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S U M M A R Y
We explore the validity of the linear relation between cross-correlation delay times and ve-
locity model perturbations that is required for linearized finite-frequency tomography. We
estimate delay times from a large number of ‘ground truth’ seismograms computed with the
spectral element method in 3-D models. We find that the observed cross-correlation delays
remain sufficiently linear, depending on frequency, for sharp velocity contrasts of up to 10
per cent in a checkerboard model. This significantly extends the domain of linearity beyond
that of inversions based on direct waveform differences. A small deviation from linearity can
be attributed to the Wielandt effect (i.e. the asymmetry in the effect of positive and nega-
tive anomalies on the traveltime). Smoother Gaussian covariance models can have velocity
variations twice as large and cross-correlation delay times still remain sufficiently linear for
tomographic interpretations.

Key words: Seismic tomography; Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

Onset time has been the preferred observable of seismic body waves
for more than a century, but it is not the only time measurement
available. Phase and group arrival times are used to study surface
wave dispersion. Each of these observables is directly linked to a
velocity definition. In a homogeneous medium, these velocities are
all equal, and equal to the intrinsic velocity of the material. However
that is not the case in a heterogeneous medium, where phase and
group velocity are dispersive, and different from each other.

If we can ignore the fact that the frequency of a body wave is finite,
the onset time defines the ‘signal velocity’ (Brillouin 1960). It is
stationary with respect to small deflections of the ray trajectory and
therefore satisfies the equations of ray theory by definition (Nolet
2008, Section 2.9). However, even on short-period seismograms,
the onset time may be too weak to be observed accurately, certainly
in the presence of noise. A comparison with optics, where onset
times are meaningless, illustrates this point: even in a medium with
a refractive index >1, a photon travels with the velocity of light
in vacuum, but the onset time is defined by the first photon that
traverses the medium without scattering, a very small yet finite
probability. The onset time therefore does not ‘see’ the medium,
the refractive index on the contrary is determined by the energy
arrival of a group of photons that have undergone severe multiple
scattering. The situation in seismology, where the single scattering
approximation is usually quite valid, is of course not as extreme
as in optics, but the conceptual problems with onset times become
more important as the demands for precision increase.

Our effort to increase the resolution of tomographic images poses
such demands and has led to the use of cross-correlations, made

possible with modern broad-band seismometers, either between ob-
served and predicted data (Bolton & Masters 2001) or between
stations of a seismic array (VanDecar & Crosson 1990). This leads
to highly accurate delay time estimates even in the presence of noise.
The cross-correlation delay of an observed signal d(t) with respect
to a ‘test’ signal s(t) is defined as the time of the maximum in the
cross-correlogram γ (t)

γ (t) = 1

N

∫ t2

t1

s(τ )d(τ − t) dτ , (1)

where N = ∫
s(τ )2dτ is a normalizing factor. Sigloch & Nolet

(2006) combine this with the estimation of the source time func-
tion and are able to measure teleseismic P-wave cross-correlation
delays with respect to synthetics in frequency bands up to 0.5 Hz.
If the delay times vary with frequency, the traveltime is said to be
dispersive. The presence (or absence) of dispersion in a body wave
arrival provides extra information on the scale of the heterogene-
ity in the Earth and can be used in multiple-frequency tomography
(Sigloch et al. 2008). Gee & Jordan (1992) and Maggi et al. (2009)
extend the concept of cross-correlation delays beyond body waves
to arbitrary portions of the seismogram.

Despite its difficulties to be observed accurately, onset times
have served seismology well and most seismologists are not used
to thinking about body waves, such as P and S, as being disper-
sive with different ‘phase’ and ‘group’ velocity. In fact, since they
are transient waves rather than monochromatic, it is impossible to
measure a body wave phase velocity at one precise frequency. Nei-
ther can the delay time measured from the maximum of γ (t) be
interpreted as defining a body wave group velocity; on the con-
trary, it is very sensitive to the phase of the time series. In fact,
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682 E. D. Mercerat and G. Nolet

the cross-correlation delay is not directly related to any of the com-
mon velocity concepts. Its linearized link to the intrinsic material
velocity is given by ‘finite-frequency’ theory, both in exploration
seismics (Luo & Schuster 1991), as well as in global seismology
(Marquering et al. 1999). The linearity of this relationship has been
much discussed, and its validity has been put into question (see
the review by Rawlinson et al. (2010) for references). Nowadays
however, finite-frequency methods have found wide acceptance,
though some issues are still not fully understood and in need of
clarification.

In this note, we discuss the issue of linearity of cross-correlation
delay times and present calculations showing that these delays de-
pend linearly on the model perturbations even for sharp velocity
contrasts of up to 10 per cent.

