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ABSTRACT

An adaptive algorithm to estimate jointly unknown loca-

tion and scale parameters of a sequence of symmetrically

distributed independent and identically distributed random

variables using quantized measurements from a quantizer

with adjustable input gain and input offset is presented. The

asymptotic variance of estimation is obtained, simulations

under Cauchy and Gaussian distributions are presented to

validate the asymptotic results and they are compared to the

continuous optimal estimator performance.

Index Terms— Parameter estimation, quantization, adap-

tive algorithm.

1. INTRODUCTION

Sensor networks became an important domain of research re-

cently due to advances in sensor and communication technol-

ogy. Its potential applications include military sensing, traffic

surveillance, industrial automation, environmental monitor-

ing and many others [1].

With the increasing number of sensors in sensing systems,

constraints as bandwidth and complexity that were commonly

neglected might now be taken into account in the design of

the system. One simple way to treat these constraints is to

consider quantization of the sensor output measurements.

When considering the problem of optimal quantization

and reconstruction of the measurements, well known results

can be found in the literature [2]. However, in sensing sys-

tems the problem to be solved is normally the optimization

of the performance of estimation of a parameter from noisy

quantized measurements.

Main results on estimation from quantized measurements

can be found in [3], where the behavior of the Cramér–

Rao lower bound (CRB) on the variance of estimation of

a constant parameter based on uniformly quantized noisy

measurements was studied for different types of quantizer

input offset, it was shown that a good type of offset should be
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based on feedback from the quantizer output. An interesting

result was that in the binary measurement case with Gaussian

distributed noise, the optimal quantizer threshold should be

exactly placed at the parameter. This result motivated the

development of adaptive schemes in [4] and [5] for placing

the thresholds of a sensor network with binary quantizers

around the parameter to be estimated, thus enhancing the per-

formance of estimation based on the measurements from the

network. This was done by recursively placing the thresholds

of the sensor network at the last estimate of the parameter.

In this paper, an adaptive algorithm for estimating a con-

stant location parameter from multiple bit quantized noisy

measurements is proposed. As in practice the scale factor of

the noise is unknown, the proposed algorithm will jointly es-

timate the constant location parameter and the noise scale fac-

tor by using measurements from a quantizer with adjustable

input gain and input offset. For simplification purposes, the

noise will be considered to be symmetrically distributed. The

problem treated here can also be viewed as the estimation of

the parameters of a symmetrically distributed location-scale

model based on quantized measurements from an adjustable

quantizer.

Differently from [4] and [5], where complex maximum

likelihood estimators are used and only binary quantization is

considered, the algorithm proposed here has low complexity

and is designed for multibit quantization. Also, as a main

difference from [3], where location parameter estimation is

studied, the problem treated here includes the joint estimation

of the scale parameter.

After stating the problem and the adaptive algorithm

form, the estimation performance in terms of asymptotic es-

timation variance will be analyzed using adaptive algorithms

theory. The optimal quantizer and algorithm parameters will

be obtained and simulation results will be presented under

Gaussian and Cauchy noise with a comparison with the best

continuous measurement estimation performance.



2. PROBLEM STATEMENT AND ADAPTIVE

ALGORITHM

A sequence of independent and identically distributed (i.i.d.)

random variables Yk with marginal cumulative distribution

function (CDF) F
(

y−x
δ

)

are quantized with an adjustable

quantizer resulting in a sequence of discrete observations ik,

where k is the sample index. The pair of parameters (x, δ)
is unknown and the objective is to estimate it based on the

quantized observations.

The adjustable quantizer Q is characterized by an ad-

justable sequence of input offsets bk, input gains 1
∆k

and

a static vector of thresholds τ defining its NI quantization

intervals

τ =
[

τ
−

NI
2

· · · τ−1 τ0 τ1 · · · τNI
2

]

,

its input-output relation is given by

ik = Q

(

Yk − bk

∆k

)

= Q (Zk) =

=

{

i, for Zk ≥ τ0 and Zk ∈ [τi−1, τi) ,

i, for Zk < τ0 and Zk ∈ [τi, τi+1) .
(1)

