an inelastic one, due to crack openings that develop perpendicularly to the plane of maximum (nonnegative) stress; (c) the material is elastic in compression.

From hypotheses (a) and (b) it follows that during the fracture process there is no dissipation of energy. Hypothesis (c) is not essential; however, in real situations compressive stresses are well below the elastic limit, so that inelastic phenomena can be neglected. These hypotheses can be formally expressed through the following assumptions Assumption 1. The stress tensor must be negative semide®nite

r P K r r P D H X r negative semidefinite n o X 9
This assumption ensures the nonexistence of tensile principal stresses r 1 Y r 2 Y r 3 and states that the admissible stress domain K r is a closed convex cone in the stress space D H (Fig. 1). If n is the generic normal at a point, from the de®nition of K r it follows that

K r r P D H X rn Á n n 6 0 Vn o r P D H X r 1 n 6 0Y r 2 6 0Y r 3 6 0 o X 10 
Assumption 2. The total (in®nitesimal) deformation ®eld e can be additively decomposed into an elastic part e e and an inelastic one e a e e e e a X 11

Because of hypothesis (b) the inelastic deformation tensor must be positive semide®nite e a P K e e P D X e positive semidefinite f g X 12

It follows then that the scalar product between any two elements belonging to K r and K e , respectively, is always nonpositive r à e a 6 0 Vr P K r Ve a P K e 13

and that the scalar product of the inelastic deformation e a conjugate to a stress state r is zero, i.e. the inelastic deformation is nondissipative r à e a 0 for any conjugate admissible pair rY e a X 14

From ( 13) and ( 14) it follows by subtraction that the inelastic deformation is such that r À r à e a 6 0 Vr P K r V rY e a conjugate admissible pairX 15 Inequality [START_REF] Piero | A generalized Gauss Green formula for the Mathematical Theory of Plasticity[END_REF] is satis®ed, by de®nition, by all the deformations belonging to N Kr r, the outward normal cone to K r at the point r. The constitutive equation for inelastic deformation can be reformulated as e a P N Kr r o ind Kr rX 16

In ( 14) o denotes the subdierential set and the function ind Kr r is equal to zero if r P K r and is equal to I otherwise. Eq. ( 15) has the same form as the maximum dissipation postulate in plasticity with total deformations in place of rates, and is equivalent to the so-called hypothesis of normality to the boundary of the admissible stress domain K r (Fig. 2).

From [START_REF] Piero | Recent developments in the mechanics of materials which do not support tension[END_REF] it is observed that in a no-tension material the conjugate pair rY e a is orthogonal and that the stress and inelastic deformation tensors have the same principal directions. Expressing [START_REF] Piero | Recent developments in the mechanics of materials which do not support tension[END_REF] in the principal reference system the following Kuhn Tucker optimality conditions are obtained r i e a i 0Y r i 6 0Y e a i P 0 i 1 F F F 3 no sum on iX 17

The no-tension constitutive law can be derived following an alternate path. Note, in fact, that it is possible to de®ne a work functional h analogous to the dissipated power functional in elastoplasticity This latter path is especially useful when some dissipation mechanism, such as damage or plasticity, is to be introduced into the formulation of the constitutive law. Furthermore, Eqs. ( 22) and ( 23) allow the present formulation to be placed within the framework of unilateral mechanics, so that the results obtained in that ®eld can easily be extended to the problem at hand. Assumption 3. There exists a convex lower semicontinuous (l.s.c.) elastic potential whose complementary form / e r is such that e e o/ e rX 24

D
Since from [START_REF] Pasquale | Statica dei solidi murari: teorie ed esperienze[END_REF] the inelastic complementary potential is given by / a r ind K r r, from Eq. ( 11) the total stress potential is /r / e r / a rX 25

In fact, since / a r is continuous throughout its proper domain, and dom/ e dom/ a T Y it turns out that o / e / a o/ e o/ a . The potential /r is convex and l.s.c. and the no-tension material model under assumptions 1 F F F 3 is therefore a generalized elastic material in the sense indicated by Curnier et al. [START_REF] Curnier | Conewise linear elastic materials[END_REF].

If the elastic potential is the linear elastic one and i is the elastic operator, then

/ e r 1 2 E À1 r à rX 26 
In this particular case the deformation is given by the equations

e e E À1 rY r P K r Y 27 
e a P o ind Kr X 28 
Once the local potential /r is de®ned, the complementary deformation energy for the whole body is given by its Lebesgue integral Ur B /r dV X 29

Equilibrium and compatibility equations

Throughout this work the assumption of in®nitesimal deformation is retained. The compatibility and equilibrium equations can therefore be expressed by a linear operator C X V 0 3 D and its adjoint C H X D H 3 V H 0 in the form Cu e e e e a in BY 30

C H r f in B oB q X 31
In the following it will be assumed that

C symgradY C H Àdiv in BY P onY & 32
where P is the mapping that gives the stress vector at a point on the surface of the body, i.e. if n denotes the outward unit normal at a point, P r rn.

The structural problem de®ned by (30), (31), ( 16) and ( 24) admits a solution if and only if the applied forces are compatible, that is, if their virtual work is nonpositive for any virtual displacement ®eld producing only admissible inelastic deformations [START_REF] Romano | Sul calcolo di strutture non resistenti a trazione[END_REF] 

f compatible @A uY f h i V 6 0 Vu P V X Cu P K e X 33 
This condition stems from the statement that a solution exists if it is possible to ®nd at least one stress ®eld r satisfying both the equilibrium equations and the admissibility condition (9) in B, i.e. if the intersection of the set of equilibrated stress ®elds

K e r P D H X n À divr b in BY P r q d lq l on oB q o r P D H X C H r n f o 34
and of the set of admissible stress ®elds K r is nonempty, K e K r T Y.

