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ABSTRACT

In this paper, the asymptotic approximation of the Fisher informa-

tion for the estimation of a scalar parameter based on quantized

measurements is studied. As the number of quantization intervals

tends to infinity, it is shown that the loss of Fisher information due

to quantization decreases exponentially as a function of the number

of quantization bits. The optimal quantization interval density and

the corresponding maximum Fisher information are obtained. Com-

parison between optimal nonuniform and uniform quantization for

the location estimation problem indicates that nonuniform quantiza-

tion is slightly better. At the end of the paper, an adaptive algorithm

for jointly estimating and setting the thresholds is used to show that

the theoretical results can be approximately obtained in practice.

Index Terms— Parameter estimation, quantization, adaptive al-

gorithm.

1. INTRODUCTION

Sensor arrays and sensor networks have attracted attention of the

signal processing and communication research communities, as the

cost, consumption and size of sensors and communication devices

are reducing with recent technology advances. A plethora of sensing

system applications ranging from military to commercial areas [1]

also motivates the increasing research in multisensor approaches.

Passing from a single sensor context to a multisensor context

creates new difficulties for algorithm design. Complexity and con-

strained bandwidth problems have to be taken into account. A direct

approach to tackle these problems is to quantize the sensors mea-

surements. Even though quantization theory is well developed for

the reconstruction of measurements, with extensive literature [2], the

extension of the theory for the reconstruction of a parameter embed-

ded in quantized noisy measurements is much less developed. This

extension, which can be called quantization for estimation, is clearly

more related to the main objectives of a sensing system than quanti-

zation for measurement reconstruction.

Analysis of the performance of location parameter estimation

based on multiple bit quantized measurements is presented in [3],

where the effect of the quantizer input offset on the Cramér–Rao

bound is studied. In [4], the same problem is analyzed, but in a

binary quantization context. In this case, the problem of setting the

binary thresholds when the parameter is random is studied in detail.

In both works the total number of quantization bits per sensor is

considered to be finite.

Asymptotic high-rate approximations for inference based on

quantized measurements are presented in [5]. Asymptotic perfor-
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mance for parameter estimation is detailed in the uniform quantiza-

tion case. A high-rate approximation is also proposed in [6], where

the problem of estimating a random parameter based on scalarly

quantized measurements is considered. The optimal companding

function (quantizer input nonlinear function) and mean squared es-

timation errors are obtained considering that the quantizers output

entropy sum is minimized, thus giving a characterization of the

rate-distortion function for Bayesian estimation under the high-rate

regime.

In this work, the analysis of asymptotic nonuniform scalar quan-

tization for parameter estimation will be detailed, extending the re-

sults presented for uniform quantization in [5]. Differently from [6],

the parameter is considered to be deterministic and an asymptotic

approximation of the Fisher information (FI) will be written as a

function of a density of quantization intervals (the point density).

The optimal interval densities and asymptotic FI will then be ob-

tained. The results will be applied to the location estimation prob-

lem for Gaussian and Cauchy distributions. A comparison between

the theoretical approximation of the asymptotic maximum FI, the FI

for uniform quantization and the FI for a practical approximation of

the interval density is presented. Finally, as the optimal quantizer

thresholds are shown to depend on the parameter to be estimated, an

adaptive algorithm for setting them is used to show that the theoreti-

cal performance can be approximately achieved.

2. ASYMPTOTIC APPROXIMATION

The problem considered here is the estimation of a scalar de-

terministic parameter x ∈ R of a continuous distribution F
based on N independent measurements from this distribution

Y = [Y1 Y2 · · · YN ]T . Due to the constraints explained above,

estimation of x will not be done based on Y, instead it will be based

on a scalarly quantized version of Y, that will be denoted

i = [i1 i2 · · · iN ]T = [Q (Y1) Q (Y2) · · · Q (YN )]T ,

the function Q represents the scalar quantizer and is given by

Q (Y ) = i, if Y ∈ ∆i = [τi−1, τi) , (1)

where i ∈ {1, · · · , NI}, NI is the number of quantization intervals

∆i and τi are the quantizer thresholds. The first and last thresholds

will be set to be τ0 = τmin and τNI
= τmax.

