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Adaptive Quantizers for Estimation

Rodrigo Cabral Fariasa,∗, Jean-Marc Brossiera

aGIPSA-Lab, 11 rue des Mathématiques, BP46 - 38402 Saint-Martin d’Hères, France

Abstract

This paper addresses a problem of location parameter estimation from multibit quantized measurements. An adaptive

estimation algorithm using an adjustable quantizer is proposed. By using general results from adaptive algorithms

theory, the asymptotic estimation performance is obtained and optimized through the quantizer parameters. Despite

its very low complexity, it can be shown that the proposed algorithm is asymptotically optimal for estimating a constant

parameter.

The asymptotic performance for optimal quantizer parameters is shown to rapidly reach real-valued based estima-

tion performance as the number of bits increases. In practice, 4-bit quantization appears to be enough for estimation

purposes. It is also shown that the performance gap between the quantized and continuous cases is even smaller when

the parameter varies according to a random walk (Discrete Wiener process with or without drift).

Keywords: Parameter estimation, adaptive estimation, quantization.

1. Introduction

Continuous advances in the development of cheaper

and smaller sensors and communication devices moti-

vated the introduction of sensor networks in many dif-

ferent domains, e.g. military applications, infrastruc-

ture security, environment monitoring, industrial appli-

cations and traffic monitoring [1]. When designing a

sensing system, one must account not only for the phys-

ical perturbations that can affect sensing performance,

more specifically noise, but also for the inherent design

constraints such as bandwidth and complexity limita-

tions. Commonly, the effect of the noise in system per-

formance is taken into account, but bandwidth and com-

plexity constraints are neglected.

One simple way to respect bandwidth constraints is

to compress sensor information using quantizers. The

theory of quantizer design for reducing distortion in the

measurement representation is well established in the

literature [2], however much less results can be found

when the quantities to be reconstructed are not directly

the measurements but an underlying parameter embed-

ded in noise.
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In [3], noisy samples of a constant are taken using a

quantizer with adjustable input offset, the output sam-

ples of the quantizer are used to estimate the constant.

Using this type of measurement system, results for dif-

ferent types of offset were obtained. The types of off-

set considered were known constant and variable off-

set, random offset and offset based on feedback of the

output measurements. The comparison was performed

based on the Cramér–Rao bound (CRB) ratio which is

the worst case ratio between the CRB for quantized

measurements and continuous measurements. It was

shown that the last type of offset, based on feedback,

is the most efficient one.

Another interesting result from [3] is that in the Gaus-

sian noise case with one bit quantized measurements,

the minimum CRB ratio that can be attained is π
2 . This

result was used as a motivation for [4] to study more in

detail estimation under Gaussian noise and binary quan-

tization. In [4], it was shown that the CRB for a fixed

known threshold can be upper bounded by the exponen-

tial of the squared difference between the threshold and

the constant to be estimated. This means that the closer

the threshold is to the parameter to be estimated with

binary measurements, the lower can be the estimation

variance. It was also pointed out that an iterative algo-

rithm could be used to adjust the threshold exactly to be

the last estimate of the parameter.

An adaptive algorithm for placing the threshold was
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detailed in [5], where a sensor network extension was

also proposed. At each time step, a sensor measures

one bit, updates its threshold using a simple cumula-

tive sum and broadcasts the new threshold to the other

sensors and to a fusion center. Thus, the thresholds are

placed around the parameter in an adaptive way and at

the fusion center the broadcasted bits are used to obtain

a more precise estimate of the parameter. Two other

methods for updating the thresholds were presented in

[6], one method used a more refined cumulative sum

based on the last two measured bits, the other proposed

method was to estimate the parameter using a maxi-

mum likelihood method and then set the threshold at

the estimate of the parameter. It was shown that in the

asymptotic case (large number of iterates) the CRB for

the fusion center estimate using maximum likelihood

threshold updates converges to the minimum possible

CRB, which is the CRB when the threshold is placed

exactly at the parameter. In a similar way, an adaptive

estimation-quantization procedure based on binary ob-

servations is presented in [7], for each binary observa-

tion the parameter is estimated with a recursive algo-

rithm and only one threshold update is done for a block

of observations, as the size of the block tends to infinity,

the estimator is shown to converge asymptotically to the

true parameter value.

In the same line of the work mentioned above, algo-

rithms for estimating a scalar parameter from multiple

bit quantized noisy measurements are proposed in this

paper. The algorithms developed in this work jointly

estimate the parameter and set the quantizer thresholds.

They are based on low complexity adaptive techniques

that can be easily implemented in practice. The mean

and mean squared error (MSE) are obtained for a gen-

eral class of symmetrically distributed noise and three

types of parameter evolution: constant, Wiener process

and Wiener process with drift. As in related work [3],

the loss of estimation performance due to quantization

is also evaluated and the validity of the performance re-

sults is verified through simulation.

The main contributions of this work are

• Design and analysis of adaptive estimation algo-

rithms based on multiple bit quantized noisy mea-

surements. Differently from the algorithms in

[5], [6] and [7] where only binary quantization is

treated.

• Explicit performance analysis for tracking of a

varying parameter. In [3–6] the parameter is set to

be constant and all subsequent analysis is based on

this hypothesis, whereas in this paper, we consider

explicitly the performance analysis for tracking a

varying parameter.

• Low complexity algorithms. The algorithms pro-

posed here are based on simple recursive tech-

niques that have lower complexity than the max-

imum likelihood methods used in [5] and [6].

The paper is structured in the following form: in Sec-

tion II the problem is stated and the main assumptions

are made, in Section III the general adaptive algorithm

and results from adaptive algorithms theory are pre-

sented, then in Section IV the parameters of the adaptive

algorithm are obtained. Section V contains theoretical

performance results and also the simulation of the algo-

rithm. Section VI concludes the paper.

2. Problem statement

Let X be a discrete-time stochastic process defined

on the probability space P = (Ω,F,P) with values on

(R,B (R)), at each instant k ∈ N
⋆, the corresponding

scalar random variable (r.v.) Xk will be given by the

following model:

Xk = Xk−1 +Wk, (1)

where Wk is a sequence of independent Gaussian ran-

dom variables with its mean given by a small amplitude

deterministic unknown sequence uk and small known

standard deviation σw:

Wk ∼ N
(

uk, σ
2
w

)

, (2)

Wk is independent of Xn for n < k and the initial con-

dition X0 will be considered to be an unknown deter-

ministic constant.