Other load compatibility conditions regarding the resultant and the moments over parts of the solid bounded by planar surfaces are reported in literature [START_REF] Pasquale | Statica dei solidi murari: teorie ed esperienze[END_REF][START_REF] Piero | Constitutive equation and compatibility of the external loads for linear elastic masonry like materials[END_REF] and they allow the load compatibility in simple cases to be immediately assessed.

Variational principles nondierentiable form

In [START_REF] Romano | Sul calcolo di strutture non resistenti a trazione[END_REF] extensions of the variational principles in elastostatics to the case of generalized elasticity were given. The solution of the structural problem represented by Eqs. (30), (31), ( 16), [START_REF] Hestenes | Multiplier and gradient methods[END_REF] and the relevant kinematic boundary conditions can be obtained as the saddle point of the following generalized Reissner functional, concave on r, linear on uand de®ned in

V Â D H P R rY u ÀUr rY Cv h i D À bY v h i 0 À q d Y w h i oBq À l q l Y w h i oBq X 35 
The ®rst Euler Lagrange equation of P R , obtained by equating its ®rst variation to zero w.r. 

P R rY u ÀUr C H rY v 0 P rY w h i oB À bY v h i 0 À q d Y w h i oBq À l q l Y w h i oBq ÀUr C H r À bY v 0 rY u h i oBu P r h À q d À lq l Y wi oBq Y 37 
r P r being the constraint reactions on oB u . The variation of (37) w.r.t. u yields the weak form of the equilibrium condition (31) as a second Euler Lagrange equation of the Reissner functional

C H rY v 0 P rY w h i oBq bY v h i 0 q d h lq l Y wi oBq Vu P VX 38 
Under the hypothesis of load compatibility (33) the solution of the structural problem is given by the saddle point of ( 35)

sup rPD H stat uPV P R rY uX 39 
The solution of the structural problem is also determined by the maximum of the complementary energy functional P C r stemming from (37) when the weak form of the equilibrium equations ( 38) is satis®ed

P C r ÀUr rY u h i oBu r P K e X 40 
The functional (40) is the complementary energy functional generalized to no-tension solids and diers from the classical one by the presence of the term B ind Kr dV in the complementary deformation energy Ur. The subsidiary conditions are given by the domain of de®nition of the independent variables.

Anzelotti [START_REF] Anzelotti | Elasticity with unilateral constraints on the stress[END_REF] and Giaquinta and Giusti [START_REF] Giaquinta | Researches on the equilibrium of masonry structures[END_REF] studied the complementary energy functional and the total potential energy functional for no-tension solids and in their papers the following properties are proved:

• The total potential energy (TPE) functional is convex and l.s.c. and its coercivity depends on the applied loads (i.e. load compatibility is equivalent to inducing TPE coercivity). It is not strictly convex, • The complementary energy (CE) functional is strictly concave and coercive, provided that loads are compatible. Therefore, if the loads are compatible there exists a minimum ũ of the TPE functional that represents the solution of the problem, but it is in general nonunique. From ũ a unique stress ®eld r can be derived and r is the unique maximizer of the CE functional.

The convenience of adopting a CE formulation is apparent from the fact that the solution is characterized by a unique stress ®eld while the displacements are in general indeterminate.

Regularisations of the indicator functional

The functionals introduced in the previous paragraph are nonsmooth and nondierentiable because of the presence of the indicator functional of the admissible stress domain K r . Since the solution of the problem is expected to lie on the boundary of K r (apart from trivial cases) it is necessary, for numerical computations, to regularize the indicator functional. It is ®rst observed that the set K r can be expressed in the following equivalent ways: 

K r r P D H X rn Á n n 6 0 Vn o 41 r P D H X max eigr n 6 0 o 42 r P D H X trr @ 6 0Y trr 2 À
hr P 0 is equivalent to hr À min hrY Àkaa À max À hrY kaa 0Y 49 
where provided hr is dierentiable in its admissible subspace, the functions hr and hr À are dierentiable as well [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF]. Equivalence (47) is proved below. 

À Á 2 i 0 if hr 6 0Y I if hr b 0X & 55
Penalty methods have been extensively used in unilateral and no-tension problems [START_REF] Kikuchi | Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods[END_REF][START_REF] Grimaldi | Energia complementare e metodo penalty per problemi elastici unilaterali[END_REF]. However, since the limit (45) cannot be computed exactly to avoid ill conditioning, it leads to a relaxation of the constraint condition. Lagrangian multiplier methods are less frequently adopted in no-tension problems in conjunction with displacement formulations. Augmented Lagrangian methods are well established in contact problems where they have proved to be very ecient and reliable [START_REF] Heegard | An augmented Lagrangian method for discrete large-slip contact problems[END_REF][START_REF] Cuomo | Complementary energy approach to contact problems based on consistent augmented Lagrangian formulation[END_REF] and their ®rst application to notension problems was presented in Cuomo and Ventura [START_REF] Cuomo | An eective computational implementation of the no-tension model for masonry structures[END_REF][START_REF] Cuomo | An augmented Lagrangian formulation for the analysis of no-tension structures with unilateral supports[END_REF]. They allow the admissibility constraint to be strictly enforced, at the same time avoiding the drawbacks of both the penalty and the Lagrangian multiplier approaches.