The amplitude resolution of the quantizer can be enhanced

adaptively at each sample by using the last parameter esti-

mates

bk = X̂k−1, ∆k = cδ δ̂k−1. (2)

The constant cδ is a free parameter that can be used, e.g. in op-

timal uniform quantization, when the dynamical input range

of the quantizer is fixed. A choice for the estimation algo-

rithm that allows for the online update of the estimates is

[

X̂k

δ̂k

]

=

[

X̂k−1

δ̂k−1

]

+
Γ

k
δ̂k−1

[

ηx (ik)
ηδ (ik)

]

(3)

where Γ is a 2 × 2 matrix of gains, ηx [i] and ηδ [i] are se-

quences of NI update coefficients
{

ηx
[

−NI

2

]

. . . ηx
[

NI

2

]}

and
{

ηδ
[

−NI

2

]

. . . ηδ
[

NI

2

]}

. The advantages of this algo-

rithm are its low complexity and the fact that it belongs to

a general class of adaptive algorithms for which the perfor-

mance was studied in [6].

Some assumptions on the noise distribution, quantizer

thresholds and update coefficients will now be stated for

simplification purposes:

• Yk has a locally Lipschitz continuous CDF and its

probability density function (PDF) 1
δ
f
(

y−x
δ

)

is an

even function strictly decreasing w.r.t. |y − x|.

• The quantizer has symmetric thresholds τi = −τ−i

with τ0 = 0 and τNI
2

= +∞.

• The update coefficients have odd symmetry w.r.t. i

in the case of ηx, ηx [i] = −ηx [−i], and they have

1

cδ δ̂k−1
0

τ1

τ2

−τ1

−τ2

Yk

UPDATE

ik

Quantized
measurements

X̂k

δ̂k−1
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X̂k−1

−

Adjustable
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Fig. 1. Scheme representing the adjustable quantizer. The

offset and gain are adjusted dynamically using the estimates

while the quantizer thresholds are fixed.

even symmetry in the case of ηδ , ηδ [i] = ηδ [−i].
The coefficients for positive i will be denoted in

vector form by ηx =
[

ηx [1] . . . ηx
[

NI

2

]]T
and

ηδ =
[

ηδ [1] . . . ηδ
[

NI

2

]]T
.

The estimation scheme is depicted in Fig. 1, where the

UPDATE block is the estimation algorithm.

3. ESTIMATION PERFORMANCE

The analysis of the algorithm will be done using the results

of general adaptive algorithms theory presented in [6, Chap.

3]. The estimation performance will be analyzed in terms

of the mean error and the asymptotic covariance matrix of

estimation error.

The estimator mean can be approximated using the fol-

lowing ordinary differential equation (ODE)

d

dt

[

x̂

δ̂

]

= Γh

(

x̂, δ̂
)

, (4)

the relation between continuous and discrete time is tk =
k
∑

j=1

1
j

and h is the following mean vector field:

h

(

x̂, δ̂
)

= E





δ̂ηx

(

Q
(

y−x̂

cδ δ̂

))

δ̂ηδ

(

Q
(

y−x̂

cδ δ̂

))



 = (5)

= δ̂











NI
2
∑

i=1

ηx [i]
{

Fd

(

i, x̂, x, δ̂, δ
)

− Fd

(

−i, x̂, x, δ̂, δ
)}

NI
2
∑

i=1

ηδ [i]
{

Fd

(

i, x̂, x, δ̂, δ
)

+ Fd

(

−i, x̂, x, δ̂, δ
)}













where the expectation is w.r.t. F , the second equality comes

from the symmetry assumptions and Fd is

Fd =



























F
(

τicδ δ̂
δ

+ x̂−x
δ

)

− F
(

τi−1cδ δ̂

δ
+ x̂−x

δ

)

if i ∈
{

1, · · · , NI

2

}

,

F
(

τi+1cδ δ̂

δ
+ x̂−x

δ

)

− F
(

τicδ δ̂
δ

+ x̂−x
δ

)

if i ∈
{

−1, · · · ,−NI

2

}

,

(6)

This result is valid under the condition that h is locally Lips-

chitz continuous, this condition is satisfied by the continuity

assumption on F .