The model expressed in (1) is a compact form to de-

scribe three different evolution models for Xk:

• Constant: by taking uk = σw = 0, then Xk =
X0 = x is an unknown deterministic constant.

• Wiener process: if uk = 0, σw > 0 and small ,

then Xk is a slowly varying Wiener process. This

model is commonly used to describe a slowly vary-

ing parameter of a system when the model for its

evolution is random but with unknown form.

• Wiener process with drift: in this case uk and σw

are non zero and with small amplitudes. The fact

that uk is nonzero makes the Wiener process to

have a drift, thus representing a model with a de-

terministic component that is perturbed by small

random fluctuations.
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The process X is observed through Y and they are

related as follows:

Yk = Xk + Vk, (3)

where the noise Vk is a sequence of additive indepen-

dent and identically distributed (i.i.d.) r.v. which is also

independent of Wk. The cumulative distribution func-

tion (CDF) of Vk will be denoted by F . Some assump-

tions on F are stated below.

Assumptions (on the noise distribution):

A1. F is locally Lipschitz continuous.

A2. F admits a probability density function (PDF) f

with respect to (w.r.t.) the standard Lebesgue mea-

sure on (R,B (R)).

A3. The PDF f (x) is an even function and it strictly

decreases w.r.t. |x|.

The first assumption is required by the method of

analysis that will be used to assess the performance of

the proposed algorithms. Most noise CDFs considered

in practice are Lipschitz continuous, thus the first as-

sumption is generally satisfied. Assumption 2 is a com-

monly used assumption that in practice will be used

when the derivative of F w.r.t. its arguments is needed.

Assumption 3 will be used to prove the asymptotic con-

vergence of the algorithms and it is also commonly sat-

isfied in practice.

The observations are quantized using an adjustable

quantizer whose output is given by

ik = Q

(

Yk − bk

∆k

)

, (4)

where ik is an integer defined on a finite set of NI in-

tegers, NI being the number of quantization intervals.

The quantizer parameters bk and 1
∆k

are sequences of

adjustable offsets and gains respectively. The function

Q represents a static normalized quantizer and it is char-

acterized by NI + 1 thresholds. For simplification pur-

poses some assumptions on the quantizer will be used.

Assumptions (on the quantizer):

A4. NI will be considered to be an even natural number

and

ik ∈ I =

{

−NI

2
, . . . ,−1,+1, . . . ,+

NI

2

}

.

A5. It will be assumed that the static quantizer is sym-

metric and centered at zero. This means that the

Figure 1: Scheme representing the adjustable quantizer. The offset

and gain can be adjusted dynamically while the quantizer thresholds

are fixed.

vector of thresholds1

τ =
[

τ
−

NI
2

. . . τ−1 τ0 τ1 . . . τNI
2

]⊤

has elements given by the following expressions







τ0 = 0,
τi = −τ−i, ∀i ∈

{

1, · · · , NI

2

}

,

τNI
2

= +∞.
(5)

These assumptions will be used later to simplify the

choice of parameters of the algorithms.

For
|Yk−bk|

∆k
∈ [τi−1, τi), the adjustable quantizer out-

put is given by

ik = Q

(

Yk − bk

∆k

)

= i sign (Yk − bk) . (6)

A scheme representing the quantizer is given in Fig.

1. Note that even if the quantizer is not uniform (with

constant distance between thresholds), it can be imple-

mented using a uniform quantizer with a compander ap-

proach [2].

Based on the quantizer outputs the main objective is,

according to a minimum MSE criterion, to estimate Xk,

which is a location parameter of the distribution of Yk

(the mean of the distribution whenever it exists). A sec-

ondary objective is to adjust the parameters bk and ∆k

to enhance estimation performance. As the estimate X̂k

of Xk will be possibly used in real time applications,

Xk might be estimated online, which means that X̂k

will only depend on past and present ik. To simplify it

will be considered that the offset is set to be X̂k−1 and

that the gain is set to be a constant ∆. For the adaptive

algorithm presented later, the fact that the offset is set to

1Infinite thresholds are used to have the same notation for the prob-

abilities of the granular and overload regions.
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Figure 2: Block representation of the estimation scheme. The esti-

mation algorithm and the procedures to set the offset and the gain are

represented by the Update block. In this paper, ∆k is considered to

be a constant ∆.

X̂k−1 will have, as a consequence, an asymptotic per-

formance that does not depend on the mean of Xk, thus

simplifying the analysis. The choice of ∆ is discussed

in Section IV.

The general scheme for the estimation of Xk is de-

picted in Fig. 2 and the main objective will be to find

a low complexity algorithm that will be placed in the

block named Update.

3. General algorithm

A simple and general form for the estimation algo-

rithm that respects the constraints defined above (low

complexity and online) is the following adaptive algo-

rithm:

X̂k = X̂k−1 + γkη

[

Q

(

Yk − X̂k−1

∆

)]

. (7)

In the expression above, γk is a sequence of pos-

itive real gains and η[·] is a mapping from I to

R that is defined as a sequence of NI coefficients
{

η
−

NI
2

, . . . , η−1, η1, . . . , ηNI
2

}

, these coefficients are

equivalent to the output quantization levels used in

quantization theory. The use of this algorithm is also

motivated by the following observations:

• when estimating a constant, the maximum likeli-

hood estimator can be approximated by a simpler

online algorithm using a stochastic gradient ascent

algorithm, which has the same form as (7). It is

shown in Section IV that for the optimal choice of

ηi, (7) is equivalent to a stochastic gradient ascent

method to maximize the log-likelihood.

• To estimate a Wiener process, a simple choice of

estimator is a Kalman filter like method based on

the quantized innovation, which is also (7).

Due to the symmetry of the noise distribution, when

X̂k is close to Xk, it seems reasonable to suppose that

the corrections given by the output quantizer levels have

odd symmetry with positive values for positive i, this

symmetry will be useful later for simplification pur-

poses. Thus, one assumption will be added to A1-A5.