In the following subsections the augmented Lagrangian regularisations for the dierent constraints (42) (44) will be considered.

Regularisation in the stress invariants

Introducing the following notations

I 1 trrY I 2 trr 2 À trr 2 2 Y 56 
I 3 detrY
the augmented Lagrangian regularisation of expression (43) for the indicator functional is obtained ind Kr r sup

k 1 Yk 2 Yk 3 PR k 1 I 1 k 2 I À 2 k 3 I 3 1 2 a I 2 1 h I À 2 2 I 2 3 i 57
or, in the plane stress case, ind Kr r sup

k 1 Yk 2 PR k 1 I 1 k 2 I À 2 1 2 a I 2 1 h I À 2
In (57) and (58) a single penalty parameter a has been used for all the constraints for the sake of simplicity, but dierent penalty parameters for each constraint are sometimes convenient.

2.5.2. Regularisation in the maximum principal stress Let r M be the maximum principal stress. The following regularisation is considered:

ind Kr r sup kPR kr M 1 2 a r M À Á 2 ! X 59
In the plane stress case, assuming xy to be the stress plane, r M is given by the real quantity

r M r x r y 2 r x À r y À Á 2 4 s 2 xy s X 60
In the triaxial case algebraic expressions for the principal stresses can be obtained in a closed form. Let I 1 Y I 2 Y I 3 be the stress invariants de®ned in the previous paragraph and let us de®ne the following quantities

a 3I 2 À I 2 1 Y 61 b 2I 3 1 À 9I 1 I 2 27I 3 Y 62 c b b 2 4a p 3 q X 63
The principal stresses are thus given by

r 1 I 1 3 À a 2 3 p c c 32 3 p Y 64 r 2 I 1 3 a 1 i 3 p À Á c 32 2 3 p À c 1 À i 3 p À Á 62 3 p Y 65 r 3 I 1 3 a 1 À i 3 p À Á c 32 2 3 p À c 1 i 3 p À Á 62 3 p 66 and r M max r 1 Y r 2 Y r 3 .
In the preceding equations it should be noted that, even if the imaginary quantity i appears, the principal stresses are of course real numbers (being the eigenvalues of a symmetric real tensor) and the quantity turns out to be a complex number (otherwise Imc 0 A r 2 r 3 ).

Variational principles dierentiable form

As pointed out in the preceding sections, the generalized Hellinger Reissner functional (35) and the CE functional (40) are nondierentiable because of the presence of the indicator function of the admissible stress domain. Equivalent smooth and dierentiable functional and variational principles can easily be obtained by substituting the augmented Lagrangian regularisations of ind Kr .

If principal stress regularisation is chosen, by introducing (59) into the CE functional (40) and changing the sign of all the terms, a functional P al C rY k is obtained and the following saddle point characterizes the solution of the equilibrium problem for a no-tension solid sup kPR min rPKe P al C rY kX 67

In (67) both the function r M and r 2 M appear, Eq. (59). While r M is a convex function and it can easily be veri®ed that its Hessian r 2 r M is positive semide®nite in the whole stress space, it should be noted, as pointed out in Table 1, that its square is positive semide®nite only when r M P 0 (i.e. whenever the constraint is active), as r 2 r 2 M 2r M r 2 r M . This observation must to be taken into account in the numerical implementation of solution algorithms, as the square of r M is the only nonconvex term in the stress variables.

In the same way, if stress invariant regularisation is chosen, by introducing Eqs. (57) into the CE functional (40) and changing the sign of all the terms, a functional 

P al C rY k 1 Y k 2 Y k 3 is
P al C rY k 1 Y k 2 X 69
Although the stress invariants, as compared to the principal stresses, have a simpler mathematical form, regularisations (57) and (58) involve dierent convexity properties of the constraints (see Table 1).

Stress space reduction

The CE functionals and the saddle point problems introduced in the previous section are de®ned on the space of equilibrated stresses, r P K e . However, the de®nition of the set K e is too strong and can be relaxed. In fact, in the de®nition of the CE functional the equilibrium equations only need to be satis®ed in a weak form and a considerably larger stress space can be considered, i.e. K e can be more conveniently rede®ned as

K e r P D H X C H r n À bY v 0 P r h À q d À lq l Y vi oBq 0 Vu P V o X 70 
Introducing the space K 0 e kerC H of the self-equilibrated stresses and the complementary space K 1 e of the stresses in equilibrium with the external loads

K 0 e r P D H X C H rY v 0 n P rY v h i oBq 0 Vu P V o Y 71 K 1 e r P D H X C H r n À bY v 0 P r h À q d À lq l Y vi oBq 0 Vu P V o 72
the space K e K 0 e È K 1 e can be generated through the elements of K 0 e and an arbitrary ®xed element belonging to

K 1 e K e r È r 0 r 1 X r 0 P K 0 e Y given r 1 P K 1 e É X 73 
In the ®nite element implementation of the problem the decomposition (73) of the set K e is especially useful, as it leads to a signi®cant reduction in the number of discrete stress variables.

