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Introduction

Estimation under communication constraints
Sensor networks — Remote estimation

Constraints:

X X @ bandwidth.
—>| Measurement | Transmission || Estimation [ o Memory.

@ Complexity.

Bandwidth constraint — Rate constraint

noiseless channel
1 measurement — Ng bits

?

—| Measurement (| Transmission | Estimation [

Rate constraint — Scalar quantization
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Problem statement

Signal and measurement models
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Adaptive algorithm

Adaptive algorithm

Estimation performance —
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for most noise distributions,
degrades when Ty is far from x.

. Adaptive scheme,
— Solution — set 7o = Xy_1.
Adaptive algorithm:

3 Adjustable 3 o Low complexity.
! quantizer . | o Low memory requirements.
| 2 |
™ It can be implemented at sensor
1 | ) level.
? 0 ; Ix
1 ' Quantized Update = Prediction+Correction
| ‘measurements
s 1 K=Kt (Y5)|
~ algorithm step,
X n [i] correction coefficients:
Xi— <—
- Adaptive algorithm . nll = —nl-,
Offset Xy nlil > 0, fori>0.
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Performance

Theoretical performance and optimal parameters

Mean error — Bias (ODE method)

ODE approximation Bias

For small v, E (f(k> ~ X (t) e« =E (Xk - Xk) ~ € (t)
dj\(_ X—X+V _ N $:Fl(€)

a == (o(*5 )] . a

te=ky, V~ 1 (¥). h(e) = h(e+ x).

@ Using ODE stability
analysis
e — 0when t — oc.

Asymptotic
unbiasedness



Performance

Theoretical performance and optimal parameters

Asymptotic MSE
Using general results for adaptive algorithms’

Optimal gain and asymptotic MSE Optimal 7, v and MSE
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Performance

Simulation

@ Optimal n, @ Gaussian f(v) = @ o4 =0.001.

@ optimal uniform
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Loss due to quantization

Performance
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Continuous case (Kalman filter)
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Conclusions

Main points and further work

@ Low complexity algorithm for estimation under constrained rate.
Simplified signal model, but noise is not assumed to be Gaussian.

(slow random walk) Multiple sensors, low resolution
@ Negligible loss for Ng =4 and 5 —» X
Single sensor, high resolution

Remark: for Ng = 1, this scheme is similar to A modulation, but the
performance is obtained without quantization noise simplifications.

Further work
@ Xy = aXu_1 + Wk (ax1, a<1) — X = aXe1 + 1 (i)
@ oy or 6 unknown — Xk = Xk 1+ (Ik,Xk 1) (ik)
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Thank you!

Questions?
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