Assumption (on the quantizer output levels):

A6. The quantizer output levels have odd symmetry

w.r.t. i:

ηi = −η−i, (8)

with ηi > 0 for i > 0.

The non-differentiable nonlinearity in (7) makes it

difficult to be analyzed. Fortunately, an analysis based

on mean approximations was developed in [8] for a

wide class of adaptive algorithms, within this frame-

work, the function η [Q (�)] could be a general nonlin-

ear non-differentiable function of Yk and X̂k and it was

shown that the gains γk that optimize the estimation

(minimize the estimation MSE) of Xk should be as fol-

lows:

• γk ∝ 1
k

when Xk is constant.

• γk is constant for a Wiener process Xk.

• γk ∝ u
2
3

k when Xk is a Wiener process with drift.

In the following parts of this section the results of

[8] will be applied for the analysis of (7) in the three

evolution models of Xk.

3.1. Constant Xk

In this case Xk = x. To obtain convergence of x̂k to

a constant, the gains must be [8]:

γk =
γ

k
. (9)

For large k, the mean trajectory of X̂k can be approx-

imated using the ordinary differential equation (ODE)

method. The ODE method approximates the expecta-

tion of the estimator E
[

X̂k

]

by x̂ (tk), where x̂ (t) is

the solution of
dx̂

dt
= h (x̂) , (10)
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the correspondence between continuous and discrete

time is given by tk = γ
k
∑

j=1

1
j

and h (x̂) is the following:

h (x̂) = E

[

η

(

Q

(

x− x̂+ V

∆

))]

, (11)

where the expectation is evaluated w.r.t. F (v).

For the solution of (10) to be valid as an approxima-

tion of E
[

X̂k

]

, h (x̂) has to be a locally Lipschitz con-

tinuous function of x̂. Using the assumptions on the

quantizer thresholds and output levels, the expectation

in (11) can be written as:

h (x̂) =

NI
2
∑

i=1

[ηiFd (i, x̂, x)− ηiFd (−i, x̂, x)] , (12)

where Fd is a difference of CDFs:

Fd =















F (τi∆+ x̂− x)− F (τi−1∆+ x̂− x) ,
if i ∈

{

1, · · · , NI

2

}

,

F (τi+1∆+ x̂− x)− F (τi∆+ x̂− x) ,
if i ∈

{

−1, · · · ,−NI

2

}

.
(13)

From assumption A1, the function h is a linear

combination of locally Lipschitz continuous functions,

which implies that h is also locally Lipschitz continu-

ous, thus the ODE method can be applied.

If x̂ → x when t → ∞ for all x and all x̂ (0),
the adaptive algorithm is asymptotically unbiased, and

in this case it can also be shown, using a central limit

theorem, that the estimation error is asymptotically dis-

tributed as a Gaussian r.v. [8, pp. 109]:

√
k
(

X̂k − x
)

 

k→∞
N
(

0, σ2
∞

)

, (14)

where the asymptotic variance σ2
∞ is given by:

σ2
∞ =

γ2R (x)

−2γhx̂ (x)− 1
, (15)

• The term denoted R in the numerator is the vari-

ance of the adaptive algorithm normalized incre-

ments
(

X̂k−X̂k−1

γk

)

when x̂ is equal to x. From A3

and A6, h (x̂) = 0 when x̂ = x and this variance

can be written as the second order moment of the

quantizer output levels:

R (x) = Var

[

η

(

Q

(

x− x̂+ V

∆

))]∣

∣

∣

∣

x̂=x

=

NI
2
∑

i=1

[

η2i Fd (i, x, x)
+ η2−iFd (−i, x, x)

]

= 2

NI
2
∑

i=1

η2i Fd (i, x, x) , (16)

where the last equality comes from the symmetry

assumptions.

• The term in the denominator is the derivative of h

when x̂ is equal to x:

hx̂ (x) =
dh

dx̂

∣

∣

∣

∣

x̂=x

= −
NI
2
∑

i=1

[

ηifd (i, x, x)
−ηifd (−i, x, x)

]

(17)

with

fd =















f (τi−1∆+ x̂− x)− f (τi∆+ x̂− x) ,
if i ∈

{

1, · · · , NI

2

}

,

f (τi∆+ x̂− x)− f (τi+1∆+ x̂− x) ,
if i ∈

{

−1, · · · ,−NI

2

}

.
(18)

From the symmetry assumptions, fd (i, x, x) is odd

w.r.t. i, thus (17) can be rewritten as

hx̂ (x) = −2

NI
2
∑

i=1

ηifd (i, x, x) . (19)

Minimizing σ2
∞ w.r.t. the positive gain γ gives

γ⋆ = − 1

hx̂ (x)
(20)

σ2
∞ =

R (x)

h2
x̂ (x)

. (21)

When x̂ = x, the functions Fd (i, x̂, x) and

fd (i, x̂, x) do not depend on x anymore, thus from now

on they will be denoted Fd [i] and fd [i]. The functions

R (x) and hx̂ (x) do not depend on x either, thus they

will be denoted by the constants R and hx̂ respectively.

To specify completely the adaptive algorithm, the

quantizer parameters ηi, τ and ∆ can be chosen to min-

imize (21).
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3.2. Wiener process

If Xk is a Wiener process, the mean of Wk is uk = 0
and the variance is a known constant Var [Wk] = σ2

w.

The algorithm gain can be chosen to be a constant

γk = γ. For small σ2
w, the mean trajectory of X̂k is

also approximated by (10), x being the initial condition

x0 of the Wiener process, which is equal to its mean

for every k. Thus, if x̂ converges to x, the algorithm

is asymptotically unbiased and, in this case, it can be

shown [8, pp. 130-131] under the additional condition

hx̂ < 0, (22)

that the estimation error process ξk is asymptotically

stationary with a marginal Gaussian density N

(

0, σ2
ξ

)

,

where the variance is

σ2
ξ =

γ2R+ σ2
w

−2γhx̂

. (23)

Thus, the asymptotic estimation MSE, MSE∞, can be

approximated by σ2
ξ . Minimizing MSE∞ w.r.t. γ gives

the optimal γ:

γ⋆ =
σw√
R
. (24)

The MSE for γ⋆ is

MSE∞ =
σw

√
R

−hx̂

. (25)

Using (25) and (21) the MSE can be rewritten as

MSE∞ = σwσ∞. (26)

Both the asymptotic MSE for estimating a Wiener pro-

cess and the asymptotic variance for estimating a con-

stant depend on the quantizer parameters through σ∞,

therefore the optimal quantizer parameters will be the

same in both cases. The only difference in the adaptive

algorithms for these two cases is the sequence of gains

γk.