Computation of the inelastic deformation ®eld

Inelastic deformations can be readily determined by introducing augmented Lagrangian regularisations of the indicator functional in the constitutive equation [START_REF] Pasquale | Statica dei solidi murari: teorie ed esperienze[END_REF]. As the regularisations are dierentiable the explicit expressions of the inelastic deformations are obtained from [START_REF] Pasquale | Statica dei solidi murari: teorie ed esperienze[END_REF] taking their gradients w.r.t. the stress components. The constraint functional appearing in the regularisation of ind Kr thus plays a role similar to that of the yield functional in the classical theory of associated plasticity, except that, in the present case, the total value of the inelastic deformation appears instead of its rate. This is a direct consequence of the fact that no-tension materials exhibit reversible behaviour. The explicit evaluation of ( 16) is reported distinguishing between principal stress and invariant regularisations.

Regularisation in the maximum principal stress

From ( 16) and the augmented Lagrangian regularisation (59) the inelastic deformation takes the form

e a k À ar M Á rr M X 74 
When the solution of the problem is obtained, r M 0 and • if the constraint is active then r M 0, k b 0, • if the constraint is not active then r M `0, k 0 so expression ( 74 

P T T T T T R Q U U U U U S

kW rX 76

It can be veri®ed that the eigenvalues of W r are 0Y 0Y 1 and its eigenvectors coincide with the principal stress directions. This means that the Lagrangian multiplier k has the physical meaning of the inelastic deformation dual to r M , i.e. k e a M .

Regularisation in the stress invariants

Using (57) the following expression for the inelastic deformation is obtained

e a k 1 À aI 1 Á rI 1 k 2 À aI À 2 Á rI À 2 k 3 À aI 3 Á rI 3 77
and, in the plane stress case,

e a k 1 À aI 1 Á rI 1 k 2 À aI À 2 Á rI À 2 X 78 
When the solution is obtained, r 1 6 0, r 2 6 0, r 3 6 0. Except for the trivial case when r 1 r 2 r 3 0 and the deformation ®eld is indeterminate I 1 trr `0 always holds and it is therefore an inactive constraint. Thus the following cases can occur:

• r 1 `0, r 2 r 3 0 : both I 2 and I 3 are active constraints, but rI 3 0;

• r 1 `0, r 2 `0Y r 3 0 : the only active constraint is I 3 ;

• r 1 `0, r 2 `0Y r 3 `0 : no constraints are active. Summarising in bidimensional analysis we have e a k 2 rI 2 79

and in three-dimensional analysis, if the solution gives a plane stress state, e a k 3 rI 3 80 while, if the solution gives a uniaxial stress state, e a k 2 rI 2 X 81

3. Finite element formulation

Discretisation of the ®eld variables

The numerical solution of the saddle point problem arising from the regularized forms of the CE functionals (67) (69) can be obtained in the framework of the ®nite element method through the introduction of suitable interpolation functions for all the ®elds appearing in the continuous formulation.

Indicating with G the matrix of element shape functions the following stress interpolation is assumed:

r G r s 82
The displacement ®eld u is interpolated for the sake of convenience by separating the displacements in IntB oB q and those on its frontier oB u

u v u ! G ut u t G u 0 0 G u ! u u ! X 83 

Discretisation of equilibrium and compatibility equations

The Gauss formula

rY Cv h i D À C H rY v 0 PrY w h i oB 84
does not hold in the F.E. framework as the derivatives of the shape functions are in general discontinuous across the interelement boundaries. Eq. ( 84) is therefore valid at the element level but not on the whole mesh. In order to avoid the undesirable boundary terms appearing on the RHS of (84) the equilibrium equations are obtained directly from the discretised form of the Hellinger Reissner functional (35)

P d R sY u t À 1 2 B E À1 G r s Á G r s dB À B ind Kr dB B G r s Á CG u u dB B G r s Á CG u u dB À B b Á G u u dB À oBq q d lq l Á G u u dS À oBu ind W dSY 85 
where W u P U X u " u on oB u f g and the last integral enforces the boundary conditions on the discretised displacements in a variational form. The nodal boundary displacements u also appear in the volume integral as they determine the displacements of the region of IntB covered by the elements adjacent to the boundary. The discrete form of the term B ind Kr df will be discussed in the next subsection. Denoting with F B G T r E À1 G r dB the ¯exibility matrix and letting b

B G T u b dB, q d oB q G T u q d dS, q l oB q G T u q l dS , C B CG u T G r dB , H B CG "
u T G r dB, using the Lagrangian regularisation for the boundary constraint, expression (85) becomes

P d R sY u t À 1 2 Fs Á s À b Á u À q d lq l Á u Cu Á s Hu Á s À r Á u oBu q Á " u dS À B ind Kr dB 86 
with r oBu G T " u q d and r Á u oBu q Á " u dS.

By equating to zero the variations of P d R w.r.t. the unknown displacements u and the prescribed ones u, the discrete equilibrium equations are determined:

C T s b q d lq l Y 87 
H T s rX 88 
Using (87) and ( 88) in (86) and performing a sign reversal the following CE functional is obtained:

P d C s 1 2 Fs Á s À r Á u B ind Kr dBY s P Y e Y 89 Y e s X C T s È b q d lq l É Y 90
Y e being the set of nodal equilibrated stresses, i.e. the discretised counterpart of K e . In general K e T Y e and, as observed in the continuum formulation, the set Y e can be split into the set Y 0 e of self-equilibrated nodal stresses and the set Y 1 e of nodal stresses in equilibrium with the prescribed body and surface loads.

