Adaptive Estimation Based on Quantized Measurements

Rodrigo Cabral Farias Jean-Marc Brossier

gipsa-lab France

IEEE ICC 2013 10/06/2013 - Budapest

Outline

- Introduction
- Problem statement
- Adaptive algorithm
- Performance
- Conclusions

Introduction Problem statement Adaptive algorithm Performance Conclusions

Estimation under communication constraints

Sensor networks → Remote estimation

Bandwidth constraint —— Rate constraint

noiseless channel 1 measurement – **N**_B bits

Rate constraint — Scalar quantization

Signal and measurement models

Adaptive algorithm

Estimation performance — for most noise distributions, degrades when τ_0 is far from x_k . \longrightarrow Solution — $\frac{\text{Adaptive scheme}}{\text{set }\tau_0 = \hat{X}_{k-1}}$.

Adaptive algorithm:

- Low complexity.
- Low memory requirements.

It can be implemented at sensor level.

Update = Prediction+Correction

$$\hat{X}_{k} = \hat{X}_{k-1} + \gamma \eta \left[Q \left(\frac{Y_{k} - \hat{X}_{k}}{c_{\delta} \delta} \right) \right]$$

 γ algorithm step,

 η [i] correction coefficients:

$$\eta[i] = -\eta[-i],$$
 $\eta[i] > 0, \text{ for } i > 0.$

Theoretical performance and optimal parameters

Mean error – Bias (ODE method)

ODE approximation

For small γ , $\mathbb{E}\left(\hat{X}_{k}\right)\approx\hat{X}\left(t_{k}\right)$

$$rac{d\hat{x}}{dt} = \mathbb{E}\left[\eta\left(Q\left(rac{x-\hat{x}+V}{c_{\delta}\delta}
ight)
ight)
ight] = h(\hat{x})\,,$$

$$t_k = k\gamma, \ V \sim \frac{1}{\delta} f\left(\frac{v}{\delta}\right).$$

Bias

$$\epsilon_k = \mathbb{E}\left(\hat{X}_k - X_k\right) \approx \epsilon\left(t_k\right)$$

$$rac{ extsf{d}\epsilon}{ extsf{d}t} = ilde{h}\left(\epsilon
ight),$$

$$\tilde{h}(\epsilon) = h(\epsilon + x).$$

• Using ODE stability analysis $\epsilon \to 0$ when $t \to \infty$.

Asymptotic unbiasedness

Theoretical performance and optimal parameters

Asymptotic MSE

Using general results for adaptive algorithms¹

Optimal gain and asymptotic MSE

Optimal η , γ and MSE

$$\begin{split} \gamma^{\star} &= \frac{\sigma_{w}}{\sqrt{2\eta^{T}} \mathbf{f_{d}} \eta}. & \qquad \qquad \boldsymbol{\eta^{\star}} &= \text{arg max} \left\{ \frac{\left[\boldsymbol{\eta}^{T} \mathbf{f_{d}}\right]^{2}}{\boldsymbol{\eta}^{T} \mathbf{f_{d}} \eta} \right\} = \mathbf{F_{d}}^{-1} \mathbf{f_{d}}. \\ \mathbf{MSE}_{\infty} &= \frac{\sigma_{w} \sqrt{2\boldsymbol{\eta}^{T}} \mathbf{f_{d}}}{2\boldsymbol{\eta}^{T} \mathbf{f_{d}}}. & \\ \mathbf{MSE}_{\infty}^{\star} &= \gamma^{\star} = \sigma_{w} \left(2 \sum_{i=1}^{\frac{N_{l}}{2}} \frac{f_{d}^{2}\left[i\right]}{F_{d}\left[i\right]} \right)^{-\frac{1}{2}}. \\ \boldsymbol{\eta} &= \left[\boldsymbol{\eta}\left[1\right] \cdots \boldsymbol{\eta}\left[\frac{N_{l}}{2}\right]\right]^{T}, \\ \mathbf{F_{d}} &= \operatorname{diag}\left[F_{d}\left[1\right], \cdots, F_{d}\left[\frac{N_{l}}{2}\right]\right], F_{d}\left[i\right] = \mathbb{P}\left(i_{k} = i|\hat{X}_{k}, X_{k}\right) \Big|_{\hat{X}_{k} = X_{k}}, \\ \mathbf{f_{d}} &= \left[f_{d}\left[1\right] \cdots f_{d}\left[\frac{N_{l}}{2}\right]\right]^{T}, f_{d}\left[i\right] &= \frac{\partial \mathbb{P}\left(i_{k} = i|\hat{X}_{k}, X_{k}\right)}{\partial \tilde{X}_{k}} \Big|_{\hat{X}_{k} = X_{k}}. \end{split}$$

¹A. Benveniste, M. Métivier, and P. Priouret. *Adaptive algorithms and stochastic approximations*. Springer-Verlag New York, Inc., 1990.

Simulation

- Optimal η,
- optimal uniform quantization
- Gaussian $f(v) = \frac{1}{\sqrt{\pi}} e^{-v^2} \delta = \sqrt{2}$,
- Cauchy $f(v) = \frac{1}{\pi(1+v^2)} \delta = \sqrt{1}$.

• $\sigma_w = 0.001$.

Loss due to quantization

Continuous case (Kalman filter)

$$\mathsf{MSE}_{\infty}^{c} = \frac{\sqrt{\sigma_{w}^{4} + 2\delta^{2}\sigma_{w}^{2}} - \sigma_{w}^{2}}{2}.$$

Loss

$$L = 10 \log_{10} \left(\frac{MSE_{\infty}^{\star}}{MSE_{\infty}^{c}} \right).$$

Slow variations ($\sigma_{\it w} \ll \delta$)

$$L \approx -5\log_{10}\left(\delta^2\sum_{i=1}^{\frac{N_I}{2}}\frac{f_{d}^2\left[i\right]}{F_{d}\left[i\right]}\right).$$

Main points and further work

- Low complexity algorithm for estimation under constrained rate.
 Simplified signal model, but noise is not assumed to be Gaussian.
 (slow random walk)
 Multiple sensors, low resolution
- Negligible loss for $N_B = 4$ and 5 \longrightarrow X
 Single sensor, high resolution

Remark: for $N_B = 1$, this scheme is similar to Δ modulation, but the performance is obtained without quantization noise simplifications.

Further work

•
$$X_k = \alpha X_{k-1} + W_k$$
 $(\alpha \approx 1, \ \alpha < 1) \longrightarrow \hat{X}_k = \alpha \hat{X}_{k-1} + \gamma \eta (i_k)$
• $\sigma_W \text{ or } \delta \text{ unknown}$ $\longrightarrow \hat{X}_k = \hat{X}_{k-1} + \gamma \left(i_k, \hat{X}_{k-1}\right) \eta (i_k)$

Thank you!

Questions?