3.3. Wiener process with drift

In this case the mean of Wk is nonzero and given by

a small amplitude sequence uk, the variance σ2
w is con-

stant. The gain γk will be considered to be variable in

time and under the assumption of asymptotic unbiased-

ness for constant Xk, the MSE can be approximated by

the term due to the estimation bias which is given by [8,

pp. 136]:

MSEk = E

[

X̂k −Xk

]2

≈ u2
k

γ2
kh

2
x̂

− γk
R

2hx̂

. (27)

Minimization w.r.t. γk leads to

γ⋆
k =

[

4u2
k

−hx̂R

]
1
3

(28)

MSEk ≈ 3

[ |uk|
4

R

h2
x̂

]
2
3

. (29)

Note that in practice, uk may be unknown and it will

be necessary to replace its value in γ⋆
k by an estimate of

it Ûk, which can be also obtained adaptively, for exam-

ple by calculating a recursive mean on X̂k − X̂k−1.

The MSE can also be rewritten as a function of σ2
∞

with a dependence on uk

MSEk ≈ 3

[ |uk|
4

σ2
∞

]
2
3

. (30)

Also in this case the MSE is an increasing function of

σ∞. From the three cases it is possible to see that the

quantizer design will depend on the following:

1. Asymptotic unbiasedness: it is necessary to prove

asymptotic unbiasedness of the algorithm when

Xk is constant for the MSE results given above to

be valid. This can be done by proving the asymp-

totic global stability of the ODE (10) for an arbi-

trary Xk = x and X̂0 = x̂ (0) in R.

2. Minimization of σ2
∞: the quantizer parameters can

be chosen to minimize σ2
∞ and, as a consequence,

they will maximize the performance for the three

evolution models of Xk.

4. Asymptotic unbiasedness and adaptive algorithm

design

In this section, first it will be shown that the algo-

rithm is asymptotically unbiased. Then, optimization

of the algorithm asymptotic performance will be done

by minimizing σ2
∞ ,which depends on ηi, ∆ and τ . The

optimal coefficients ηi will be found and then the choice

for the parameters ∆ and τ will be discussed.

4.1. Asymptotic unbiasedness

For the asymptotic performance results to be valid, it

is necessary to prove that the estimation procedure when

Xk = x is asymptotically unbiased. For doing so, one

needs to prove that the solution of (10) for any x̂ (0) and

x tends to x as t → ∞.

The approximation for the mean error can be written

as

ǫ = x̂− x (31)

6



and the ODE for the mean error is

dǫ

dt
= h̃ (ǫ) , (32)

where h̃ (ǫ) = h (ǫ+ x) is a function that does not de-

pend on x.

It is necessary to prove that ǫ → 0 as t → ∞ for

every ǫ (0) ∈ R, which means that ǫ = 0 is a glob-

ally asymptotically stable point [9]. Global asymptotic

stability of ǫ = 0 can be shown using an asymptotic sta-

bility theorem for nonlinear ODEs. This will require the

definition of an unbounded Lyapunov function of the er-

ror. To simplify, a quadratic function will be used:

L (ǫ) = ǫ2, (33)

which is a positive definite function and tends to infinity

when ǫ tends to infinity.

If h̃ (ǫ) = 0 for ǫ = 0 and dL
dt

< 0 for ǫ 6= 0 then by

the Barbashin–Krasovskii theorem [9, Ch. 4], ǫ = 0 is

a globally asymptotically stable point.

To show that both conditions are met, expression (12)

can be rewritten using A6:

h (ǫ) =

NI
2
∑

i=1

ηi

[

F̃d (i, ǫ)− F̃d (−i, ǫ)
]

, (34)

where F̃d (i, ǫ) = Fd (i, ǫ+ x, x) is also a function that

does not depend on x.

When ǫ = 0, the differences between F̃d in the sum

are differences between probabilities on symmetric in-

tervals, the symmetry of the noise PDF stated in A3 and

the symmetry of the quantizer stated in A5 imply that

h̃ (0) = 0, fulfilling the first condition.

The second condition can be written in more detail by

using the chain rule for the derivative:

dL

dt
=

dL

dǫ

dǫ

dt
= 2ǫh̃ (ǫ) < 0, for ǫ 6= 0. (35)

The function h̃ (ǫ) has to respect the following con-

straints:

h̃ (ǫ) > 0, for ǫ < 0 and h̃ (ǫ) < 0, for ǫ > 0. (36)

When ǫ 6= 0, the terms in the sum that gives h̃ (ǫ) are

the difference between integrals of the noise PDF un-

der the same interval size but with asymmetric interval

centers. Using the symmetry assumptions, for ǫ > 0,

F̃d (i, ǫ) is the integration of f over an interval more

distant to zero than for F̃d (−i, ǫ), then by the decreas-

ing assumption on f , F̃d (i, ǫ) < F̃d (−i, ǫ) and conse-

quently h̃ (ǫ) < 0. Using the same reasoning for ǫ < 0

one can show that h̃ (ǫ) > 0. Therefore, the inequalities

in (36) are verified and dL
dt

< 0 for ǫ 6= 0.

Finally, as both conditions are satisfied one can say

that ǫ = 0 is globally asymptotically stable, which

means that the estimator is asymptotically unbiased and

that all the performance results obtained are valid.

Note that from A3 and A5, hx̂ (x) < 0, thus the

supplementary condition for stationarity (22) is also re-

spected.