Y 0 e s X C T s È 0 É Y 91 Y 1 e s X C T s È b q d lq l É X 92 
The ane linear manifold Y e is generated by the elements of Y 0 e and an arbitrary ®xed element belonging to

Y 1 e Y e s È s 0 s 1 X s 0 P Y 0 e Y given s 1 P Y 1 e É X 93 
While in the continuum problem the subsets K 0 e and K 1 e cannot be given an explicit representation (K e not being ®nite dimensional), the decomposition (93) can be expressed in a closed form. In fact, if n is the number of nodes, n d the number of space dimensions and m is the number of constrained degrees of freedom (®xed displacement components) then the above-de®ned matrices and vectors have the following dimensions

In the hypothesis that no rigid body motion is allowed, the equilibrium matrix C T has a rank of n n d À m. In fact n n d À m 6 n s and if rankC T `n n d À m then the image of C T would not cover the entire space R n n d Àm and I n n d ÀmÀrankC T equivalent nodal load vectors could be found such that no equilibrating nodal stress vector s exists. It follows that there is at least one suitable ordering of the components of s such that

C T s C T 0 C T 1 Â Ã s 0 s 1 ! C T 0 s 0 C T 1 s 1 Y 94 
where the matrix C T 1 is n n d À m  n n d À m and has full rank (i.e. it is nonsingular) and s 0 , s 1 are vectors of order nn d À m and n s À nn d m, respectively. The equilibrium equations (87) are condensed as follows:

C T 0 s 0 C T 1 s 1 b q d lq l Y 95 
s 1 C ÀT 1 À À C T 0 s 0 b q d lq l Á Y 96 s s 0 s 1 4 5 I ÀC ÀT 1 C T 0 4 5 
s 0 0 C ÀT 1 b q d lq l 4 5
X 97

Introducing the positions

R I ÀC ÀT 1 C T 0 ! Y t d 0 C ÀT 1 b q d ! Y t l 0 C ÀT 1 q l ! Y 98 
Eq. ( 97) is rewritten in compact form as

s Rs 0 t d lt l X 99 
The form of (97) can be conveniently determined in computations through a suitable Gaussian reduction which is also numerically very stable. In this way a considerable reduction in the number of unknowns is obtained.

The column reordering performed on C T is reproduced on the ¯exibility matrix F and on the reaction operator H T . The discretised CE functional (89) can be given the form By introducing (99), calculating the products and dropping the inessential constant terms, the following ®nal form is obtained

P d C s 0 1 2 
F 00 F 10 F 01 F 11 ! s 0 s 1 s 0 ! Á s 0 s 1 s 0 ! À H T 0 H T 1 Â Ã s 0 s 1 s 0 ! Á u B ind
P d C s 0 1 2 R T FR s 0 Á s 0 R T F t d lt l À Hu Á s 0 B ind Kr dBX 101 
The functional (101) just obtained is made up of a quadratic and a linear term in the self-equilibrated nodal stresses s 0 and the nonlinear, nondierentiable and l.s.c. term B ind K r dB.

Discrete form of the indicator functional

As pointed out in the previous section, the indicator functional ind Kr is replaced by the augmented Lagrangian forms (57) (59). To achieve a uniform and clearer notation let

ind Kr sup K Q Á K 1 2 a Q Á Q Á Y 102
where the meaning of the vectors (constraint functions) and K (Lagrangian multipliers) varies as shown in Table 2.

The integral of ( 102) is evaluated by adopting an appropriate number of Dirac delta functions for the multipliers, so that a collocation method is obtained. This approach leads to enforcement of the constraint at a discrete number of points, usually denominated as control points.

The discretised regularisation is therefore

B ind Kr dB sup K Q Á K 1 2 a Q Á Q Á Y 103 where Q T s 0 Q T 1 Y Q T 2 Y F F F Y Q T ncp
is the vector of the constraint functions evaluated at the n cp control points and

K K T 1 Y K T 2 Y F F F Y K T
ncp is the vector of the corresponding discrete Lagrangian multipliers. The vectors Q and K have dimensions equal to n cp dimK, dimK being the dimension of the K vector.

Note that in Eq. ( 103) the Jacobian and the Gauss weights do not appear. More detailed comments on this point will be found in a forthcoming paper.

Discrete form of the variational principle

By introducing the approximation (103) the nonlinear augmented Lagrangian form of the complementary functional (101) is obtained:

P al C s 0 Y K 1 2 R T FR s 0 Á s 0 R T F t d lt l À Hu Á s 0 Q Á K 1 2 a Q Á QX 104 
The solution of the discretised problem, provided it exists, is given by the saddle point min

s 0 sup K P al C s 0 Y KX 105 
The functional P al C s 0 Y K is linear on the Lagrangian multipliers K but is nonlinear and in general nonconvex on the self-equilibrated stresses s 0 as is evident from Table 1. However, as the admissible domain K r is convex, in practical applications properly chosen algorithms for the computation of the saddle point (105) can preserve the local convexity of

P al C s 0 Y K during iterations. Table 2 Meaning of Q and K vectors Regularisation Q K Maximum principal stress Q T r n  à K T k
Invariants (plane stress case) after introducing the F.E. interpolations and the constitutive equations for elastic and inelastic deformations ( 24) and ( 16)

Q T I 1 Y I 2 Â Ã K T k 1 Y k 2 Invariants (triaxial case) Q T I 1 Y I 2 Y I 3 Â Ã K T k 1 Y k 2 Y k 3 3.5.
B G T r E À1 G r s dB Á s B G T r o ind Kr dB Á s e e e a Á sX 107 
The ®rst term on the LHS of (107) yields the ¯exibility matrix F. The second term is evaluated using (103) and the linearity of the subdierential as follows

