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In this paper we give results on the counting function associated with the interior transmission eigenvalues. For a complex refraction index we estimate of the counting function by Ct n . In the case where the refraction index is positive we give an equivalent of the counting function.

Introduction

In this paper we give an estimate to the counting function associated with the interior transmission eigenvalues. We recall the problem. Let Ω be a smooth bounded domain in R n . Let n(x) be a smooth function defined in Ω, called the refraction index. We say that k = 0 is a interior transmission eigenvalue if there exists (w, v) = (0, 0) such that

       ∆w + k 2 n(x)w = 0 in Ω, ∆v + k 2 v = 0 in Ω, w = v on ∂Ω, ∂ ν w = ∂ ν v on ∂Ω, (1) 
where ∂ ν is the exterior normal derivative to ∂Ω. We consider here the function n(x) complex valued. In physical models, we have n(x) = n 1 (x) + in 2 (x)/k where n j are real valued. Taking u = w -v and ṽ = k 2 v, we obtain the following equivalent system if k = 0,

   ∆ + k 2 (1 + m) u + mv = 0 in Ω, (∆ + k 2 )v = 0 in Ω, u = ∂ ν u = 0 on ∂Ω, (2) 
where, for simplicity, we have replaced ṽ by v and n by 1 + m.

When k ∈ R, this problem is related with scattering problem. We can find a precise result in Colton and Kress [START_REF] David | Inverse acoustic and electromagnetic scattering theory[END_REF]Theorem 8.9] first proved by Colton, Kirsch and Päivärinta [START_REF] David | Far-field patterns for acoustic waves in an inhomogeneous medium[END_REF] and in a survey by Cakoni and Haddar [START_REF] Fioralba | Transmission Eigenvalues in Inverse Scattering Theory[END_REF].

As the problem si not self-adjoint even for n(x) real valued, usual tools used in self-adjoint cases cannot be applied, in particular, even for operator with compact resolvent, the existence of k is not always true.

A lot of results was obtained this last years using several methods. When n(x) is real, Päivärinta and Sylvester [START_REF] Lassi | Transmission eigenvalues[END_REF] proved that there exist interior transmission eigenvalues; Cakoni, Gintides, and Haddar [START_REF] Fioralba | The existence of an infinite discrete set of transmission eigenvalues[END_REF] proved that the set of k 2 j is infinite and discrete. For n(x) complex valued Sylvester [START_REF] John | Discreteness of Transmission Eigenvalues via Upper Triangular Compact Operators[END_REF] proved that this set is discrete finite or infinite. In [START_REF] Luc | Spectral analysis on interior transmission eigenvalues[END_REF] we proved that there exist a infinite number of complex eigenvalues and the associated generalized eigenspaces span a dense space in L 2 (Ω) ⊕ L 2 (Ω).

Other related problems are studied in literature, problem with cavities studied by Cakoni, Çayören, and Colton [START_REF] Fioralba | Transmission eigenvalues and the nondestructive testing of dielectrics[END_REF], Cakoni, Colton, and Haddar [START_REF] Fioralba | The interior transmission problem for regions with cavities[END_REF], problem for operators of order m > 2 by Hitrik, Krupchyk, Ola, and Päivärinta [START_REF] Michael | Transmission eigenvalues for operators with constant coefficients[END_REF][START_REF] Michael | Transmission eigenvalues for elliptic operators[END_REF].

Lakshtanov and Vainberg [START_REF] Evgeny | Ellipticity in the Interior Transmission Problem in Anisotropic Media[END_REF][START_REF] Evgeny | Remarks on interior transmission eigenvalues, Weyl formula and branching billiards[END_REF][START_REF] Evgeny | Bounds on positive interior transmission eigenvalues[END_REF] studied the counting function for problems with different boundary conditions. For Problem [START_REF] Shmuel | Lectures on elliptic boundary value problems[END_REF], in [START_REF] Evgeny | Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem[END_REF] they obtain a lower estimate of the counting function for real interior transmission eigenvalues.

For counting function in [START_REF] Luc | Spectral analysis on interior transmission eigenvalues[END_REF] we gave some non optimal estimate. This estimate was improved by Dimassi and Petkov [START_REF] Mouez | Upper bound for the counting function of interior transmission eigenvalues[END_REF]. Their estimate have the same size than the one found below in Theorem 8 except for a factor 3 √ 3. For constant m there is a recent result given by Pham and Stefanov [START_REF] Ha | Weyl asymptotics of the transmission eigenvalues for a constant index of refraction[END_REF] where they give an equivalent of counting function in this case.

The main results of this paper are Theorem 7 and Theorem 8. In Theorem 7 we prove than the counting function satisfies an estimate in Ct n and we prove that if we denote by λ j the eigenvalues of the problem

j∈N 1 λ p j -z p = (2π) -n |z| -p+n/2 Ω ((1 + m(x) -p |ξ| 2p -µ p ) -1 + (|ξ| 2p -µ p ) -1 dξdx+o(|z| -p+n/2 ),
when |z| goes to ∞ and z in a line outside a domain related with the range of n(x).

In the case where n(x) > 0 is real valued or if n 1 (x) > 0 in the case n(x) = n 1 (x) + n 2 (x)/k this estimate allows, applying a tauberian theorem to give an equivalent of the counting function. We find that N (t) ∼ αt n where the precise value of α is given in Theorem 8. These results are also proven by Faierman [START_REF] Melvin | Transmission eigenvalues for parameter-elliptic boundary problems[END_REF] in a preprint. The methods used are very close that the one used here but he assumes that n(x) = 1 every where. This condition excludes the case of cavity. Here we assume only that n(x) = 1 in a neighborhood of the boundary.

Notations and background

Let Ω be a C ∞ bounded domain in R n . Let n(x) ∈ C ∞ (Ω) be complex valued. We set m(x) = n(x) -1. We consider also the case where n(x) = n 1 (x) + in 2 (x)/k where n j (x) are real valued and k the spectral parameter. This case is different of the previous one but can be treated similarly. We assume that for all x ∈ Ω, n(x) = 0, or n 1 (x) = 0 or equivalently m(x) = -1. We assume that there exists a neighborhood W of ∂Ω such that for x ∈ W , n(x) = 1 or n 1 (x) = 1 or equivalently m(x) = 0. Actually if n(x) = 1 for all x ∈ ∂Ω, such a neighborhood W exists.

