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Objective and main results

The objectives are the following:

• to propose a low complexity algorithm that jointly estimates unknown location and
scale parameters of a symmetric unimodal distribution. The estimation is based on
quantized measurements from this distribution. The quantizer has adjustable input
gain and offset.

• Adjustable quantizer gain and offset are dynamically updated using the estimates to
enhance asymptotic estimation performance.

The following results are obtained:

• by choosing optimal algorithm parameters, the asymptotic performance is shown to at-
tain the Cramér–Rao bound (CRB) for static offset and gain set with the true location-
scale values.

• Location and scale estimation performance are shown to be asymptotically decoupled,
thus no degradation of asymptotic performance occurs when the scale is unknown.

• Simulation under Gaussian and Cauchy noise shows that the estimation performance
with only a few quantization bits (NB = 4 or 5) is very close to the continuous
measurement CRB.

Problem statement and quantization scheme
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To enhance estimation performance:

bk = X̂k−1, ∆k = cδ δ̂k−1.
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• Online algorithm.

• Low complexity.

• Low memory requirements.

Parameters

• Γ – constant matrix gain,

• ηx (ik) –
ηx (ik) = −ηx (−ik) ,
ηx (ik) > 0 for ik > 0,

• ηδ (ik) –
ηδ (ik) = ηδ (−ik) ,
ηδ (1) < 0.

Asymptotic performance and optimal parameters

Asymptotic mean (ODE method)
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Asymptotic error covariance matrix
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N (0,P) ,

P – covariance matrix given by the optimal gain Γ⋆.

P = δ2
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Optimal coefficients
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Optimal gain and covariance

P = δ2Γ⋆ =
δ2
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Simulation

MSE for the location parameter – Optimal uniform thresholds

Increasing
resolution
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