The conditions on the mean convergence of the algorithm

are then conditions on the global asymptotic stability of the

point
(

x̂ = x, δ̂ = δ
)

. One necessary condition for asymp-

totic stability is that the true parameters must be an equilib-

rium point of the ODE, which means that h
(

x̂ = x, δ̂ = δ
)

must be the zero vector. From the symmetry assumptions, the

following is obtained

h

(

x̂ = x, δ̂ = δ
)

=

[

0
2ηT

δ F
vec
d

]

, (7)

where F
vec
d is the vector

[

Fd [1] , · · · , Fd

[

NI

2

]]T
whose el-

ements Fd [i] = Fd (i, x, x, δ, δ) do not depend on the pa-

rameters. Then, the condition for the parameters to be the

equilibrium point is

η
T
δ F

vec
d = 0. (8)

Other conditions are necessary for the mean convergence of

the algorithm, these conditions can be found by the analysis of

the ODE using Lyapunov theory. The analysis of these other

conditions will not be detailed here and under the assumptions

already stated and the constraint on ηδ given in (8), it will be

assumed that the algorithm converges in the mean to the true

parameters.

Asymptotic results for adaptive algorithms with decreas-

ing gains presented in [6, pp. 110–113] can be applied to (3)

to get the asymptotic performance of the estimator. It can be

shown under all the assumptions above that the estimation er-

ror ǫk tends in distribution to a zero mean Gaussian random

variable as follows

k
1
2 ǫk  

k→∞

N (0,P) , (9)

where P is the covariance matrix given by the optimal gain

Γ
⋆. The matrices P and Γ

⋆ are the following:

P =
δ2

2







η
T
x Fdηx

(

ηT
x f

(x)
d

)2 0

0
η

T
δ Fdηδ

(

η
T
δ
f
(δ)
d

)2






, (10)

Γ
⋆ =

1

2

[ − 1

ηT
x f

(x)
d

0

0 − 1

η
T
δ
f
(δ)
d

]

, (11)

where Fd is a diagonal matrix Fd = diag [Fvec
d ] and f

(x)
d =

[f
(x)
d [1] , · · · , f (x)

d

[

NI

2

]

]T , f
(δ)
d = [f

(δ)
d [1] , · · · , f (δ)

d

[

NI

2

]

]T

are the derivatives in vector form of the quantizer output prob-

abilities Fd

(

i, x̂, x, δ̂, δ
)

when x̂ = x and δ̂ = δ:

f
(x)
d = f (τi)− f (τi−1) , (12)

f
(δ)
d = cδ [τif (τi)− τi−1f (τi−1)] . (13)

Minimization of the estimation variance can be done through

the minimization of the terms of the diagonal of P w.r.t. ηx

and ηδ . The minimization problems can be solved separately.

In the case of the optimization w.r.t. ηδ , the equilibrium con-

straint (8) has to be taken into account. The optimal ηx can be

found by using the Cauchy-Schwarz inequality, while the op-

timal ηδ are obtained by casting the constrained minimization

problem as a modified eigenvalue problem solved in [7].

The optimal coefficients are

ηx = −F
−1
d f

(x)
d (14)

ηδ = −F
−1
d f

(δ)
d + 1f

(δ)
d = −F

−1
d f

(δ)
d , (15)

where 1 is a squared matrix with ones. The second equality

comes from the fact that the sum of f
(δ)
d is zero.

Thus the optimal P and Γ
⋆ are

P = δ2Γ⋆ =
δ2

2





1

f
(x)T

d
F

−1
d

f
(x)
d

0

0 1

f
(δ)T

d
F

−1
d

f
(δ)
d



 . (16)

Note that the asymptotic variances are equal to the CRB

for estimating the parameters based on quantized measure-

ments, when the quantizer offset and gains are placed exactly

at x and cδδ. It is interesting that the optimal coefficients do

not depend on x or δ, they depend only on the normalized

CDF and PDF and on the quantizer parameters τ and cδ , thus

they can be implemented easily with a lookup table. Also,

notice that Γ⋆ and P are diagonal matrices, indicating that

both algorithm and performance for estimating the location

and the scale parameters are decoupled. This is a behavior

that is also present in the standard continuous version of this

problem, where the CRB also decouples.