We denote by C e the cone in C defined by

C e = {z ∈ C, ∃x ∈ Ω, ∃λ ≥ 0, such that z = λ(1 + m(x))}. (3) 
In the case where n

(x) = n 1 (x) + in 2 (x)/k, C e = [0, ∞) if n 1 (x) > 0 for all x ∈ Ω, and C e = [-∞, 0] if n 1 (x) < 0 for all x ∈ Ω.
Here we give some notations useful for the statement of the results. We use the notations and the results proven in [START_REF] Luc | Spectral analysis on interior transmission eigenvalues[END_REF], except some change of sign.

Let z ∈ C, we denote by B z (u, v) = (f, g) the mapping defined from

H 2 0 (Ω) ⊕ {v ∈ L 2 (Ω), ∆v ∈ L 2 (Ω)} to L 2 (Ω) ⊕ L 2 (Ω) by -1 1+m ∆ -z u -m 1+m v = f in Ω (-∆ -z)v = g in Ω (4) 
In the case where n = n 1 +in 2 /k we must change the definition of B z . We define m 1 (x) = n 1 (x)-1 and m 2 (x) = n 2 (x). The mapping Bk (u, v) = (f, g) is given by

-1 1+m1 ∆ -k 2 -ik m2 1+m1 u + -m1 1+m1 -im2 k(1+m1) v = f in Ω (-∆ -k 2 )v = g in Ω (5) 
Remark that the principal symbol of Bk is the same than the one of B z if we set z = k 2 . Under an assumption on z, B z is invertible for some z.

Theorem 1. Assume C e = C, then there exists z ∈ C such that B z is a bijective map from

H 2 0 (Ω) ⊕ {v ∈ L 2 (Ω), ∆v ∈ L 2 (Ω)} to L 2 (Ω) ⊕ L 2 (Ω).
In the case n(x) = n 1 (x) + n 2 (x)/k, here C e = C and we have the same result.

Theorem 2. There exists k ∈ C such that Bk is bijective from H 2 0 (Ω) ⊕ {v ∈ L 2 (Ω), ∆v ∈ L 2 (Ω)} to L 2 (Ω) ⊕ L 2 (Ω). If for z ∈ C the solution B z (u, v) = (f, g) exists we denote by R z (f, g) = (u, v). In case where n(x) = n 1 (x) + in 2 (x)/k if for k ∈ C the solution of Bk (u, v) = (f, g) exists we denote by Rk (f, g) = (u, v). Theorem 3. Assume C e = C, there exists z ∈ C such that the resolvent R z from H 2 (Ω) ⊕ L 2 (Ω) to itself is compact.
In particular, applying the Riesz theory, the spectrum is finite or is a discrete countable set. If λ = 0 is in the spectrum, λ is an eigenvalue associated with a finite dimensional generalized eigenspace.

Theorem 4. There exists k ∈ C such that the resolvent Rk from H 2 (Ω) ⊕ L 2 (Ω) to itself is compact.

In particular, we can apply the Riesz theory, the spectrum is finite or a discrete countable set. If λ = 0 is in the spectrum, λ is an eigenvalue associated with a finite dimensional generalized eigenspace.

Remark 1. Actually if z 0 ∈ C e ∪[0, ∞) for all λ > 0 large enough we can take z = λz 0 in Theorems 1 and 3.

If k 2 0 ∈ C e ∪ [0, ∞) for all λ > 0 large enough we can take k = λk 0 in the Theorems 2 and 4. Here we estimate the resolvent in the exterior of a conic neighborhood of C e ∪ [0, ∞). In particular if n 1 (x) > 0, the eigenvalues k 2 are in all small conic neighborhood of (0, +∞), except for a finite number of eigenvalues.

In general for a non self-adjoint problem, we cannot claim that the spectrum is non empty. In the following theorem, with a stronger assumption on C e , we can prove that the spectrum is non empty.

We say that C e is contained in a sector with angle less than θ if there exist θ 1 < θ 2 , such that C e ⊂ {z ∈ C, z = 0 or z |z| = e iϕ , where θ 1 ≤ ϕ ≤ θ 2 }, and θ 2 -θ 1 ≤ θ.

Theorem 5. Assume that C e is contained in a sector with angle less than θ with θ < 2π/p where 4p > n and θ < π/2. Then there exists z such that the spectrum of R z is infinite and the space spanned by the generalized eigenspaces is dense in

H 2 0 (Ω) ⊕ {v ∈ L 2 (Ω), ∆v ∈ L 2 (Ω)}.
Theorem 6. There exists k such that the spectrum of Rk is infinite and the space spanned by the generalized eigenspaces is dense in

H 2 0 (Ω) ⊕ {v ∈ L 2 (Ω), ∆v ∈ L 2 (Ω)}.
Remark 2. These results are based on the theory given in Agmon [START_REF] Shmuel | Lectures on elliptic boundary value problems[END_REF] and using the spectral results on Hilbert-Schmidt operators. In this theory we deduce that the spectrum is infinite from the proof that the generalized eigenspaces form a dense subspace in the closure of the range of R z [resp. Rk ].

In [START_REF] Luc | Spectral analysis on interior transmission eigenvalues[END_REF] we proved that

R p z [resp. Rp k ] is a Hilbert-Schmidt operator if 4p > n. We can deduce the spectral decomposition of R z [resp. Rk ] from that of R p z [resp. Rp k ].
Let z j be the elements of the spectrum of R z [resp. Rk ] and E j the generalized associated eigenspace. We denote by

N (t) = |zj | -1 ≤t 2 dim E j .
If z j is an eigenvalue of R z , λ j = -z + 1/z j is an eigenvalue of B 0 and we have N (t) ∼ ♯{j, |λ j | ≤ t 2 }, where λ j are counted with multiplicity.

Results

We denote by ω j for j = 1, • • • , p, the roots of z p = 1.

Theorem 7. We assume as in Theorem 5 that θ < 2π/p and θ < π/2 where p satisfies 2p > n and 4p > 4 + n. Then, there exists C > 0 such that N (t) ≤ Ct n .