4.2. Optimal quantizer parameters

The performance of the adaptive algorithm can be

maximized by minimizing σ2
∞ w.r.t. the quantizer lev-

els ηi. Using (16) and (19) in (21) gives the following

minimization problem:

argmin
η

{

R

h2
x̂

}

= argmin
η

{

η
⊤
Fdη

2 [η⊤fd]
2

}

, (37)

where η is a vector with the coefficients

η =
[

η1 . . . ηNI
2

]⊤

. (38)

Fd is a diagonal matrix given by

Fd = diag

[

Fd [1] , · · · , Fd

[

NI

2

]]

(39)

and fd is the following vector

fd =

[

fd [1] · · · fd
[

NI

2

]]⊤

. (40)

The minimization problem is equivalent to the fol-

lowing maximization problem:

argmax
η

{

[

η
⊤
fd

]2

η⊤Fdη

}

. (41)

Using the fact that Fd is diagonal with non zero di-

agonal elements, (41) becomes

argmax
η



















[

(

Fd

1
2η

)⊤ (

Fd
− 1

2 fd

)

]2

(

Fd

1
2η

)⊤ (

Fd

1
2η

)



















, (42)

the matrices Fd

1
2 and Fd

− 1
2 are obtained by taking the

square root and the inverse of the square root of the di-

agonal elements in Fd. Using the Cauchy–Schwarz in-

equality on the expression in the numerator gives


















[

(

Fd

1
2η

)⊤ (

Fd
− 1

2 fd

)

]2

(

Fd

1
2η

)⊤ (

Fd

1
2η

)



















≤ fd
⊤
Fd

−1
fd (43)
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and the equality happens for

Fd

1
2η ∝ Fd

− 1
2 fd. (44)

Therefore, the optimal η can be chosen to be

η
⋆ = Fd

−1
fd. (45)

It is possible to see that the coefficients chosen in this

way still depends on ∆ and τ . The minimum σ2
∞ is

σ2
∞ =

1

2
(

fd
⊤
Fd

−1
fd

) =



2

NI
2
∑

i=1

f2
d [i]

Fd [i]





−1

. (46)

To simplify the choice of the constant ∆, it will be

considered that the noise CDF is parametrized by a

known scale parameter δ, which means that

F (x) = Fn

(x

δ

)

, (47)

where Fn is the noise CDF for δ = 1. Thus, the evalu-

ation of the quantizer output levels can be simplified by

setting:

∆ = c∆δ. (48)

Since the coefficients η
⋆ do not depend on x any-

more, for a given c∆ and noise CDF, they can be pre-

calculated and stored in a table. For i > 0, these coeffi-

cients are given by

η⋆i =
fd [i]

Fd [i]
. (49)

Note that for ∆ given by (48), ηi depends on δ only

through a 1
δ

multiplicative factor, the other factor can

be written as a function of normalized PDFs and CDFs,

thus this factor can be pre-calculated based only on the

normalized distribution. Note also that the η⋆i are given

by the score function for estimating a constant location

parameter when considering that the offset is fixed and

placed exactly at x, therefore this algorithm is equiv-

alent to a gradient ascent technique to maximize the

log-likelihood that iterates only one time per observa-

tion and sets the offset each time at the last estimate.

Using the ηi from (49), the adaptive estimator can be

written as

X̂k = X̂k−1 + γksign (ik) η|ik|, (50)

with ik = Q
(

Yk−X̂k−1

∆

)

.

The sum in (46) is the Fisher information Iq for es-

timating a constant x from the output of the adjustable

quantizer with an offset exactly placed at x:

Iq = 2

NI
2
∑

i=1

f2
d [i]

Fd [i]
, (51)

this quantity can be maximized w.r.t. τ , thus leading to

the following optimization problem:

τ
⋆ = argmax

τ

Iq. (52)

Problem (52) without constraints on the thresholds

seems to be very difficult to solve analytically and no

simple solutions for this problem were found in the lit-

erature. Therefore, general solutions for (52) will not

be treated here, for the results that will be presented in

Section V it will be considered that the quantizer is uni-

form, with τ defined as follows

τ =

[

τ1 = 1 · · · τNI
2

−1
=

NI

2
− 1 τNI

2

= ∞
]⊤

,

(53)

then in this case, only c∆ need to be set and conse-

quently a grid method can be used.

In the next section the results for each case using the

choice of parameters obtained above will be detailed

and discussed.

5. Results and simulation

It will be supposed that the noise CDF and δ are

known and also the type of evolution model for Xk.

Thus for a given NI , cδ and τ , the coefficients ηi used

in the estimation algorithm (50) can be calculated using

(49).

There are two quantities that still need to be deter-

mined, hx̂ and R. Using (49) in (16) and (19) gives

hx̂ = −2

NI
2
∑

i=1

f2
d [i]

Fd [i]
= −Iq (54)

R = 2

NI
2
∑

i=1

f2
d [i]

Fd [i]
= Iq. (55)

The specific gain γk and the performance of the algo-

rithm for each model will now be determined.
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5.1. Constant Xk

Replacing hx̂ given by (54) in (20) and the result in

(9) gives the following gains:

γk =
1

kIq
(56)

and by replacing (54) and (55) in (21), σ2
∞ is obtained:

σ2
∞ =

1

Iq
. (57)

In practice this means that for large k, the estimation

variance will be (cf. (14))

Var
[

X̂k

]

≈ 1

kIq
. (58)

The right hand side of (58) is the inverse of the Fisher

information for estimating Xk = x based on ik when

the offset is fixed to be x. The inverse of the Fisher in-

formation is known as the Cramér–Rao bound and it is

a lower bound on the variance of unbiased estimators

[10, Ch. 3]. This means that for large k, the estima-

tor has the lowest possible variance within the class of

unbiased estimators using quantized observations with

offset bk = x.