The Cramér–Rao bound (CRB) for estimating x based on i can

be used to give a lower bound on the variance of any unbiased esti-

mator X̂ of x. Under the independence assumption and supposing

that the support of F does not depend on x, the CRB for X̂ is

Var
[

X̂
]

≥ CRBq =
1

NIq
, (2)



where Iq is the FI for a quantized measurement, it can be written as

Iq = E
[

S
2
q

]

= E

{

[

∂ log P (i;x)

∂x

]2
}

=

NI
∑

i=1

[

∂ log P (i;x)

∂x

]2

P (i;x) , (3)

Sq is the score function for quantized measurements and P (i;x) is

the probability of having the quantizer output i:

P (i;x) = F (τi;x)− F (τi−1;x) . (4)

For N → ∞, the CRB is tight and it can be attained asymptot-

ically using maximum likelihood estimation. Thus, the CRB and

consequently the FI can be used to approximately assess estimation

performance.

The FI in (3) is a function not only of the noise distribution and

the parameter, but also in this case, a function of the quantizer thresh-

olds (or equivalently of the quantizer intervals). Clearly, two ques-

tions arise: what are the optimal thresholds that maximize the FI?

For the optimal thresholds, what is the value of the FI as a function

of NI?

Only in a few cases these questions can be answered easily. In

the binary case, for the estimation of a location parameter, under

certain conditions on F , it can be shown that the threshold must be

placed exactly at x. For uniform quantization, maximizing the FI

with respect to (w.r.t.) the quantization step is a one dimensional

maximization problem, which can be solved easily using exhaustive

search. For nonuniform non binary quantization, maximization of Iq
w.r.t. τi or ∆i is a difficult problem.

Similarly to standard quantization for measurement reconstruc-

tion, where optimal nonuniform quantization intervals can be ap-

proximated for large NI , an approximation for Iq will now be devel-

oped.

It will be assumed that F (y;x) accepts a probability density

function (PDF) f (y;x) positive, smooth in both y and x and defined

on a bounded support. Following a similar development as in [6], the

quantity E
[

(Sc − Sq)
2]

will be analyzed. Sc is the score function

for estimation based on continuous measurements Sc = ∂ log f(y;x)
∂x

.

The quantity E
[

(Sc − Sq)
2]

can be rewritten as

E
[

(Sc − Sq)
2] = Ic + Iq − 2E [ScSq] , (5)

where Ic is the FI for continuous measurements. Using the defini-

tions of Sc and Sq , it can be shown that E [ScSq] = E
[

S2
q

]

. There-

fore,

Iq = Ic − E
[

(Sc − Sq)
2]

. (6)

The right term shows that quantization can only decrease FI and it

can be interpreted as the loss of performance due to quantization.

The loss, denoted L from now on, must be minimized with respect

to the quantization intervals. L, which is an expectation under the

measure F , can be rewritten as a sum of integrals, each term of the

integral corresponds to the loss produced by a quantization interval:

L =

NI
∑

i=1

∫

∆i

[

∂ log f (y;x)

∂x
− ∂ log P (i;x)

∂x

]2

f (y;x) dy. (7)

For the interval with index i, the PDF can be approximated with

a Taylor series around the central point yi =
τi+τi−1

2
:

f (y;x) = fi+f
(y)
i (y − yi)+

f
(yy)
i

2
(y − yi)

2+o (y − yi)
2
, (8)

where the superscripts indicate the variables for which the function

is differentiated. The subscript represents that the function (after dif-

ferentiation) is evaluated at yi. It will be assumed that the sequences

of intervals for increasing NI are chosen such that for any ǫ > 0 it

is possible to find a N∗
I for which

o (y − yi)
2

(y − yi)
2 < ǫ, forNI > N

∗
I , y ∈ ∆i. (9)

Under the assumption that f > 0, the logarithm of f at interval ∆i

can be approximated also using a Taylor series:

log f (y;x) = log fi + (log f)(y)i (y − yi) +

+ (log f)(yy)i

(y − yi)
2

2
+ o (y − yi)

2
(10)

and the derivative w.r.t. x is

∂ log f (y;x)