Moreover let µ ∈ C such that |µ| = 1 and we assume that

ω j µ ∈ C e ∪ (0, +∞) for j = 1, • • • , p. We denote by a(x) = (1 + m(x)) -1 or a(x) = (1 + m 1 (x)) -1 if n(x) = n 1 (x) + k -1 n 2 (x).
We fix z 0 such that the resolvent R z0 exist and let µ j such that 1/µ j are the eigenvalues of R z0 counted with multiplicity. Then we have

j∈N 1 µ p j -z p = (2π) -n |z| -p+n/2 Ω (a p |ξ| 2p -µ p ) -1 + (|ξ| 2p -µ p ) -1 dξdx + o(|z| -p+n/2 ), (6) 
when z = rµ and r goes to ∞.

Remark 3. The first part of the theorem improve [START_REF] Luc | Spectral analysis on interior transmission eigenvalues[END_REF]Theorem 7] where we found the estimate

N (t) ≤ Ct n+4 . Theorem 8. We assume n 1 (x) = 1 + m 1 (x) > 0 for all x ∈ Ω when n(x) = n 1 (x) + n 2 /k. Then N (t) = αt n + o(t n ) where α = (2π) -n Vol(B 1 ) Ω ((1 + m 1 (x)) n/2 (x) + 1)dx.
Remark 4. By a more precise study in a neighborhood of the boundary we can obtain a result with a smaller remainder in (6) but this estimate does not allow to prove a result better on the counting function. Malliavin [START_REF] Malliavin | Un théorème taubérien relié aux estimations de valeurs propres[END_REF] was proved a tauberian theorem with a sharp remainder but this requires an estimate on j∈N 1 λ p j -z p in a complex domain except in a parabola neighborhood of (0, ∞). Here the estimate are proved in a complex domain except in a conic neighborhood of (0, ∞). It is maybe possible to improve this result following Hitrik, Krupchyk, Ola and Päivärinta [START_REF] Michael | The interior transmission problem and bounds on transmission eigenvalues[END_REF] where they prove that the eigenvalues are in a parabolic neighborhood of (0, ∞).

Proof of Theorem 7

The proof is based on Lemmas 4.1 and 4.2 below. We introduce some notations.

We set S = R z0 and T = S p where p satisfies the assumption of Theorem 7. We set

T λ = T (I -λT ) -1 .
As T λ is a matrix of operators we denote

T λ = T 11 T 12 T 21 T 22 ,
We denote by

K 11 K 12 K 21 K 22 , (7) 
the kernel of T z p .

Lemma 4.1. Under the assumption of Theorem 7, there exists C > 0 such that N (t) ≤ Ct n . Moreover let V a conical neighborhood of C e ∪ [0, ∞), there exists R > 0 such all z ∈ C, satisfying |z| ≥ R and ω j z / ∈ V , we have

Ω K 11 (x, x)dx + Ω K 22 (x, x)dx = j∈N 1 λ p j -z p . ( 8 
)
Lemma 4.2. With the notation of Theorem 7 we have

|z| p-n/2 Ω K 11 (x, x)dx + Ω K 22 (x, x)dx goes to (2π) -n Ω (a p |ξ| 2p -µ p ) -1 + (|ξ| 2p -µ p ) -1 dξdx when |z| goes to ∞.
Clearly Lemmas 4.1 and 4.2 imply Theorem 7.

Proof of Lemma 4.1

We recall that ω j for j = 1, • • • , p, are the roots of z p = 1, we have

(1 -z p S p ) = p j=1 (1 -ω j zS). (9) 
The operator (1 -z p S p ) is invertible if and only if (1 -ω j zS) is invertible for all j. Thus we have

T z p = S p p j=1 (1 -ω j zS) -1 = p j=1 S ωj z .
If we denote by

S z = S 11 S 12 S 21 S 22 .
We recall that S = R z0 and We apply the results of [START_REF] Luc | Spectral analysis on interior transmission eigenvalues[END_REF]. The estimates below are given by [22, theorem 10] for k ≥ 1. The estimate on S 12 and S 22 for k = 0 are also given by [22, theorem 10]. For k = 0, [22, Proposition 2.3] gives the estimate on S 21 and [22, Lemma 2.1] gives the estimate on S 11 . The relation between z and h is zh 2 = µ, in particular h 2 |z| = 1.

S z = (R z0 ) z = R z0 (I -zR z0 ) -1 = (R -1 z0 -z) -1 = (B z0 -z) -1 = (B 0 -z 0 -z) -1 = R z0+z , (10) 
S 11 : H 2k sc (Ω) → H 2k+2 sc (Ω) with S 11 H 2k sc (Ω)→H 2k+2 sc (Ω) ≤ C|z| -1 S 12 : H 2k sc (Ω) → H 2k+4 sc (Ω) with S 12 H 2k sc (Ω)→H 2k+4 sc (Ω) ≤ C|z| -2 S 21 : H 2k sc (Ω) → H 2k sc (Ω) with S 21 H 2k sc (Ω)→H 2k sc (Ω) ≤ C S 22 : H 2k sc (Ω) → H 2k+2 sc (Ω) with S 22 H 2k sc (Ω)→H 2k+2 sc (Ω) ≤ C|z| -1 (11) 
We denote by

Λ z = |z| 0 0 1/ |z|.
We remark that

Λ z AΛ -1 z = A 11 |z|A 12 (1/|z|)A 21 A 22 , where A = A 11 A 12 A 21 A 22 . (12) 
We deduce from [START_REF] Michael | Transmission eigenvalues for operators with constant coefficients[END_REF] that

Λ z S ωj z Λ -1 z : L 2 (Ω) ⊕ L 2 (Ω) → H 2 sc (Ω) ⊕ L 2 (Ω) with an operator norm less than C|z| -1 and Λ z S ωjz Λ -1 z : H 2k+2 sc (Ω) ⊕ H 2k sc (Ω) → H 2k+4 sc (Ω) ⊕ H 2k+2 sc
(Ω) with an operator norm less than C|z| -1 .