In the continuous measurement case (infinite number

of quantization intervals) the CRB for k observations is

given by

CRBc =
1

kIc
, (59)

where Ic is the Fisher information given by

Ic =

∫

R

(

f ′ (x)

f (x)

)2

f (x) dx (60)

and f ′ (x) = df(x)
dx

. In the cases where Ic exists and for

large k, one can calculate the loss of estimation perfor-

mance Lq in decibels (dB) in the following way:

Lq = 10 log10





Var
[

X̂k

]

CRBc





= −10 log10

(

Iq

Ic

)

. (61)

5.2. Wiener process

Using (55) in (24), the following constant gain is ob-

tained:

γ⋆ =
σw
√

Iq
(62)

and for this gain, the asymptotic MSE is obtained by

substituting (57) in (26):

MSE∞ =
σw
√

Iq
. (63)

The comparison with the continuous case can be done

also using a lower bound on the variance. In this case as

Xk is random the Bayesian Cramér–Rao bound (BCRB)

can be used, this bound is defined as the inverse of the

Bayesian information for time k [11, Ch. 1]:

BCRBk =
1

Jk
. (64)

For a Wiener process, the Bayesian information can be

calculated recursively. The recursive expression, given

in its general form in [12], for a scalar Wiener process

observed with additive noise is

Jk = Ic +
1

σ2
w

− 1

σ4
w

(

Jk−1 +
1
σ2
w

) . (65)

The comparison must be done for k → ∞. After

calculating the fixed point J∞ of (65), the asymptotic

BCRB obtained is

BCRB∞ =
2

Ic +
√

I2c + 4 Ic
σ2
w

. (66)

Expression (63) is only valid for small σw, in this case

(66) can be approximated by

BCRB∞ ≈ σw√
Ic

(67)

and the loss in asymptotic performance LW
q for the es-

timation of the Wiener process can be approximated by

a function of Lq:

LW
q ≈ 1

2
Lq. (68)

5.3. Wiener process with drift

The varying optimal gain and the MSE are obtained

by replacing (54) and (55) in (28) and (29):

γ⋆
k =

[

4u2
k

I2q

]
1
3

(69)

MSEk ≈ 3

[ |uk|
4Iq

]
2
3

. (70)
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As uk is unknown, it might be estimated. For slowly

varying uk it can be estimated by smoothing the differ-

ences between successive estimates:

Ûk = Ûk−1 + γu
k

[(

X̂k − X̂k−1

)

− Ûk−1

]

. (71)

Then, Ûk can replace uk in the evaluation of the gain

and the MSE. If more information about the evolution

of uk is known, it might be incorporated in (71) to have

more precise estimates and get closer to the optimal

adaptive gain.

As it is hard to have a bound on performance for the

estimation of a deterministic signal under non Gaussian

noise, the comparison with the continuous observation

case will be done using the approximate performance

for a nonlinear adaptive algorithm using continuous ob-

servations. The algorithm has the following form:

X̂k = X̂k−1 + γc
kηc

(

Yk − X̂k−1

)

, (72)

where γc
k and the non linearity ηc (x) are optimized to

minimize the MSE.

Using the same theory described for the quantized

case it is possible to show that the optimal γc
k and ηc (x)

are

γc
k =

[

4u2
k

I2c

]
1
3

(73)

ηc (x) =
f ′ (x)

f (x)
, (74)

which exist under the constraint that Ic converges and is

not zero and that f ′ (x) exists for every x.

The MSE can be approximated in a similar way as

before:

MSEk ≈ 3

[ |uk|
4Ic

]
2
3

. (75)

Therefore, the loss in performance incurred by quan-

tizing the observations in the estimation of the Wiener

process with drift LWD
q can be approximated by

LWD
q ≈ 2

3
Lq. (76)

The losses for the three models of Xk depend directly

on Lq , thus Lq allows to approximate how much of per-

formance is lost for a specific type of noise and thresh-

old set comparing to the optimal (possibly suboptimal

in the case with drift) estimator based on continuous

measurements. In the next subsection the loss will be

evaluated for two different classes of noise considering

that the quantization is uniform, then the adaptive algo-

rithm will be simulated in the three cases and the simu-

lated loss will be compared to the results given above to

check their validity.

5.4. Simulation

The thresholds are considered to be uniform and

given by (53). For a given type of noise, supposing that

δ is known and for fixed NI , Iq can be evaluated by re-

placing (53) and (48) in the expressions for fd and Fd.

As Iq is now a function of c∆ only, it can be maximized

by adjusting this parameter. Being a scalar maximiza-

tion problem this can be done by using grid optimization

(searching for the maximum in a fine grid of possible

c∆). After finding the optimal c∆ and Iq , the coeffi-

cients ηi, the optimal gains γk and the quantizer input

gain 1
∆ can be evaluated and then all the parameters are

defined.

Note that it is supposed that the model for Xk is

known as setting γk depends on it. As a consequence of

this assumption, in a real application the choice between

the three models must be clear. When this choice is not

clear from the application, it is always simpler to choose

Xk to be a Wiener process, first, because the complexity

of the algorithm is lower and second, because suppos-

ing that the increments are Gaussian and i.i.d. does not

impose too much information on the evolution of Xk.

Still, σw must be known, in practice it can be set based

on prior knowledge on the possible variation of Xk or

by accepting a slower convergence and a small loss of

asymptotic performance, it can be estimated jointly with

Xk using an extra adaptive estimator for it. In the last

case, when it is known that the increments of Xk have

a deterministic component, the fact the γk depends on

uk is not very useful and prior information on the varia-

tions of Xk are not normally as detailed as knowing uk

itself, making it necessary to accept a small loss of per-

formance to estimate uk jointly. The estimation of uk

can be done using (71) where prior knowledge on the

variations of uk can be integrated in the gain γu
k . If pre-

cise knowledge on the evolution of uk is known through

dynamical models, then it might be more useful to use

other forms of adaptive estimators known as multi-step

algorithms [8, Ch. 4].

The evaluation of the loss and the verification of the

results will be done considering two different classes of

noise that verify assumptions A1 to A3, namely, gener-

alized Gaussian (GG) noise and Student’s-t (ST) noise.