∂x
= (log f)(x)i + (log f)(yx)i (y − yi) +

+ (log f)(yyx)i

(y − yi)
2

2
+ o (y − yi)

2
, (11)

which is an expression for the continuous score function on ∆i to

be used in (7). Now, the other term in the squared factor must be

calculated. Integrating the PDF in (8) on the interval ∆i (which is

denoted in the same form as its length), one gets

P (i, x) = fi∆i + f
(yy)
i

∆3
i

24
+ o

(

∆3
i

)

. (12)

Note that the term on ∆2
i is zero because yi is the interval central

point. The logarithm of P (i, x) can be obtained by dividing the

second and third terms of the right hand side of (12) by the first term

and then using the Taylor series for log (1 + x). Differentiating the

resulting expression w.r.t. x gives

∂ log P (i, x)

∂x
= (log f)(x)i +

(

f (yy)

f

)(x)

i

∆2
i

24
+ o

(

∆2
i

)

. (13)

Subtracting (13) from (11), squaring, then multiplying by the Taylor

series of f and integrating gives:

L =

NI
∑

i=1

{

[

(log f)(yx)i

]2

fi
∆3

i

12
+ o

(

∆3
i

)

}

=

NI
∑

i=1

{

(

S
(y)
c,i

)2

fi
∆3

i

12
+ o

(

∆3
i

)

}

. (14)

To obtain a characterization of the quantization intervals, an interval

density function λ (y) will be defined:

λ (y) = λi =
1

NI∆i

, for y ∈ ∆i. (15)

Rewriting (14) with this density gives

L =

NI
∑

i=1

{

(

S
(y)
c,i

)2

fi
∆i

12N2
I λ

2
i

+ o

(

1

N2
I

)

∆i

}

. (16)

As NI → ∞, it will be supposed that all ∆i converge uniformly to

zero. Therefore,

lim
NI→∞

N
2
IL =

1

12

∫

(

∂Sc(y;x)
∂y

)2

f (y;x)

λ2 (y)
dy. (17)



Gaussian (Ic = 2) Cauchy (Ic = 0.5)

NB Optimal Uniform
Companding

approx.
Optimal Uniform

Companding

approx.

1 1.27323954† – 1.27323954 0.40528473† – 0.40528473

2 1.76503630† 1.76503630 1.75128300 0.43433896† 0.43433896 0.40528473

3 1.93090199† 1.92837814 1.92740111 0.48474865† 0.45600797 0.47893785
4 1.97874454⋆ 1.97841622 1.98038526 0.49533850⋆ 0.48136612 0.49504170
5 1.99468613⋆ 1.99353005 1.99489906 0.49883463⋆ 0.49204506 0.49879785
6 1.99867153⋆ 1.99807736 1.99869886 0.49970866⋆ 0.49656712 0.49970408
7 1.99966788⋆ 1.99943563 1.99967136 0.49992716⋆ 0.49851056 0.49992659
8 1.99991697⋆ 1.99983649 1.99991741 0.49998179⋆ 0.49935225 0.49998172

Table 1. Fisher information (FI) for the estimation of Gaussian and Cauchy location parameters based on quantized measurements. NB is

the number of quantization bits. In Optimal† the maximum FI obtained by exhaustive search of the thresholds is shown. Optimal⋆ is the

theoretical asymptotic approximation of the FI. Uniform shows the value of the FI for optimal uniform quantization and Companding approx.

gives the FI for the practical approximation of the asymptotically optimal thresholds.

Based on (17), the following approximation can be used for the FI

Iq ≈ Ic −
1

12N2
I

∫

(

∂Sc(y;x)
∂y

)2

f (y;x)

λ2 (y)
dy, (18)

which is valid for large NI .

It is possible to find the optimal interval density λ⋆ maximizing

(18) and the corresponding maximum FI I⋆q by applying the Hölder’s

inequality to the integral. This gives

λ
⋆ (y) =

(

∂Sc(y;x)
∂y

) 2

3

f
1

3 (y;x)

∫

(

∂Sc(y;x)
∂y

) 2

3

f
1

3 (y;x) dy

, (19)

I
⋆
q ≈ Ic −

1

12N2
I

[

∫
(

∂Sc (y;x)

∂y

) 2

3

f
1

3 (y;x) dy

]3

. (20)

The main difference from standard quantization is the presence of

the derivative of the score function in the interval density.