As

Λ z T z p Λ -1 z = p j=1 Λ z S ωj z Λ -1 z , (13) 
we deduce that

Λ z T z p Λ -1 z : L 2 (Ω) ⊕ L 2 (Ω) → H 2p sc (Ω) ⊕ H 2p-2 sc (Ω), (14) 
with an operator norm less than C|z| -p . We can prove that N (t) ≤ Ct n . First we weaken [START_REF] Karamata | Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze[END_REF] to consider

Λ z T z p Λ -1 z as a map between L 2 (Ω) ⊕ L 2 (Ω) → H 2p-2 sc (Ω) ⊕ H 2p-2 sc
(Ω), with an operator norm less than

C|z| -p . As v H s ≤ h -2s v H s sc , we obtain Λ z T z p Λ -1 z L 2 (Ω)⊕L 2 (Ω)→H 2p-2 (Ω)⊕H 2p-2 (Ω) ≤ C|z| -1 , Λ z T z p Λ -1 z L 2 (Ω)⊕L 2 (Ω)→L 2 (Ω)⊕L 2 (Ω) ≤ C|z| -p . (15) 
We can apply the theorem 13.5 in Agmon [START_REF] Shmuel | Lectures on elliptic boundary value problems[END_REF], that is, if m > n/2 we have

|||T ||| ≤ C T n/(2m) m T 1-n/(2m) 0
, where |||T ||| is the Hilbert-Schmidt norm and T m is the operator norm of the map

L 2 (Ω)⊕L 2 (Ω) → H m (Ω) ⊕ H m (Ω).
We apply this estimate with m = 2p -2 > n/2 and we have

|||Λ z T z p Λ -1 z ||| |z| -n 4(p-1) |z| -(1-n 4(p-1) )p = |z| -p+n/4 .
We can follow the proof of Theorem 7 in [START_REF] Luc | Spectral analysis on interior transmission eigenvalues[END_REF]. If we denote by µ j complex numbers such that µ -1 j are eigenvalue of S counted with multiplicity, then 1 µ p j -z p are the eigenvalues of T z p and thus the eigenvalues of Λ z T z p Λ -1 z . We obtain

j 1 |µ p j -z p | 2 ≤ |||Λ z T z p Λ -1 z ||| 2 ≤ C|z| -2p+n/2 . Let µ ∈ C such that |µ| = 1, and ω j µ ∈ C e ∪ (0, ∞) for all j = 1, • • • , p. We take z = t 2 µ. If |µ j | ≤ t 2 , we have |µ p j -z p | ≤ 2t 2p . Then we have |µj |≤t 2 1 4t 4p ≤ j 1 |µ p j -z p | 2 ≤ |||T z p ||| 2 ≤ Ct -4p+n .
Then we obtain N (t) ≤ Ct n . Now we prove Formula (6). Estimate [START_REF] Karamata | Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze[END_REF] implies that

T 11 L 2 (Ω)→H 2p sc (Ω) ≤ C|z| -p and as v H s ≤ h -2s v H s sc , we have T 11 L 2 (Ω)→H 2p (Ω) ≤ C. ( 16 
)
To estimate the norm of T 22 , we shall use that S 12 is a mapping from L 2 (Ω) to H 4 sc (Ω). Actually if we take g ∈ L 2 (Ω), we have

Λ z S ωj z Λ -1 z (0, g) ∈ H 4 sc (Ω)⊕ H 2 sc (Ω) and Λ z S ωj z Λ -1 z (0, g) H 4 sc (Ω)⊕H 2 sc (Ω) ≤ C|z| -1 g L 2 (Ω)
. We can repeat the previous argument for the p -1 other factors Λ z S ωj z Λ -1 z and we obtain that

Λ z T z p Λ -1 z (0, g) H 2p+2 sc (Ω)⊕H 2p sc (Ω) ≤ C|z| -p g L 2 (Ω) .
In particular this means that T 22 g H 2p sc (Ω) ≤ C|z| -p g L 2 (Ω) , and

T 22 g H 2p (Ω) ≤ C g L 2 (Ω) . (17) 
By [START_REF] Evgeny | Ellipticity in the Interior Transmission Problem in Anisotropic Media[END_REF], we have

T 11 L 2 (Ω)→L 2 (Ω) + T 22 L 2 (Ω)→L 2 (Ω) ≤ C|z| -p . ( 18 
)
We can apply the theorem 13.9, Agmon [START_REF] Shmuel | Lectures on elliptic boundary value problems[END_REF]. If 2p > n we have for j = 1, 2, K jj ∈ H q (Ω × Ω)

where q = 2p -[n/2] -1 > n/2.
In particular the trace K jj (x, x) is well defined in L 2 (Ω) and

|K jj (x, x)| 2 dx 1/2 ≤ C T jj L 2 (Ω)→H 2p (Ω) + T * jj L 2 (Ω)→H 2p (Ω) n/(2p) T jj 1-n/(2p) L 2 (Ω)→L 2 (Ω) + T jj L 2 (Ω)→L 2 (Ω) (19) 
Remark 5. The adjoint of B z is given by an analogous formula than (4). Indeed we find that the adjoint B * z (p, q) = (g 1 , g 2 ) is given by

-∆((1 + m) -1 p) -zp = g 1 in Ω -∆q -zq + m(1 + m) -1 p = g 2 in Ω q |∂Ω = ∂ ν q |∂Ω = 0 on ∂Ω.
Using the relation between R z and S z (see ( 10)), we deduce that the adjoint of S z satisfies the same estimate than S z given in [START_REF] Michael | Transmission eigenvalues for operators with constant coefficients[END_REF]. By [START_REF] Michael | The interior transmission problem and bounds on transmission eigenvalues[END_REF], the adjoint of T z satisfies the same properties than T z given in ( 16), ( 17) and [START_REF] Evgeny | Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem[END_REF].

For j = 1, 2,(19) implies, from ( 16), ( 17) and ( 18)

Ω |K jj (x, x)| 2 dx 1/2 ≤ C|z| -p+(n/2) (20) 
We recall that λ -1 j are the eigenvalues of S counted with multiplicity the eigenvalues of T are λ -p j . The indices are such that |λ j | ≤ |λ j+1 |. As N (t) ≤ Ct n , this implies that |λ j | ≥ Cj 2/n where C > 0.