The motivation for the use of these two densities comes

from signal processing, statistics and information the-

ory.
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In signal processing, when additive noise is not con-

strained to be Gaussian a common assumption is that the

noise follows a GG distribution [13]. This distribution

not only contains the Gaussian case as an specific exam-

ple, but also by changing one of its parameters, one can

represent from the impulsive Laplacian case to distribu-

tions close to the uniform case. In robust statistics, when

the additive noise is considered to be impulsive, a gen-

eral class for the distribution of the noise is the ST distri-

bution [14]. ST distribution includes as a specific case

the Cauchy distribution, known to be heavy tailed and

thus normally used in robust statistics, also by changing

a parameter of the distribution an entire class of heavy

tailed distributions can be represented. When looking

from an information point of view, if no priors on the

noise distributions are given, noise models must be as

random as possible to ensure that the noise is an uninfor-

mative part of the observation, thus noise models must

maximize some criterium of randomness. Commonly

used criteria for randomness are entropy measures and

both distributions considered above are entropy maxi-

mizers. GG distributions maximize the Shannon en-

tropy under constraints on the moments [15, Ch. 12]

and ST distributions maximize the Rényi entropy under

constraints on the second order moment [16].

Both distributions are parametrized by a shape pa-

rameter β ∈ R
+ and their PDFs and CDFs for δ = 1

are

fGG (x) =
β

2Γ
(

1
β

)e−|x|β , (77)

FGG (x) =
1

2



1 + sign (x)
γ
(

1
β
, |x|β

)

Γ
(

1
β

)



(78)

for the GG distribution, where γ (·, ·) is the incomplete

gamma function and Γ (·) is the gamma function,

fST (x) =
Γ
(

β+1
2

)

√
βπΓ

(

β
2

)

(

1 +
1

β
x2

)− β+1

2

(79)

FST (x) =
1

2

{

1 + sign (x)

[

1− I β

x2+β

(

β

2
,
1

2

)]}

(80)

for the ST distribution, where I β

x2+β

(·, ·) is the incom-

plete beta function.

5.4.1. Performance loss - Lq

The first quantity to be evaluated will be the loss Lq .

To evaluate Lq , after evaluating Iq based on f and F

Figure 3: Loss of performance due to quantization of measurements

for different types of noise and number of quantization bits.

defined above, it is also needed to evaluate Ic. Evaluat-

ing the integral on (60), one obtains for the GG and ST

distributions respectively:

IGG =
β (β − 1) Γ

(

1− 1
β

)

Γ
(

1
β

) (81)

IST =
β + 1

β + 3
. (82)

The loss was evaluated for NI = {2, 4, 8, 16, 32},

which corresponds to numbers of bits NB =
{1, 2, 3, 4, 5}, and for the shape parameters β =
{1.5, 2, 2.5, 3} for GG noise and β = {1, 2, 3} for ST

noise. The results are shown in Fig. 3. As it was ex-

pected, the loss reduces with increasing NB . It is in-

teresting to note that the maximum loss, observed for

NB = 1, goes from approximately 1dB to 4dB, which

represents factors less than 3 in MSE increase for esti-

mating a constant with 1 bit quantization. Also interest-

ing is the fact that the loss decreases rapidly with NB ,

for 2 bits quantization all the tested types of noise pro-

duce losses below 1dB, resulting in linear increases in

MSE not larger than 1.3. This indicates that when us-

ing the adaptive estimators developed here, it is not very

useful to use more than 4 or 5 bits for quantization.

The performance for 2 bits seems to be related to

the noise tail, note that smaller losses were obtained for

distributions with heavier tail (ST distributions and GG

distribution with β = 1.5), this is due to the fact that

for large tail distributions a small region around the me-

dian of the distribution is very informative, thus as most

of the information is contained there, when the only

threshold available is placed there, the relative gain of

information is greater than in the other cases, leading to

smaller losses. This can also be the reason for the slow
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(a) (b)

(c) (d)

Figure 4: Constant. Quantization loss of performance for GG and ST noises and NB = {2, 3, 4, 5} when Xk is constant. For each type of noise

there are 4 curves, the constant losses are the theoretical results and the decreasing losses are the simulated results, thus producing pairs of curves

of the same type, for each pair the higher results represent lower number of quantization bits. In (a) results for GG noise and NB = 2 and 3, in (b)

the results for GG noise and NB = 4 and 5 are shown. The figures (c) and (d) are the results for ST noise, in (c) NB = 2 and 3 are considered

while in (d) NB = 4 and 5.

decrease of the loss for these distributions, as the quan-

tizer thresholds are placed uniformly, some of them will

be placed in the non informative amplitude region and

consequently the decrease in loss will be not as sharp as

in the other cases.

Laplacian distribution was not tested, because for this

distribution the optimal adaptive estimator in the contin-

uous case is already an adaptive estimator with a binary

quantizer. This can be seen easily if one evaluates Iq as

a function of the thresholds, the result will be a constant

for all possible sets of thresholds meaning that they are

unimportant, moreover, if ηi are evaluated one will find

that they are all equal, therefore only the sign of the dif-

ference between the observations and the last estimate

is important. Consequently, the loss found in this case

would be a constant for all NB .

To validate the results, the adaptive algorithms will

be simulated and the loss obtained will be compared to

the approximations given above. The simulation results

will be presented in the same order as before, first the

constant case, then the Wiener process case and finally

the case with drift. All the simulation were done con-

sidering NB = {2, 3, 4, 5}.

5.4.2. Simulated loss - Constant

In the constant case, the 7 types of noise with evalu-

ated Lq were tested, the value of X0 = x was set to be

zero and the initial condition of the adaptive algorithm

was set with a small error (X̂0 ∈ {0, 10}), the number

of samples was set to be 5000 to have sufficient points

for convergence, the algorithm was simulated 2.5× 106

times and the error results were averaged to produce a

simulated MSE. Based on the simulated MSE a simu-

lated loss was calculated, and it is shown in Fig. 4.

The simulated results seems to converge to the theo-

retical approximations of Lq , thus validating these ap-

proximations. This also means that the variance of es-

timation tends in simulation to the CRB for quantized

12



Figure 5: Wiener process. Simulated quantization performance loss

for a Wiener process Xk with σw = 0.001, different types of noise

and number of quantization bits.

observations, validating the fact that the algorithm is

asymptotically optimal. The convergence time looks to

be related to NB , when NB increases the time to get

closer to the optimal performance decreases.

