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Abstract—In this paper, the tracking of a slowly varying
scalar Wiener process based on quantized noisy measurements is
studied. An adaptive algorithm using a quantizer with adjustable
input gain and bias is presented as a low complexity solution.
The mean and asymptotic mean squared error of the algorithm
are derived. Simulations under Cauchy and Gaussian noise are
presented to validate the results and a comparison with the
optimal estimator in the Gaussian and real-valued measurement
case shows that the loss of performance due to quantization is
negligible using 4 or 5 bits of resolution.

Index Terms—Adaptive estimation, quantization, tracking
loops.

I. INTRODUCTION

With the evolution of sensor and communication technol-

ogy, research on applications using sensor networks increased

substantially. Sensor network applications can be found in a

broad range of domains: environmental monitoring, agricul-

tural monitoring, health care and many others [1]. Most of

the research in this area is focused on the estimation part of

sensing or in routing, while implementation constraints such

as bandwidth and complexity are neglected.

Quantization of the measurements is an efficient way of

taking into account bandwidth and complexity constraints. In

quantization literature [2], most of the results are obtained

for minimization of the measurements reconstruction error,

while only a few results appear for the maximization of the

estimation performance based on quantized measurements.

The latter is clearly the main issue in sensing applications.

In [3], the performance of estimation of a constant pa-

rameter based on quantized noisy measurements is studied,

it is shown that a good choice for the quantizer input offset

is to use feedback from the output. It is also shown that

for constant input offset, binary quantization and Gaussian

noise, the best offset is exactly the parameter value and the

best estimation asymptotic variance, given by the Cramér–Rao

bound (CRB), is π
2 times the real-valued measurement CRB.

Motivated by this small loss of performance, the estimation of

a constant parameter based on binary quantized measurements

with Gaussian noise was studied in [4]. An adaptive scheme

for placing the threshold at the last estimate is proposed but not

detailed. Sensor network schemes for adaptively replacing the

thresholds are later developed and analyzed in [5] and [6]. In

[5] a simple additive recursive algorithm is used for updating

the thresholds at the sensors, while in a fusion center, the

binary measurements are used to obtain a maximum likelihood

estimate of the parameter. More complex threshold update

schemes are presented in [6].

Some unsolved problems can be found in the references

mentioned above. To reach the performance in [3], [5], [6]

complex maximum likelihood algorithms must be applied.

Also, one can be interested in tracking a slowly variable

parameter instead of a constant. Thus, in this paper, a low

complexity adaptive algorithm for tracking a slowly variable

location parameter from noisy multiple bit measurements is

proposed. The parameter is modeled by a Wiener process and

the noise is considered to be symmetrically distributed. The

estimation performance is analyzed using adaptive algorithms

theory and after maximizing the performance with respect to

(w.r.t.) its parameters, simulation results are presented under

Gaussian and Cauchy noise.

II. PROBLEM STATEMENT AND ADAPTIVE ALGORITHM

The stochastic process to be tracked is a scalar Wiener

process given by the following model:

Xk = Xk−1 +Wk, (1)

where k ∈ N
⋆ is the sample (time) index, Wk is a sequence

of independent and identically distributed (i.i.d.) zero mean

Gaussian random variables (r.v.) with small standard deviation

Wk ∼ N
(

0, σ2
w

)

, σw ≪ 1. The initial condition X0 is an

unknown constant x.

The signal Xk is measured with additive noise:

Yk = Xk + Vk, (2)

where Yk is the measurement and the noise is Vk. The

measurements are quantized using an adjustable quantizer with

the following input-output relation:

ik = Q

(

Yk − bk

∆k

)

, (3)

where ik ∈
{

−NI

2 , · · · ,−1,+1, · · · , NI

2

}

, NI is the number

of quantization intervals and bk and 1
∆k

are sequences of

adjustable quantizer offsets and input gains respectively. The

quantizer is parametrized also by its vector of thresholds

defining the quantization intervals

τ = [τ
−

NI

2

· · · τ−1 τ0 τ1 · · · τNI

2

].