In particular 1/|λ j | p converges if 2p > n. By Theorem 12.17 in Agmon [START_REF] Shmuel | Lectures on elliptic boundary value problems[END_REF], there exists a constant c ∈ C such that

Tr(T T z p ) = j∈N 1 (µ p j -z p )µ p j + c. (21) 
We recall that the trace is defined in the theorem 12.20 in Agmon [START_REF] Shmuel | Lectures on elliptic boundary value problems[END_REF] for an operator

Q = Q 1 Q 2 where Q 1 and Q 2 are Hilbert-Schmidt operators. Moreover if K is the kernel of Q, K(x, x) is definite for almost all x, we have Ω |K(x, x)|dx < ∞ and 
Tr(Q) = Ω K(x, x)dx. (22) 
We remark as by assumption µ p j and z p are not in the same cone, we have

|µ p j -z p | ∼ |µ p j | + |z p |. Then 1 |µ p j -z p ||µ p j | ≤ C |µ p j | and 1 |µ p j -z p ||µ p j | → 0 when |z| → +∞.
This implies that j∈N 1 (µ p j -z p )µ p j → 0 when |z| → +∞.

In [START_REF] Luc | Spectral analysis on interior transmission eigenvalues[END_REF] we proved that |||T z p ||| ≤ C|z| 1-p+n/4 as 1 -p + n/4 < 0 thus |||T z p ||| goes to 0 as |z| goes to +∞. We have | Tr(T T z p )| ≤ |||T ||||||T z p ||| goes to 0 as |z| goes to +∞. Then c = 0 in [START_REF] Ha | Weyl asymptotics of the transmission eigenvalues for a constant index of refraction[END_REF]. We obtain that

Tr(z p T T z p ) = j∈N 1 µ p j -z p - 1 µ p j .
We have z p T T z p = z p T 2 (I -z p T ) -1 = -T (I -z p T )(I -z p T ) -1 + T (I -z p T ) -1 = T z p -T . By Formula ( 22) the trace of z p T T z p is given by the integral of its kernel and, as the integral of the kernel of T z p exists by [START_REF] Lassi | Transmission eigenvalues[END_REF], the integral of trace of kernel of z p T T z p -T z p does not depend of z, we obtain

Ω K 11 (x, x)dx + Ω K 22 (x, x)dx = j∈N 1 µ p j -z p - 1 µ p j + c (23) 
By [START_REF] Lassi | Transmission eigenvalues[END_REF], for j = 1, 2, Ω K jj (x, x)dx goes to 0 when |z| goes to 0 and as 

1 |µ p j -z p | ≤ C 1

Proof of Lemma 4.2

We recall some facts on pseudo-differential operators. Let a(x, ξ) be in C ∞ (R n × R n ) we say that a is a symbol of order m if for all α, β ∈ N n , there exist C α,β > 0, such that

|∂ α x ∂ β ξ a(x, ξ)| ≤ C α,β ξ m-|β| ,
where ξ 2 = 1 + |ξ| 2 . In particular a polynomial in ξ of order m with coefficients in C ∞ (R n ) with bounded derivatives of all orders, is a symbol of order m.

With a symbol we can associate an semi-classical operator by the following formula

Op(a)u = a(x, D)u = 1 (2π) n e ixξ a(x, hξ)û(ξ)dξ = 1 (2hπ) n e ixξ/h a(x, ξ)û(ξ/h)dξ.
If a(x, ξ) is a symbol of order m (which can depend of h), if a(x, ξ) = b(x, ξ) + hc(x, ξ) where b(x, ξ) and c(x, ξ) are symbols of order m, we call b(x, ξ) the principal symbol of a(x, ξ) which is definite modulo h. This formula makes sense for u ∈ S (R n ) and we can extend it to u ∈ H s for all s. For a, a symbol of order m, there exists C > 0 such that for all u ∈ H s , a(x, D)u H s-m sc ≤ C u H s sc . In the following, when we use pseudo-differential operator we have always cut-off functions supported in Ω in each side of the operator. We do not have to consider the action of pseudo-differential operator on H s (Ω) space as in [START_REF] Luc | Spectral analysis on interior transmission eigenvalues[END_REF].

We begin with a description on S z in all compact set in Ω.

Lemma 4.3. Let µ ∈ C such that |µ| = 1 and we assume that µ ∈ C e ∪ (0, +∞)

for j = 1, • • • , p. Let z ∈ C such that z/µ ∈ (0, ∞) is large enough. Let θ and θ be functions in C ∞ 0 (Ω) such that θ(x) = 1 if x in the support of θ, and θ(x) = 1 if x in a compact subset of Ω. Then we have θΛ z S z Λ -1 z = |z| -1 θBθ + |z| -1/2 W θΛ z S z Λ -1 z , ( 24 
)
where W = Λ z KΛ -1 z and W * are bounded on H s (Ω) and the principal symbol of B is given on the support of θ by

(a|ξ| 2 -µ) -1 (a|ξ| 2 -µ) -1 V (|ξ| 2 -µ) -1 0 (|ξ| 2 -µ) -1 .
Proof. We apply the result proved in [START_REF] Luc | Spectral analysis on interior transmission eigenvalues[END_REF]. Let us recall the notations and the main results. We multiply Equations ( 4) by h 2 , we denote by µ = h 2 z where µ belongs to a bounded domain of C, a = 1/(1 + m) and V = m/(1 + m). We change (f, g) in (-f, -g).

We recall the assumption made on m, we have m(x) = -1 for all x ∈ Ω and m(x) = 0 for x in a neighborhood of ∂Ω.