B G T r o ind Kr dB B r T s ro ind Kr r s dB B o s ind Kr r s dB o s B ind Kr r s dB o s Q Á K 1 2 a Q Á Q K Á G T r r r Q aQ Á G T r r r Q K aQ Á G T r r r QX 108 
Inserting (108) into (107) the following de®nitions of elastic, inelastic and total nodal deformations are obtained:

e e FsY 109 e a K aQ Á G T r r r QY 110 
e e e e a X 111

Note that the quantities appearing in the de®nition of the inelastic deformations e a , referring to the nodes of the mesh, are evaluated at the control points. The displacements can be evaluated from the compatibility equations obtained by equating to zero the variation w.r.t. s of the discretised Reissner functional (86). Using regularisation (103) we obtain

Cu Fs r s rr r Q Á K 1 2 a Q Á Q À Hu e À Hu 112
that is easily interpreted in the light of de®nitions (109) (111). By introducing partition (94) for C and the corresponding ones for e and H the following two matrix equations are obtained:

C 0 C 1 ! u e 0 e 1 ! À H 0 H 1 ! uX 113
C 1 being nonsingular the second row of Eq. ( 113) can be inverted to yield the displacement ®eld at the solution as a function of the stress state through e

1 u C À1 1 e 1 À C À1 1 H 1 uX 114 
The ®rst row of Eq. ( 113) is identically satis®ed since it is the Euler Lagrange equation obtained from the variation of (104) w.r.t. s 0 . In fact, by substituting (114) into the ®rst row of (113) one has

e 0 À C 0 C À1 1 e 1 C 0 C À1 1 H 1 u À H 0 u 0X 115 
This equation, observing that

R T I À C 0 C À1 1 Â Ã
, can be rewritten as

R T e À Hu 0X 116 
On the other hand, equating to zero the variation of (104) w.r.t. s 0 and using (99), it follows that

R T FR s 0 R T Ft d lt l À Hu r s 0 s r s rr r Q Á K 1 2 a Q Á Q 0Y R T FR s 0 R T F t d lt l À Hu R T G T r r r Q Á K 1 2 a Q Á Q 0Y R T FR s 0 F t d lt l À Hu G T r r r Q Á K 1 2 a Q Á Q 0Y R T Fs À Hu G T r r r Q Á K 1 2 a Q Á Q 0X 117
The last equation, introducing de®nitions (109) (111) is identical to (116).

Augmented Lagrangian iteration

The core of the augmented Lagrangian method (ALM) is to allow for distinct iterations on direct and dual variables. When iteration is made on a set of variables the others are considered to be constant according to the general iterative scheme

s 0 k1 U s 0 K k1 Y s 0 Y 118 K k1 U K KY s 0 k Y a k Y 119 a k1 U a K k1 Y s 0 k1 Y a k Y 120
where U s 0 , U K , U a , respectively, are called the Lagrangian multiplier update formula, the direct variable update formula and the penalty parameter increment scheme. Eqs. (118) (120) are evaluated in sequence until convergence on the direct and dual variables is achieved. One of the most widely used versions of the augmented Lagrangian iteration (118) (120) is the Hestenes [START_REF] Hestenes | Multiplier and gradient methods[END_REF] and Powell [START_REF] Powell | A method for non-linear constraint in optimization problems[END_REF] form. This has been adopted in the present work and iterates as follows:

s 0 k1 arg min

s 0 P al C s 0 Y K k Y 121 K k1 K k a k Qs 0 k1 Y 122 a k1 U a K k1 Y s 0 k1 Y a k X 123
Given initial values for the multipliers K and the penalty parameter a, Eq. ( 122) is equivalent to a steepestascent iteration with a stepsize equal to a, [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF] while the minimisation w.r.t. the self-equilibrated stresses is implemented using the Newton method. Formula (122) is known as the Hestenes Powell update formula. Finally, the penalty parameter is incremented as follows, modifying the classical scheme reported in Fletcher [START_REF] Fletcher | Practical Methods of Optimization[END_REF],

a k1 10a k if Qs 0 k1 `Qs 0 k and Qs 0 k1 b 0X25 Qs 0 k Y a k otherwise & 124
that is, the penalty parameter is increased by an order of magnitude if the norm of the constraint functions between two subsequent iterations decreases but does not decrease ``suciently''. The ®rst condition has been introduced because, if some numerical instability arises, incrementing the penalty parameter causes nonconvergence even if convergence could be achieved. The penalty parameter increment scheme is of fundamental importance when the Hestenes Powell formula is used and its optimal value is not known. In fact, the magnitude of the penalty parameter strongly aects both the rate of convergence on the Lagrangian multipliers [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF] and the conditioning of the direct problem. In this sense the scheme (124) determines an optimal value to satisfy both requisites and it can be shown that the sequence a k f g generated by ( 124) is bounded whenever the multiplier values at the solution are bounded.