Some assumptions will now be stated for simplification

purposes.

• Vk is assumed to be i.i.d. with a locally Lipschitz

continuous cumulative distribution function (CDF) F (x)
and a probability density function (PDF) f (x) that is an

even function strictly decreasing w.r.t. |x|. The noise is

parametrized by a known scale factor δ, meaning that

F (x) = Fn

(

x
δ

)

, where Fn is the CDF for δ = 1.

• The quantizer has symmetric thresholds:

τ0 = 0, τNI

2

= +∞,

τi = −τ−i, ∀i ∈
{

1, · · · , NI

2

}

, (4)

thus its output is ik = i sign (Yk − bk) for
|Yk−bk|

∆k

∈ [τi−1, τi).

The objective is to track Xk with an estimator X̂k that

uses the outputs of the adjustable quantizer. For doing so, the

quantizer offset and input gain will be set to be

bk = X̂k−1, ∆k = ∆ = cδδ, (5)

where cδ is a free constant parameter that can be chosen

to maximize estimation performance when the thresholds are

fixed. With these parameters the amplitude information from

the quantized measurements is enhanced. As the quantized

measurement can be seen as a type of quantized innovation

and as the signal to be estimated is a Wiener process, a low

complexity choice for the estimator is a Kalman like algorithm

with a constant gain:

X̂k = X̂k−1 + γ η

[

Q

(

Yk − X̂k−1

∆

)]

, (6)

γ is a small positive constant gain, η[i] = ηi is a sequence

of NI coefficients
{

η
−

NI

2

. . . ηNI

2

}

, they will be considered

to be an odd function of i and to be positive for positive i.

Thus the positive coefficients are denoted in vector form as

η =
[

η1 . . . ηNI

2

]T

.

Note that in the binary case NI = 2, the proposed method

is similar to delta modulation. For NI > 2, the algorithm can

be seem as a predictive quantizer intended for estimation of

Xk and not for reconstruction of Yk.

III. ESTIMATION PERFORMANCE

The estimation algorithm (6) belongs to a wide class of

adaptive algorithms studied in [7]. The tracking algorithm with

the adjustable quantizer is depicted in Fig. 1. The results from

[7, Ch. 4] can be applied to obtain its performance in terms

of mean error and asymptotic mean squared error (MSE). The

mean behavior of X̂k can be approximated by the ordinary

differential equation (ODE)

dx̂

dt
= h (x̂) , (7)

where the correspondence between continuous and discrete

time is tk = kγ and h (x̂) is the following expectation w.r.t.

1
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measurements
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−

Adjustable
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Fig. 1. Scheme representing the adjustable quantizer. The offset can be
adjusted dynamically while the quantizer thresholds are fixed.

the probability measure of the noise r.v. V :

h (x̂) = E

[

η

(

Q

(

x− x̂+ V

cδδ

))]

=

NI

2
∑

i=1

ηi [Fd (i, x̂, x)− Fd (−i, x̂, x)] , (8)

this approximation is valid under the condition that h (x̂) is

Lipschitz continuous, as Fd is given by

Fd =



















F (τicδδ + x̂− x)− F (τi−1cδδ + x̂− x)

if i ∈
{

1, · · · , NI

2

}

,

F (τi+1cδδ + x̂− x)− F (τicδδ + x̂− x)

if i ∈
{

−1, · · · ,−NI

2

}

,
(9)

the approximation is valid due to the continuity assumptions

on F .