Thus following (4), we obtain the system

   -ah 2 ∆ -µ u -h 2 V v = h 2 f in Ω (-h 2 ∆ -µ)v = h 2 g in Ω u = ∂ ν u = 0 on ∂Ω. (25)
In case where n(x) = n 1 (x) + n 2 (x)/k we multiply Equations ( 5) by h 2 , we denote by µ = -h 2 k 2 , a = 1/(1 + m 1 ), V = m 1 /(1 + m 1 ) + hm 2 /(ν + νm 1 ) where ν = hk. We change (f, g) in (-f, -g). Thus following ( 5) we obtain the system

   -ah 2 ∆ + hW 0 -µ u -h 2 V v = h 2 f in Ω (-h 2 ∆ -µ)v = h 2 g in Ω u = ∂ ν u = 0 on ∂Ω, (26) 
where

W 0 = -νm 2 /(1 + m 2 ). In particular the principal semi-classical symbol of -ah 2 ∆ + hW 0 -µ is -a|ξ| 2 -µ, the principal semi-classical symbol of V is m 1 /(1 + m 1 )
. In what follows only the principal symbols of -ah 2 ∆ + hW 0 -µ and -h 2 ∆ -µ must be take account. For simplicity we write the proof for the system (25), the case of system (26) may be treat following the same way. Now we compute the symbol of the resolvent in Ω. Let φ 0 , φ 1 and φ 2 ∈ C ∞ 0 (Ω) where φ 0 φ 1 = φ 0 and φ 1 φ 2 = φ 1 . We take φ 0 such that φ 0 = 1 on the support of θ. Let Q be a parametrix of -ah 2 ∆ -µ such that φ 0 Qφ 1 (-ah 2 ∆ -µ) = φ 0 -hK where K is of order -1 and the principal symbol of Q is (a|ξ| 2 -µ) -1 . As

φ 1 -ah 2 ∆ -µ φ 2 u = h 2 V φ 1 v + h 2 φ 1 f in R n , applying φ 0 Q to this equation, we obtain φ 0 u = h 2 φ 0 Qφ 1 f + h 2 φ 0 Q (V φ 1 v) + hKφ 2 u. (27) 
We apply the same method use above to compute v (see [START_REF] Luc | Spectral analysis on interior transmission eigenvalues[END_REF]Section 2.2]). Let φ 3 ∈ C ∞ 0 (Ω) where φ 2 φ 3 = φ 2 and θ = 1 on the support of φ 3 . The choices of the φ j are compatible with θ and θ. We have φ 1 Qφ 2 (-h 2 ∆ -µ) = φ 1 -hK -1 where K -1 is of order -1 and the principal symbol of

Q is (|ξ| 2 -µ) -1 .
We apply φ 2 on the equation on v in (25), we have

φ 2 (-h 2 ∆ -µ)φ 3 v = h 2 φ 2 g.
Applying the parametrix φ 1 Q, we have

φ 1 v = h 2 φ 1 Qφ 2 g + hK -1 φ 3 v. (28) 
With this equation and ( 27) we obtain

φ 0 u = h 2 φ 0 Qφ 1 f + h 4 φ 0 Q V φ 1 Qφ 2 g + hKφ 2 u + h 3 K-1 φ 3 v, (29) 
where K-1 is an operator of order -1 . Let

A = h 2 Qφ 1 h 4 QV φ 1 Qφ 2 0 h 2 φ 1 Qφ 2 and K = K 11 h 2 K 12 0 K 22 ,
where

K 11 = Kφ 2 , K 12 = K-1 and K 22 = K -1 φ 2 .
In particular K jk is bounded on H s sc (Ω) for all s ≥ 0. Indeed, all the operators contain cut-off thus

K jk φ 3 u is compactly supported in Ω if u ∈ H s sc (Ω).
We recall that S = R z0 and by [START_REF] Melvin | Transmission eigenvalues for parameter-elliptic boundary problems[END_REF], S z = R z0+z , if the resolvent R z0+z exists. In what follows, z 0 is fixed and we have the relation z = -µ/h 2 -z 0 . In particular |z| -1/2 ∼ h for large |z|. With these relations we have, following (28) and (29), S z (f, g) = (u, v), and

φ 0 S z = φ 0 Aφ 3 + |z| -1/2 Kφ 3 S z .
Thus we can write

φ 0 Λ z S z Λ -1 z = |z| -1 φ 0 Bφ 3 + |z| -1/2 W φ 3 Λ z S z Λ -1 z , (30) 
where W = Λ z KΛ -1 z is bounded on H s (Ω) and the principal symbol of B is given on the support of φ 0 by

(a|ξ| 2 -µ) -1 (a|ξ| 2 -µ) -1 V (|ξ| 2 -µ) -1 0 (|ξ| 2 -µ) -1 .
As θφ 0 = θ and φ 3 θ = φ 3 , (30) gives (24). As K is a semi-classical pseudo-differential operator, W * is also bounded on H s (Ω) Remark 6. Formula (24) does not give a description on the operator S z in Ω. It gives only S z in all compact in Ω. In the proof below we need also estimates on S z up the boundary given in [START_REF] Michael | Transmission eigenvalues for operators with constant coefficients[END_REF] to absorb the error terms.

Lemma 4.3 gives the principal symbol of S z , the following lemma gives the principal symbol of T z p . Lemma 4.4. Let p ∈ N \ {0}. Let ϕ 0 and ϕ 1 be functions in C ∞ 0 (Ω) such that ϕ 0 = 1 on a neighborhood of supp ϕ 1 .

ϕ 1 Λ z T z p Λ -1 z ϕ 0 = |z| -p ϕ 1 B p ϕ 0 + |z| -p-1/2 ϕ 1 R p ϕ 0 , (31) 
where ϕ 1 R p ϕ 0 satisfies the following property if we denote by

ϕ 1 R p ϕ 0 = R 11 p R 12 p R 21 p R 22 p R 11 p : L 2 (Ω) → H 2p sc (Ω) R 12 p : L 2 (Ω) → H 2p+2 sc (Ω) R 21 p : L 2 (Ω) → H 2p-2 sc (Ω) R 22 p : L 2 (Ω) → H 2p sc (Ω), (32) 
where the norm operator are uniformly bounded with respect h, and the principal symbol of B p is

(a p |ξ| 2p -µ p ) -1 Q -2p-2 (x, ξ) 0 (|ξ| 2p -µ p ) -1 (33) 
Moreover the adjoint of R jq p satisfies (32) where the norm operator are uniformly bounded with respect h.

Proof. We argue by induction on k and for that we must introduce a sequence of cut-off functions. Let χ k and χk be cut-off functions such that χk χk+1 = χk+1 , χ k χk = χk , χk χ k+1 = χ k+1 . We can assume that χ0 = 1 on the support of ϕ 0 and and χp = 1 on the support of ϕ 1 . We can apply Formula (24) where θ is replaced by χk and θ by χ k . We have

χk Λ z S z Λ -1 z = |z| -1 χk Bχ k + |z| -1/2 W χ k Λ z S z Λ -1 z , (34) 
where W and W * are bounded on H s (Ω).