In the present work maximum principal stress regularisation of the indicator functional has been used in order to obtain a strictly convex minimisation problem in the direct step (121) of the iteration. In this case, in fact, the only nonconvex term of the functional P al C s 0 is the square of the constraint functions 1a2aQ Á Q (see Table 1) but, provided that the ®rst iteration w.r.t the variables s 0 , Eq. ( 121), is made with the values of the multipliers equal to zero (K 0), the augmented Lagrangian iteration generates a sequence of points s 0 k È É where the Hessian of the term 1a2aQ Á Q is always positive de®nite. The same result does not hold if stress invariant regularisation is used, as is shown below:

Consider, for the sake of simplicity, the scalar constraint function r

M max r M Y Àkaa . The Hessian of r 2 M is r 2 r 2 M 2r M r 2 r M if r M P À kaaY 0 otherwiseX & 125
As r 2 r M is positive semide®nite (K r being a cone) r 2 r 2 M is negative de®nite whenever r M `0 and Àk aa 6 r M `0, that is, when k P À ar M b 0. The Hestenes and Powell update formula in this particular case is given by

k k1 k k a max r M s 0 k Y Àk k aa k 126
and therefore if the initial value of k is zero k b 0 can only hold if r M b 0. If during the iterations r M `0 (i.e. the constraint becomes inactive), Eq. ( 126) immediately sets k 0 so that r 2 r 2 M is always positive de®nite whenever the constraint is active.In the numerical implementation of the augmented Lagrangian algorithm step (121) has been realised by a pure Newton scheme and presents high rates of convergence. The nonexistence of the solution because of load incompatibility is revealed by an oscillation of the Newton iteration between two ®xed points.

Numerical examples

In this section the proposed approach is applied to some two-dimensional tests in order to assess its eectiveness. The examples have been selected in order to explore the ability of the model to simulate the various aspects of no-tension material behaviour, and particularly the continuity/discontinuity of the solution and the problem of limit load determination. The results of these tests are of course not exhaustive, and their intent is to show the main features of the computational model. Therefore the following four solution typologies have been considered:

• continuous stresses and displacements;

• discontinuous displacements and stresses;

• continuous stresses and discontinuous displacements;

• limit load evaluation. For the ®rst three cases, examples for which the exact solution is known have been used for comparison; in the last case the collapse multiplier has also been determined by means of classical limit analysis.

The analyses have been carried out using a four-node isoparametric element with linear interpolation functions on both the displacements and the stresses. A control point for the admissibility constraint located at the centre of each element has been considered. Therefore, at the solution the principal stress tensor is always negative semide®nite at the centre of each element, while tractions can be observed at the corners. It should be noted, however, that the analytical and graphical results presented in the following subsections have not been ®ltered (as is usually done in common ®nite element restitutions) in order to provide the reader with the detailed solution properties.

Anular section with internal external pressure

An anular tube with an internal radius of r i 0X2 m and an external radius of r e 1X0 m, subjected to an internal pressure of p i 1X0 MPa and an external one of p e 0X22 MPa was analysed. The exact solution of the problem was given by Bennati and Padovani [START_REF] Bennati | Soluzioni esplicite per problemi di equilibrio di solidi non reagenti a trazione[END_REF] and is used here for comparison. Moreover, considering the axial symmetry of the problem, a quarter of the tube was discretised and the following values for the elastic constants were assumed: E 10 4 MPa, m 0X1. The discretisation was made using 10 elements in the hoop direction, and four meshes were analysed, with 8, 10, 16, 25 elements in the radial direction. Fig. 3 shows the mesh in the case of 16 elements in the radial direction, for a total of 160 elements. The mesh is constrained for horizontal displacements along the vertical edge and for vertical displacements along the horizontal one. The dimension of the self-equilibrated stress vector s 0 (i.e. the number of direct variables) for the discretisations examined is equal to 117, 143, 221, 338 while one Lagrangian multiplier for each element of the mesh has to be controlled.

In Figs. [START_REF] Heyman | The stone skeleton[END_REF] 6 the computed displacements and stresses are plotted vs. the exact ones. The results for the radial stress and displacements are very close for any of the discretisations used. The hoop stress presents an oscillatory behaviour about the zero value in the inner part, where the solid presents the cracked zone and the stress admissibility constraint is active. As noticed before, this is due to the fact that the no-tension constraint is enforced at the element centres and can be violated elsewhere, due to linear variation in the stress ®eld. This drawback can be removed by developing suitable ®ltering techniques for the solution. In fact, the oscillatory behaviour of the solution decreases when more elements in the radial direction are used. Moreover, it must be noted that the results presented refer to the nodes placed on the horizontal edge of the meshes, and not to a line through the Gauss points of the elements. For this reason the solution shown in Fig. 6 is characterised by small tensile stresses in the inner part of the anular tube and does not have zero crossings. The oscillations near the zero value and the expected polar symmetry of the solution can also be observed from the contour plots of the stresses, Figs. 7 and8, relating to the 16 radial element case.

Vertically loaded panels

The behaviour of the proposed approach in approximation of the discontinuous ®eld is illustrated here with the aid of two examples: (a) a homogeneous square panel vertically loaded by two uniform loads of dierent intensity, Fig. 9, and (b) a two-material panel with a uniform vertical load, Fig. 10. These two examples were analysed using a mesh of 16 Â 8 elements in the horizontal and vertical direction, respectively. The mesh has 153 nodes, while the number of direct variables is equal to 171. In example (a) the elastic constants were set to E 5X0 10 3 MPa, and m 0X0 and the vertical loads have the values p 1 0X2 MPa, and p 2 0X1 MPa. The exact solution is characterised by the independent uniaxial behaviour of the two halves of the panel, and a comparison with the computed and linear elastic solutions is shown in Figs. 11 and12.