Estimation bias ǫ can be obtained through the ODE approx-

imation
dǫ

dt
= h̃ (ǫ) , (10)

where h̃ (ǫ) = h (ǫ+ x). Lyapunov theory can be used to

show that the algorithm is asymptotically unbiased. Using the

quadratic Lyapunov function

L (ǫ) = ǫ2, (11)

one needs to show that h̃ (ǫ) = 0 for ǫ = 0 and dL
dt

< 0
for ǫ 6= 0. Thus if these conditions are met, the Barbashin-

Krasovskii theorem [8, Ch. 4] can be used to prove that

ǫ = 0 is globally asymptotically stable point for (10) and

consequently the algorithm is asymptotically unbiased. For

doing so, h̃ (ǫ) can be rewritten as

h (ǫ) =

NI

2
∑

i=1

ηi

[

F̃d (i, ǫ)− F̃d (−i, ǫ)
]

, (12)

where F̃d (i, ǫ) = Fd (i, ǫ+ x, x).
Due to the noise and quantizer symmetry assumptions the

condition for ǫ = 0 can be easily verified. The condition on



the derivative

dL
dt

=
dL
dǫ

dǫ

dt
= 2ǫh̃ (ǫ) < 0, for ǫ 6= 0, (13)

can be verified separately for ǫ > 0 and ǫ < 0 by noting that

• ηi for i > 0 are positive by assumption.

• F̃d (i, ǫ) < F̃d (−i, ǫ) for ǫ > 0 due to the assumptions

on monotonicity and symmetry of the noise distribution

and also to the symmetry of the quantizer.

• F̃d (i, ǫ) > F̃d (−i, ǫ) for ǫ < 0 due to the same

assumptions mentioned above.

Therefore, the algorithm is asymptotically unbiased for every

combination of X̂0 and x.

Using also the results in [7, Chap. 4], the minimum asymp-

totic MSE for the algorithm is

MSE∞ =
σw

√

2ηTFdη

2ηT fd
. (14)

In (14) Fd is a diagonal matrix diag
[

Fd [1] , · · · , Fd

[

NI

2

]]

,

where Fd [i] = Fd (i, x, x) depends only on i. The vector fd

is
[

fd [1] · · · fd
[

NI

2

]]T
, where

fd =

{

f (τi−1cδδ)− f (τicδδ) , if i ∈
{

1, · · · , NI

2

}

,

f (τicδδ)− f (τi+1cδδ) , if i ∈
{

−1, · · · ,−NI

2

}

.

(15)

The optimal γ that gives this MSE is

γ⋆ =
σw

√

2ηTFdη

. (16)

Minimization of (14) can be done w.r.t. η by solving the

following equivalent maximization problem (note that the

positive constraint on η is neglected)

argmax
η

{

[

η
T
fd

]2

ηTFdη

}

. (17)

Using the Cauchy–Schwarz inequality or a maximum eigen-

value argument, the optimal η can be

η
⋆ = Fd

−1
fd, (18)

which is a vector with positive elements η⋆i = fd[i]
Fd[i]

that does

not depend on x. The optimal MSE and γ⋆ are

MSE∞ = γ⋆ = σw



2

NI

2
∑

i=1

f2
d [i]

Fd [i]





− 1

2

. (19)

Note that this quantity still depends on τ and cδ . As the

minimization of MSE∞ can be a very difficult problem for

general τ , in the simulation section, uniform quantization will

be considered, with the following threshold vector

τ
+ =

[

τ0 = 0 τ1 = 1 · · · τNI

2
−1

=
NI

2
− 1 τNI

2

= ∞
]T

.

(20)
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Fig. 2. Mean error for Gaussian and Cauchy noises with NI = 4, δ = 1,

x = 0 and X̂0 = 1.

IV. SIMULATION

The algorithm will be simulated and its performance in

terms of mean error and MSE will be compared to the

theoretical approximations. The quantization will be consid-

ered to be uniform as mentioned above, therefore, the only

free parameter for the minimization of MSE∞ is cδ . This

optimization problem can then be solved by grid optimization.

After finding the optimal cδ , all the other parameters of the

algorithm (η, γ⋆) can be obtained.