Now we can finish the proof of Lemma 4.2. We take ϕ 0 such that ϕ 0

(x) = 1 is d(x, R n \ Ω) ≥ 2δ and ϕ 0 (x) = 0 is d(x, R n \ Ω) ≤ δ. We take ϕ 1 such that ϕ 1 (x) = 1 is d(x, R n \ Ω) ≥ 4δ and ϕ 1 (x) = 0 is d(x, R n \ Ω) ≤ 3δ.
With the notation of (31) we deduce from (32) that for j = 1, 2 we have

|z| -p-1/2 ϕ 1 R jj p ϕ 0 L 2 (Ω)→H 2p sc (Ω) |z| -p-1/2 .
This implies as for T jj in ( 17) and ( 18) that

|z| -p-1/2 ϕ 1 R jj p ϕ 0 L 2 (Ω)→L 2 (Ω) |z| -p-1/2 and |z| -p-1/2 ϕ 1 R jj p ϕ 0 L 2 (Ω)→H 2p (Ω) |z| -1/2 .
By Formula (19) applied to the kernel of |z| -p-1/2 ϕ 1 R jj p ϕ 0 denoted by K R jj and the properties on R p and its adjoint given in Lemma 4.3, we obtain

Ω |K R jj (x, x)| 2 dx 1/2 ≤ C|z| -p+(n/2)-1/2 . ( 38 
)
By the principal symbol of B p given in Lemma 4.4 we can compute the integral of the kernel K jj (x, x). Denoting by b(x, ξ) either (a p |ξ| 2p -µ p ) -1 or (|ξ| 2p -µ p ) -1 , the kernel of a diagonal term is given by (2πh) -n e i(x-y)ξ/h ϕ 1 (x)b(x, ξ)ϕ 0 (y)dξ and this integral make sense if p > n/2. Denoting by K Bp jj (x, y) the diagonal terms of the kernel of |z| -p ϕ 1 B p ϕ 0 , we obtain

Ω K Bp 11 (x, x)dx + Ω K Bp 22 (x, x)dx = (2π) -n |z| -p+n/2 ϕ 1 (x) (a p |ξ| 2p -µ p ) -1 + (|ξ| 2p -µ p ) -1 dξdx + O(|z| -p+(n+1)/2 ), (39) 
where the error term O(|z| (n+1)/2 ) is given by the lower order terms in the symbolic calculus. From (31), ( 38) and (39), we deduce

ϕ 0 (x)(K 11 (x, x) + K 22 (x, x))dx = (2π) -n |z| -p+n/2 ϕ 1 (x) (a p |ξ| 2p -µ p ) -1 + (|ξ| 2p -µ p ) -1 dξdx + O(|z| -p+(n+1)/2
).

Now we can write

Λ z T z p Λ -1 z = ϕ 1 Λ z T z p Λ -1 z ϕ 0 + ϕ 1 Λ z T z p Λ -1 z (1 -ϕ 0 ) + (1 -ϕ 1 )Λ z T z p Λ -1 z . If K(x, y) is the kernel of Λ z T z p Λ -1
z , the kernel of the left hand side terms are respectively, ϕ 1 (x)K(x, y)ϕ 0 (y), ϕ 1 (x)K(x, y)(1 -ϕ 0 (y)) and (1 -ϕ 1 (x))K(x, y).

In particular, from the properties of the supports of ϕ j , we have ϕ

1 (x)K(x, x)(1 -ϕ 0 (x)) = 0. Let F (x) = K 11 (x, x) + K 22 (x, x), to show that Ω |z| p-n/2 F (x)dx -(2π) -n Ω (a p |ξ| 2p -µ p ) -1 + (|ξ| 2p -µ p ) -1 dξdx ≤ Cδ + C δ | z| -1/2 , (40) We shall prove |z| p-n/2 ϕ 1 (x)F (x)dx -(2π) -n Ω (a p |ξ| 2p -µ p ) -1 + (|ξ| 2p -µ p ) -1 dξdx ≤ Cδ + C δ | z| -1/2 , (41) and |z| p-n/2 Ω (1 -ϕ 1 (x))F (x)dx ≤ Cδ 1/2 . (42) 
Obviously ( 41) and ( 42) imply (40), and (40) implies Lemma 4.2. To prove (41), we apply (39). We have

{x, d(x,R n \Ω)≤2δ} (a p |ξ| 2p -µ p ) -1 + (|ξ| 2p -µ p ) -1 dξdx ≤ C {x, d(x,R n \Ω)≤2δ} ξ -2p dξdx ≤ Cδ,
indeed |ξ| 2p and a p |ξ| 2p are not in the same cone as µ p by assumption. Thus the principal term in (41) given by the principal term from (39), can be estimate by Cδ and the error terms from (39) can be estimate by C δ |z| -1/2 . To prove (42), using [START_REF] Lassi | Transmission eigenvalues[END_REF] we obtain

Ω (1 -ϕ 1 (x))K jj (x)dx ≤ Ω (K jj (x, x)) 2 dx 1/2 {x,d(x,R n \Ω)≤4δ} dx 1/2 ≤ C|z| -p+n/2 δ 1/2 ,
which is Estimate (42).

Proof of Theorem 8

We shall apply the following tauberian Theorem cited in Agmon [1, th. 14.5], The proof is given in Karamata [START_REF] Karamata | Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze[END_REF].

Theorem 9 (Tauberian Theorem). Let σ(λ) be a non decreasing function for λ > 0, let 0 < a < 1, let α be a non-negative number, and suppose that as t → +∞, +∞ 0 dσ(λ) λ + t = αt a-1 + o(t a-1 ).

Then as λ → +∞ σ(λ) = α sin πa πa λ a + o(λ a ).

Theorem 8 is implied by tauberian theorem and Theorem 7 which gives

j∈N 1 µ p j -z p = A|z| -p+n/2 + o(|z| -p+n/2 ), where A = (2π) -n Ω (a p |ξ| 2p -µ p ) -1 + (|ξ| 2p -µ p ) -1 dξdx, with µ = z/|z|. (43) 
We take z = t 1/p e iπ/p , where t > 0, we obtain j∈N 1 µ p j + t = At -1+n/2p + o(t -1+n/2p ).