3. LOCATION PARAMETER ESTIMATION

As an application of the results above, estimation of the location

parameter x of two different distributions will be considered. The

distributions chosen to be analyzed are the Gaussian and the Cauchy

distributions, the former is commonly used for modeling thermal

noise and the latter for modeling noise with outliers. Even if their

support is unbounded, as in standard quantization theory, it is ex-

pected that the error caused by incorrect approximation of the ex-

tremal regions (overload region) will be small. Their PDFs are given

respectively by

fG (y;x) =
1

δ
√
π

e
−( y−x

δ )
2

,

(21)

fC (y;x) =
1

δπ

1
[

1 +
(

y−x

δ

)2
] ,

(22)
where δ is scale parameter. Denoting NB = log2 (NI) the number

of quantization bits, one gets for the Gaussian PDF

λ
⋆
G (y) =

1

δ
√
3π

e
−
(

y−x
√

3δ

)

2

, (23)

I
⋆
q,G ≈ 2

δ2

[

1− π
√
3 2−(2NB+1)

]

, (24)

Note that the interval density in this case is exactly the same as for

standard quantization (proportional to f
1

3 ). For the Cauchy distribu-

tion

λ
⋆
C (y) =

1

δB
(

1
2
; 5
6

)

[

1−
(

y−x

δ

)2
] 2

3

[

1 +
(

y−x

δ

)2
] 5

3

, (25)

I
⋆
q,C ≈ 1

2δ2

[

1− B
(

1
2
; 5
6

)3

3π
2−2NB+1

]

, (26)

where B is the beta function. From the definition of the interval

density, the percentage of intervals until interval i, i
NI

must be equal

to the integral of the interval density from τmin to τi. Thus, a practical

way of approximating the optimal thresholds is to set

τ
⋆
i = F

−1
λ

(

i

NI

)

, (27)

where F−1
λ is the inverse of the cumulative distribution function

(CDF) related to λ.

To evaluate the validity of the approximations, the FI (3) under

both distributions with δ = 1 was evaluated for

• the optimal set of thresholds for NB = {1, 2, 3}. The opti-

mal thresholds were obtained through exhaustive search. For

NB = {4, 5, 6, 7, 8} the theoretical results (24) and (26)

were used as an approximation.

• uniform quantization considering NB = {1, · · · , 8}. After

setting the central threshold to x, the optimal quantization in-

terval ∆ was found by maximizing the FI also using exhaus-

tive search.

• the approximate optimal set of thresholds given by (27), for

NB = {1, · · · , 8}.

The results are given in Tab. 1.

Note that in all cases fast convergence to the continuous Fisher

information (Ic) with increasing NB is verified. It seems that for es-

timation purposes 4 quantization bits are enough. The difference of

performance between uniform and nonuniform quantization seems

to be higher for the Cauchy distribution. In the Gaussian case this

difference is negligible, indicating that in practice uniform quanti-

zation should be used (as it is easier to implement). It can also be

observed that the theoretical asymptotic approximation of Iq and its

true value for the approximation of the optimal thresholds are very



close, even for small values of NB as 4 and 5. Thus, it seems that

the asymptotic approximation of Iq given by (18) and that the ap-

proximation of the optimal thresholds given by (27) are possible an-

swers for the questions raised at the beginning of Sec. 2, at least for

NB ≥ 4.

An important issue for evaluating τi in (27) is that they depend

explicitly on x. A possible solution for this problem is to initially set

τi with an arbitrary guess of x, then estimate x using an initial set of

measurements and finally update the thresholds with the estimate.

This procedure can be done in a recursive way to get closer and

closer to the optimal thresholds.