The asymptotic performance can still be optimized w.r.t.

τ and cδ . The optimization w.r.t. τ is a difficult multidimen-

sional minimization problem and it will not be treated here.

In what follows, it will be considered that the quantizer is

uniform with positive thresholds given by

τ
+ =

[

τ1 = 1 · · · τNI
2 −1

=
NI

2
− 1 τNI

2

= ∞
]T

.

(17)

Thus the only free parameter for optimization will be cδ .

4. SIMULATION

The algorithm will now be simulated to validate the theoreti-

cal results, the simulation will be focused on the performance
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Fig. 2. Normalized (multiplied by k) Cramér–Rao bound for continuous and quantized measurements and normalized mean

squared error (MSE (k)× k) for the adaptive algorithm, the numbers of quantization intervals are NI = {4, 8, 16, 32} and the

noise is Gaussian distributed in (a) and Cauchy distributed in (b). In both cases δ = 1, δ̂0 = 2, x = 0 and X̂0 = 1. The curves

with lower asymptotic values correspond to larger numbers of quantization intervals.

for the estimation of x. As it was mentioned, the quantizer

is uniform and cδ will be chosen so as to minimize the vari-

ance of estimation of x. As this is a scalar problem, it can be

solved by an exhaustive search using a fine grid. After find-

ing the optimal cδ , the other parameters of the algorithm Γ,

ηx and ηδ can be evaluated using the information from the

measurement distribution.

The Gaussian and Cauchy distributions will be used for

modeling the measurements. The Gaussian distribution can

be used to model a sequence of measurements of an unknown

constant (x), where the measurements are corrupted by ther-

mal noise with unknown scale factor, while the Cauchy distri-

bution can be used to model measurements corrupted by noise

with outliers. Their PDFs are given by

1

δ
fG

(

y − x

δ

)

=
1

δ
√
π
e−(

y−x
δ )

2

, (18)

1

δ
fC

(

y − x

δ

)

=
1

δπ
(

1 +
(

y−x
δ

)2
) . (19)

The algorithm was simulated for 5× 105 blocks with 4× 104

samples each. The simulated mean squared error (MSE) for

the estimation of the location parameter was evaluated by cal-

culating the mean of the squared error for each sample. Other

simulation parameters are δ = 1, δ̂0 = 2, x = 0, X̂0 = 1 and

NI = {4, 8, 16, 32}. For comparison purposes, the CRB for

the estimation of x based on continuous measurements

CRB =
δ2

k







∫

R

(

df(y)
dy

)2

f (y)
dy







−1

(20)

was also evaluated for Gaussian and Cauchy distributions and

they are respectively given by CRBG = 1
2
δ2

k
and CRBC =

2 δ2

k
. The results of the simulation are shown in Fig. 2, where

the MSE was normalized by k and the logarithm scale is used

in both axis for better visualization. It can be observed that af-

ter a time transient, the simulated performance becomes very

close to the asymptotic theoretical results, also it can be seen

that the gain in performance when increasing NI is very small

even for a small number of quantization intervals (NI = 8
or 16), and that the gap between the performance given by

NI = 32 and the continuous measurement bound is negligi-

ble.

5. CONCLUSIONS

In this article, an algorithm for estimating the location (x) and

scale (δ) parameters of a symmetrically distributed sequence

of i.i.d. variables based on quantized measurements from a

quantizer with adjustable input offset and gains was proposed.

The algorithm was chosen to be a low complexity adaptive al-

gorithm for which theoretical results of its performance could

be obtained in terms of its mean error and asymptotic error

covariance. It was shown that the asymptotic variance of

estimation was equal to the CRB for measurements from a

static quantizer with input offset and gains given by x and cδδ

and this was verified through simulation using Gaussian and

Cauchy distributions for the measurements. It was observed

that with only a few quantization intervals (NI = 16 and 32)

the asymptotic estimation MSE is very close to the continuous

measurement CRB. This indicates that it is not necessary to

use high resolution quantizers when a large block of samples

is used.

When the distribution of the variables is characterized

by location, scale and shape parameters (e.g. the general-

ized Gaussian distribution), a possible extension of this work

would be to estimate jointly the additional shape parameter.
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