The no-tension solution is very close to the exact one and is almost constant at every section. Similar behaviour is observed for the top panel displacements, Fig. 12. Here the elastic solution is smoothed all over the width of the panel while the no-tension solution approximates the discontinuous solution far better.

Example (b), Fig. 10, is characterised by a continuous (and constant) vertical stress and a discontinuous displacement ®eld. The problem data are a vertical load of p 0X1 MPa, and the elastic constants E 1 1X0 10 4 MPa, m 1 0X0 for the left part and E 2 5X0 10 3 MPa, m 2 0X0 for the right part.

The computed solution for the vertical stress at midheight shows an almost constant stress for the notension model, while the linear elastic solution presents sharp oscillations near the material discontinuity, Fig. 13.

The top vertical displacement, Fig. 14, follows the same qualitative behaviour described for example (a), Fig. 12. 

Circular arch with lateral force

The problem of determining the limit load has been solved for a circular arch subjected to an external hydrostatic pressure p e 0X1 MPa and a horizontal force p, as illustrated in Fig. 15, where the deformed geometry immediately before collapse is also shown. The arch is characterised by an internal radius r i of 0.4 m, an external radius r e of 0.5 m, a thickness r e À r i of 0.1 m and the elastic constants E 10 4 MPa, m 0X1. It was discretised using 80 elements and 105 nodes, for a total of 121 direct variables. The load displacement curve was constructed until convergence was lost and is shown in Fig. 16.

The last convergent step of the program was obtained for a value of F 0X215 KN, and is, of course, independent from the value of the elastic constants (apart from excessively high and low values introducing numerical ill conditioning). The computed limit load can be compared to the one obtained by classical limit load analysis, carried out by the lower bound theorem assuming the collapse mechanism of Fig. 17 with three ®xed hinges and determining the fourth by minimising the collapse multiplier. Of course, since the program enforces the admissibility constraint at the centres of the elements, the thickness of the arch to be used to determine the collapse load must be set accordingly, i.e. t r e À r i À r e À r i a4, 4 being the number of ®nite elements along the thickness. In this way, a limit load of F 0X272 KN was determined, which is comparable to the value computed by the no-tension model.

Conclusions

A computational formulation for the problem of no-tension solids based on CE has been presented. Similar approaches have been previously proposed in literature. However these methods, as well as those based on displacement formulations, have a particularly slow rate of convergence and are sometimes numerically unstable. The proposed method diers from previous ones both in the variational formulation and in the ®nite element implementation. The functionals stemming from the variational formulation have been regularised using the augmented Lagrangian technique, obtaining a continuous and dierentiable functional. From the continuum variational formulation a complementary ®nite element form of the problem has been developed, where the equilibrium equations are imposed in a weak sense and the constraint multipliers are determined using augmented Lagrangian algorithms. This has allowed the discretised problem in nodal self-equilibrated stresses to be restated as primal (direct) variables. A particularly ecient and stable solution scheme based on alternate iteration over the direct variables and the Lagrangian multipliers is obtained. In particular, it has been demonstrated that regularisation based on the maximum principal stress has the property of generating in the augmented Lagrangian iteration a sequence of points for which the direct and dual problems are, respectively, strictly convex and concave (provided that a solution exists), and is therefore particularly suitable for numerical applications.

The numerical eciency of the algorithm, in the formulation presented , is strongly in¯uenced by certain factors: the Hessian of the complementary energy functional generally has a sparse structure, so that its inversion is time consuming. Although the ®rst-order Lagrangian multiplier update formula (122) by Hestenes and Powell is computationally very convenient, it presents a linear convergence rate. Further analysis of the numerical aspects of the problem, as well as improvements to the present scheme, will be presented in a forthcoming paper.
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  t. the variable r, yields the weak form of the kinematic compatibility equation (30) Vr P D H subject to e P o/r o/ e r o/ a rX 36 Integrating by parts the term rY Cv h i D in (35) the functional becomes

	h	rY Cv	i D rY e h i D

  . the admissibility of the stress state can be enforced through the sign of the maximum principal stress r M max eigr or through the stress invariants. Although in principle Eqs. (41) (44) are totally equivalent, in practical applications they dier because of the convexity and dierentiability properties of the functions involved. The convexity properties can easily be veri®ed using the principal stresses r 1 Y r 2 Y r 3 . Results obtained are presented in Table1.The set K r is thus described by one or more inequalities of the kind hr 6 0. Three commonly used regularisations for the functional ind Kr are ind Kr lim
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	or also, in the plane stress case,	
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respectively, called penalty, Lagrangian and augmented Lagrangian regularisation. In (45) h i is the McCauley bracket ( x h i x if x P 0, x h i 0 otherwise) and in (47) the inequality constraint hr 6 0 is converted into an equality one. In fact, the following equivalences hold

Table 1

 1 Convexity of the constraint functionals and their squares

	Convex Nonconvex	r M r 2 M	tr r trr 2 trr 2 a2	trr 2 trr 2 trr 2 a2 h i 2	detr	detr 2

  obtained and again the following saddle point characterizes the solution of the equilibrium problem sup k 1 Yk 2 Yk 3 PR

		min rPK e	P al C rY k 1 Y k 2 Y k 3	68
	or, in the plane stress case, by introducing (58),
	sup k 1 Yk 2 PR	min rPK e	

  Determination of the nodal displacement ®eld Consistent nodal deformation de®nitions are obtained from the virtual work equality
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