4. ADAPTIVE ALGORITHM

A recursive procedure for updating the estimate of x that will pro-

duce asymptotically optimal results associated with the threshold

placement proposed here (27) can be found in [7]. The procedure is

the following: for measurement Yk, the quantizer thresholds will be

set using (27) with x being replaced by its last estimate X̂k−1, then

Yk is quantized using the new thresholds, this produces the quantized

measurement ik and a new estimate given by

X̂k = X̂k−1 +
1

kIxq
η (ik) , (28)

where Ixq is the Fisher information when the central threshold τNI
2

is placed exactly at x (NI is assumed to be an even number). The

function η is given by

η (i) =
f (τ⋆

i−1;x)− f (τ⋆
i ;x)

F (τ⋆
i ;x)− F

(

τ⋆
i−1;x

) , (29)

here F is the CDF of Yk and τ⋆
i are the thresholds calculated using

the true x. Note that for location estimation, η is independent of x.

This algorithm can be seen as gradient ascent algorithm ap-

plied to the log-likelihood. Under some constraints on f , it can be

shown [7] that the estimator X̂k is asymptotically unbiased and that

its asymptotic variance attains the Cramér–Rao bound for a fixed

thresholding scheme with the central threshold placed at x. Thus, if

NB > 4 and the approximation of the optimal thresholds is used,

the asymptotic variance of this algorithm will be close to optimal

and it will be given approximately by

Var
[

X̂k

]

≈ CRB
⋆
q =

1

kI⋆q
. (30)

This algorithm was tested under both distributions for NB = 4 and

5. The mean squared error (MSE) of estimation was evaluated using

Monte Carlo simulation, 4×106 realizations of blocks with 5×104

samples were used. The initial error x−X̂0 and δ were both set to be

1 in all simulations. The MSE for the algorithm and the approxima-

tion given by (30) are both given in Fig. 1, where they are multiplied

by k for better visualization. It can be observed that the asymptotic

algorithm performance is very close to the approximation. For small

k the CRB is not tight and that seems to be the reason for the algo-

rithm to perform better than the bound. In other simulations, it was

also observed that using uniform thresholds leads to faster conver-

gence to the asymptotic performance. This indicates that in practice

an algorithm with changing thresholds can be used for obtaining bet-

ter results. In the convergence phase, a uniform set of thresholds is

used, then after a given number of samples, the thresholds change to

the approximately optimal set.

100 101 102 103 104
10−0.35

10−0.3

Time [k]

M
S
E
×

k

CRB⋆

q

Algorithm

(a) Gaussian distribution

100 101 102 103 104

100.3

100.35

Time [k]

M
S
E
×

k

CRB⋆

q

Algorithm

(b) Cauchy distribution

Fig. 1. Simulated mean squared error (MSE) for the adaptive algo-

rithm considering Gaussian and Cauchy distributions. The numbers

of quantization bits are NB = 4 and 5. The initial estimation error

and δ were set to 1 in all the cases. The curves that have asymptoti-

cally higher values correspond to NB = 4.

5. CONCLUSIONS

In this paper, an asymptotic approximation of the Fisher information

for the estimation of a scalar parameter based on quantized measure-

ments is presented. The approximation is given for a large number

of quantization intervals. It is shown that the Fisher information

loss due to quantization decreases quadratically as a function of the

number of quantization intervals, or equivalently, it decreases ex-

ponentially as a function of the number of quantization bits. This

means that for estimation purposes, the best strategy will probably

be based on a low resolution multiple sensor approach. Also, the op-

timal quantization interval density is obtained and shown to depend

not only on f
1

3 but also on a power of the score function derivative.

Application of the results in location parameter estimation is

presented, Gaussian and Cauchy distributions are considered. It is

shown that the asymptotic results are valid for 4 quantization bits

or more. A comparison with the uniform case shows that specially

in the Gaussian case, nonuniform quantization is only slightly bet-

ter. In the Cauchy case, the performance gain seems to be moderate.

As the threshold density is shown to depend on the parameter, a re-

cursive algorithm that jointly estimates the location parameter and

sets the quantizer thresholds is presented. Performance results for

this algorithm show that the asymptotic results can be approximately

achieved in practice.

As a direct extension of this work, vector quantization can be

considered. Also, by using the Fisher information asymptotic re-

sults, approximate optimal bit allocation for estimation with multiple

sensors under constrained bandwidth can be studied.
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