In practice, if increased initial complexity can be ac-

cepted, a robust maximum likelihood estimator that uses

blocks of measurements with different thresholds [17]

can be used to generate an initial estimate X̂0 close to

x, allowing a faster convergence of the algorithm.

5.4.3. Simulated loss -Wiener process

For a Wiener process, Lq was evaluated by setting X̂0

randomly around 0 and X0 = 0, then 104 realizations

with 105 samples were simulated and the MSE was esti-

mated by averaging the realizations of the squared error

for each instant, then as it was observed that the error

was approximately stationary after k = 1000, the sam-

ple mean squared error was also averaged resulting in an

estimate of the asymptotic MSE. Based on the obtained

values of the MSE a simulated loss was evaluated. The

results for the 7 types of noise and σw = 0.001 are

shown in Fig. 5.

As expected, the results have the same form of the

theoretical loss given in Fig. 3. To verify the results for

different σw, the loss was evaluated through simulation

also for σw = 0.1 in the Gaussian (GG with β = 2) and

Cauchy cases (ST with β = 1). The results are shown in

Fig. 6, where the approximate theoretical losses (68) for

these cases are also shown. It is clear from the results

that Xk might move slowly to give a performance close

to the theoretical results, but it is also interesting that the

simulated loss seems to have the same decreasing rate

as a function of NB when compared to the theoretical

results. This means that the dependence on Iq of the

MSE seems to still be correct and it indicates that even

Figure 6: Wiener process. Comparison of simulated and approximate

(Approx.) theoretical losses (68) in the Gaussian and Cauchy noise

cases when estimating a Wiener process with σw = 0.1 or σw =

0.001.

Figure 7: Wiener process with drift. Comparison of simulated and

approximate (Approx.) theoretical losses (76) in the Gaussian and

Cauchy noise cases for estimating a Wiener process with constant

mean drift uk = 10−4 and standard deviation σw = 10−4.

in a faster regime for Xk, the thresholds can be set by

maximizing Iq .

5.4.4. Simulated loss - Wiener process with drift

For Xk with drift, Wk was simulated with mean and

standard deviations uk = σw = 10−4, which represents

a slow linear drift with small random fluctuations, the

initial conditions were set to be X0 = X̂0 = 0 and the

drift estimator was set with constant gain γu
k = 10−5.

Its initial condition was set to the true uk to reduce

the transient time and consequently the simulation time.

As uk is constant, the loss evaluation was done in the

same form as for Xk without drift, based on averaging

through realizations and time. The results for the Gaus-

sian and Cauchy cases are shown in Fig. 7.

The small offset between simulated and theoretical

results is produced by the joint estimation of uk. Note

that keeping γu
k to a small constant allows to adaptively
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follow slow variations in uk. The convergence to the

simulated loss in Fig. 7 was also obtained for simula-

tions with errors in the initial conditions but in this case

the transient regime was very long, as the estimator of

uk took a very long time to converge, indicating that

other schemes might be considered when the theoretical

performance is needed in a short period of time. Multi-

step adaptive algorithms could be used for faster con-

vergence to the theoretical performance but they would

need a precise model for the evolution of the drift which

is not considered here.

In the ideal case of known drift, under the simula-

tion conditions described above, no offset was observed

between the simulated asymptotic loss and the approxi-

mate theoretical results.

6. Conclusions

In this work an adaptive estimation algorithm based

on quantized observations was proposed. Based on

observations with additive noise and quantized with

adjustable offset and gain, the objective was to esti-

mate with a low complexity online adaptive algorithm

a scalar parameter that could follow one of three mod-

els: constant, Wiener process and Wiener process with

drift. Under the hypothesis that the noise PDF is sym-

metric and strictly decreasing, and that quantizer is also

symmetric, by using Lyapunov theory it was shown that

for the optimal quantizer output coefficients, the algo-

rithm is asymptotically stable. It was also shown that

the asymptotic performance in terms of mean squared

error could be optimized by using static update coeffi-

cients that depend only on the shape of the observation

noise and on the quantizer thresholds.

Performance results were obtained based on the op-

timal choice of the quantizer output levels. It was ob-

served that the effect of quantization on performance

could be quantified by the Fisher information of the

quantized observations. Thus, this clearly indicates that

the quantizer thresholds must be placed to maximize the

Fisher information. It was also observed that for the

three models, the loss of performance of the algorithm

w.r.t. the optimal continuous measurement is given by a

function of the ratio of the corresponding Fisher infor-

mations.

For testing the results, two different families of

noise were considered, generalized Gaussian noise and

Student’s-t noise, both under uniform quantization.

First, the theoretical loss was evaluated for different

numbers of quantization intervals. The results indicate

that with only a few quantization bits (4 and 5) the adap-

tive algorithm performance is very close to the contin-

uous observation case and it was observed that uniform

quantization seems to penalize more estimation perfor-

mance under heavy tailed distributions.

Estimation in the three possible scenarios was simu-

lated and the results validated the accuracy of the theo-

retical approximations. In the constant case it was ob-

served that the algorithm performance was very close

to the Cramér–Rao bound, in the Wiener process case

it was observed that the theoretical results are very ac-

curate for small increments of the Wiener process and

in the drift case it was seen that by accepting a small

increase in the mean squared error it is possible to esti-

mate jointly the drift.

Another interesting result is that a varying parame-

ter has a loss of performance smaller than a constant

parameter, thus a type of dithering effect seems to be

present. In this case, the variations of the input signal

makes the tracking performance of the estimator to get

close to the continuous measurement performance.

The fact that the number of quantization bits does not

influence much the performance of estimation leads to

conclude that it seems more reasonable to focus on us-

ing more sensors than using high resolution quantizers

for increasing performance. Consequently, this moti-

vates the use of sensor network approaches.

As the Fisher information for quantized measure-

ments plays a central role in the performance of the al-

gorithms, the study of its properties as a function of the

noise type and quantizer thresholds seems to be a sub-

ject for future work. A possible approach for the study

of its general behavior would be to consider high reso-

lution approximations.

Finally, as in practice sensor noise scale parameter

and Wiener process increment standard deviation can be

unknown and slowly variable, it would be also interest-

ing to study how the algorithm design and performance

would change by estimating all these parameters jointly.
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