Gaussian and Cauchy distributions will be considered, the

former is common choice for measurement noise distribution

and the latter is used for simulating the behavior of noise

with outliers (heavy tailed noise). Their PDFs for δ = 1 are

respectively

fG (x) =
1√
π
e−x2

, fC (x) =
1

π (1 + x2)
. (21)

For obtaining the simulated mean, Monte Carlo simulation

was used. The algorithm was simulated 10 times with 10000
samples for each type of noise distribution and NI = 4.

Other simulation conditions were x = 1, X̂0 = 0, δ = 1,

σw = 0.001. The simulated mean error is presented in Fig.

2 with the approximation given by the numerical solution of

(10). The simulated results are very close to the theoretical

results and the mean error approach zero with increasing

number of samples as it was predicted. Also, the algorithm

was simulated for NB = log2 (NI) = {1, 2, 3, 4, 5} and 10000
realizations with 105 samples each to obtain a simulated MSE.

The simulated MSE was obtained by calculating the average

through the realizations and samples. The scale factors for

the noise were δ =
√
2 for Gaussian noise and δ = 1 for

Cauchy noise, both with σw = 0.001. A comparison between

the simulated MSE and the MSE in (19) is given in Fig. 3,

where the theoretical results are also very close to simulated

results.

To evaluate the loss of performance due to quantization, the

loss of performance w.r.t. the optimal real-valued measurement

estimator was evaluated. In the Gaussian case, the optimal



1 2 3 4 5
1

1.2

1.4

1.6

1.8

·10
−3

Number of bits [NB ]

M
S
E

Sim. - Cauchy

Theo. - Cauchy

Sim. - Gaussian

Theo. - Gaussian
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NB = {1, 2, 3, 4, 5}, δ =
√
2, σw = 0.1 and 0.001.

estimator based on real-valued measurements is the Kalman

filter. Based on the covariance equations of the Kalman filter

[9], the asymptotic estimation variance MSEc
∞ is given by

MSEc
∞ =

√

σ4
w + 2δ2σ2

w − σ2
w

2
. (22)

The loss of performance due to quantization is then evaluated

in (dB) as

L = 10 log10

(

MSE∞

MSEc
∞

)

≈ 10 log10

(

MSE∞

√

2

σ2
wδ

2

)

≈ −5 log10



δ2

NI

2
∑

i=1

f2
d [i]

Fd [i]



 , (23)

where the approximation is valid for small σw. The approxi-

mation above is shown in Fig. 4 with the simulated loss for

δ =
√
2, σw = 0.001 and σw = 0.1 under the same conditions

as for the results in Fig. 3.
The approximation is good for σw = 0.001 and it gives

close results even for σw = 0.1. One can also observe that

the loss due to quantization has small values for NB = 2
becoming negligible for NB = 4. It is interesting to note

that the loss for NB = 2 is far lower than the loss for

estimating a constant with NB = 1 presented in [3], [4], which

is 10 log10
(

π
2

)

≈ 1.96dB. Note that if NB = 1 is considered

for both cases, the loss for tracking is half (L ≈ 0.98dB)

the loss for estimating a constant, indicating that even under

minimum quantizer resolution, the performance degradation

for tracking is not large.

V. CONCLUSIONS

In this paper, an adaptive algorithm was proposed for

the tracking of a Wiener process based on quantized mea-

surements. The algorithm was shown to be asymptotically

unbiased and the optimal parameters of the algorithm were

obtained by minimizing the asymptotic MSE. The results both

in terms of mean error and MSE were validated by simulation.

An interesting observation is that the algorithm based on

quantized observations has a negligible loss of performance

w.r.t. the optimal real-valued measurement estimator for only a

few measurement bits (NB = 4 or 5) and this result holds even

for moderate speed of parameter variation. This means that

in the bandwidth constrained case, sensor networks with low

resolution sensors might be more efficient than single sensor

high resolution approaches.
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