Let µ j = δ j + iν j where δ j and ν j are real. Let A(t) = j∈N 1 δ p j +t . By assumption (see Remark 1), for all ε > 0, there exists R ε > 0, such that if δ j ≥ R ε then |ν j | ≤ εδ j .

We have for j large enough such that |ν j | ≤ εδ j ,

1 δ p j + t - 1 µ p j + t ≤ Cε 1 δ p j + t , (45) 
where C depends only on p.

Denoting N ε such that for all j ≥ N ε , then |ν j | ≤ εδ j . We have 

We recall that µ = z/|z| and z = t 1/p e -iπ/p thus µ = -1. To compute A from (43), we must compute integral as (b p |ξ| 2p + 1) -1 dξ, where b > 0. We have 

For all ε > 0, there exists J ε such that for all j ≥ J ε , |ν j | ≤ εδ j then |µ j | ≤ (1 + ε)δ j . Thus there exist C ε > 0 such that ♯{j ∈ N, δ j ≤ t 2 } ≤ ♯{j ∈ N, (1 + ε) -1 |µ j | ≤ t 2 } + C ε , which is equivalent to ♯{j ∈ N, δ j ≤ (1 + ε) -1 t 2 } ≤ ♯{j ∈ N, |µ j | ≤ t 2 } + C ε .

We obtain

(1 + ε) -n/2 α ≤ lim inf t→∞ t -n ♯{j ∈ N, |µ j | ≤ t 2 }.
As this estimate is true for all ε > 0 and from (49) we have

α ≤ lim inf t→∞ t -n ♯{j ∈ N, |µ j | ≤ t 2 } ≤ lim sup t→∞ t -n ♯{j ∈ N, |µ j | ≤ t 2 } ≤ α.
This is the statement of Theorem 8.

  p | → 0 when |z| → +∞, we obtain c = j∈N 1 µ p j . Then (23) gives the statement of Lemma 4.1.

  (b p |ξ| 2p + 1) -1 dξ = nVol(B 1 ) +∞ 0 r n-1 (b p r 2p + 1) -1 dr = n(2p) -1 b -n/2 Vol(B 1 ) +∞ 0 σ n/(2p)-1 (σ + 1) -1 dσ = n(2p) -1 b -n/2 Vol(B 1 )π sin -1 (nπ/(2p)),where the last integral is computed by residue theorem (see Cartan[6, p 107]).This gives that2pA sin nπ/(2p) nπ = (2π) -n Vol(B 1)Ω (a -n/2 (x) + 1)dx = α.Now to prove the statement of Theorem 8, we must prove that α = lim t -n ♯{j ∈ N, δ j ≤ t 2 } = lim t -n ♯{j ∈ N, |µ j | ≤ t 2 } when t goes to ∞. Except for a finite number of values, δ j > 0 and asδ j ≤ |µ j | there exists C > 0 such that ♯{j ∈ N, |µ j | ≤ t 2 } ≤ ♯{j ∈ N, δ j ≤ t 2 } + C.Thus lim sup t→∞ t -n ♯{j ∈ N, |µ j | ≤ t 2 } ≤ α.

  + O(N ε /t) + O(εA(t)) = At -1+n/2p + o(t -1+n/2p ). (47)For ε small enough we deduce there exists C > 0 such that(1/C)t -1+n/2p ≤ A(t) ≤ Ct -1+n/2p . At -1+n/2p + o(t -1+n/2p ).Denoting σ(λ) = ♯{j ∈ N, δ p j ≤ λ} where the number is counted with multiplicity. We have At -1+n/2p + o(t -1+n/2p ).

	Nε j=1	1 j + t| |µ p	≤ C	Nε j=1	1 j + t δ p	≤ CN ε /t.	(46)
	We deduce from (44), (45) and (46) that				
	A(t) Using this in (47) we obtain						
	j∈N = j∈N 1 δ p j + t 1 δ p j + t = +∞ 0 dσ(λ) λ + t = By tauberian Theorem we obtain		
	♯{j ∈ N, δ p j ≤ λ} = 2pA	sin nπ/(2p) nπ	λ

n/(2p) + o(λ n/(2p) ), which is equivalent to ♯{j ∈ N, δ j ≤ t 2 } = 2pA sin nπ/(2p) nπ t n + o(t n ).

We prove by recurrence the following formula

where the semi-classical principal symbol of B k is given by

where Q -2k-2 (x, ξ) is a symbol of order -2k -2. The operators R jq k and their adjoints satisfy Estimates (32) with p = k.

For k = 1, Formula (36) and properties (32) for R jq 1 and their adjoints follow from ( 12), [START_REF] Michael | Transmission eigenvalues for operators with constant coefficients[END_REF], Remark 5 and (34).

If Formula (35) is true for k we have

where

By (34) for k + 1 and (35) for k, we have

The term |z| -1-k χk+1 Bχ k+1 χk B k χ0 gives the first right hand side term of (35), where B k+1 = Bχ k+1 χk B k and the principal symbol is given by Formula (36) on the support of χk+1 .

The three other terms have the form of R k+1 and satisfy Estimates (32). Indeed, the power of |z| is obtained as the operator norm of Λ z S z Λ -1 z is bounded by |z| -1 . To prove the mapping between the H s sc , we denote by A q a generic operator of order q mapping H s to H s-q . We check that

The properties on adjoints follow from the recurrence assumptions on R k , the properties on W * and Remark 5. By (34) for k + 1 and as χ k+1 (1 -χk ) = 0, we have

By [START_REF] Michael | Transmission eigenvalues for elliptic operators[END_REF] and [START_REF] Michael | Transmission eigenvalues for operators with constant coefficients[END_REF] the operator norm of this term is |z| -k-1/2 . The proof that L 2 satisfies Estimates (32) for p = k + 1 is obtained by (37). The properties on the adjoint of L 2 follow from Remark 5 and the properties on W * . From (36) for k = p, and as z p -µ p = p j=1 (z -ω j µ), we obtain that p j=1 (a|ξ| 2 -ω j µ) -1 = (a p |ξ| 2p -µ p ) -1 . This gives the diagonal terms of the symbol of B p in Formula (33).