2 F I N I T E - F R E Q U E N C Y A N D
C RO S S - C O R R E L AT I O N

Intuitively, it is clear that if the data d(t) is an undeformed but de-
layed replica of the test signal, that is, if d(t) = s(t − �T), then the
maximum of γ (t) is shifted exactly by the delay �T, and the corre-
lation coefficient R (the value of γ at its maximum) equals 1. This
is always true, even for �T very large. In this case, we say that the
body waves are in the ray theoretical (RT) regime and their delays,
because of Fermat’s Principle, depend quasi-linearly on the relative
velocity (or slowness) perturbations δln VP in the model. We may be
able to correct for dispersion induced by the instrument response,
and sometimes even for the anelastic attenuation, but more often
than not, body waves show frequency dependent delay times that
are caused by diffraction effects around lateral heterogeneities and
are not in the RT regime (Sigloch & Nolet 2006; Zaroli et al. 2010).
However, this should not prevent us from using cross-correlations,
provided we use the correct theory to interpret the delay times.

Luo & Schuster (1991) and Dahlen et al. (2000) assume that
the observed signal is a slightly perturbed version of the test signal
predicted for a reference model: d(t) = s(t) + δs(t). Substituting this
in (1) and linearizing for the perturbed location of the maximum,
they find

�T = − δγ̇ (0)

γ̈ (0)
= −

∫ ∞
−∞ ṡ(τ )δs(τ ) dτ∫ ∞
−∞ s̈(τ )s(τ ) dτ

, (2)

where the dot denotes differentiation with respect to time. This does
not yet establish a relationship between the measured time (or ve-
locity) and the elastic properties of the model. For that we need
to relate the δs(t), which represents scattered energy not present in
the reference model that produces s(t), to the seismic velocity VP

and/or VS. First-order (or Born) scattering theory gives a linearized
relationship between δs(t) and relative perturbations in the seismic
velocity δ ln VP (r) and/or δ ln VS(r) with respect to the reference
model. If the unperturbed wavefield s(t) is in the RT regime, the in-
tegrals in (2) can be evaluated analytically (Dahlen et al. 2000; Nolet
2008), using reciprocity to compute δs(t) efficiently, for example,
for a P wave

�T =
∫

K (r) δ ln VP (r) d3r , (3)

where K (r) is the kernel that describes the sensitivity of the P-wave
delay time to variations in the P-wave velocity, which depends on
the reference wavefield s(t), though not on δs(t). The reference
wavefield must thus be computed in some way. Ray theory provides
the option that is by far the fastest. We note that the sum itself, s(t) +
δs(t), need not be in the RT regime for K (r) to be computed with ray
theory. However, if the reference model is very heterogeneous or the

observed wave involves several arrivals, more involved numerical
techniques such as the spectral element method (SEM) may be
needed to compute the sensitivity kernel K (r). In this case, an
adjoint computation replaces the (analytic) reciprocity principle
used in ray theory (Tromp et al. 2005; Nissen-Meyer et al. 2007;
Fichtner et al. 2008).

The use of full wavefield numerical techniques in 3-D is more
frequently needed for S waves than for P waves, but requires a
computational expense that is two to three orders of magnitude
larger than for RT kernels (Mercerat & Nolet 2012). Since RT
kernels are accurate in smoothly varying media, it is thus important
to investigate how much δVP can deviate from the reference velocity
without affecting the linearity.

We recall that two subsequent linearizations were needed to derive
eq. (3) for the ‘predicted’ delay time: wavefield perturbations of
second order O(δs(t)2) are neglected to arrive at (2), and only first
order velocity perturbations O(δ ln VP ) enter in the computation of
δs(t) that leads to eq. (3) [for details see Nolet (2008), chapter 7]. The
latter linearization should not be confused with the approximations
in the reference wavefield s(t), for example when ray theory is
used to compute s(t) rather than a full wavefield tool as SEM. It is
important to realize that the linearizations are always allowed since
all one does is derive a functional derivative valid for infinitesimal
δ ln VP (r ) → 0 and δs(t) → 0, but that the validity of the wavefield
approximations depends on the model complexity and the frequency
content of the data (Mercerat & Nolet 2012).

Repeated iterations (i.e. retracing rays, or recomputing the wave-
field numerically) may be needed if the initial reference is too far
from the true model, but at each iteration eq. (3) provides a linear
system to solve or one step of a gradient search in the model space
to follow (Chen et al. 2007). The possible need to iterate does not
invalidate the method. The more crucial question to ask is: Does the
cross-correlation delay calculated using eq. (1) provide an estimate
of the �T that is linear with δ ln VP (r )?, or in other words, if a dou-
bling of the model perturbation does not lead to a doubling of the
observed delay times even for small delays, the linear relationship
(3) will not give correct model estimates, and may endanger conver-
gence, even in case one iterates. The answer to this question depends
on the importance of multiple scattering as opposed to single (Born)
scattering, and finding it requires a numerical approach.

3 N U M E R I C A L E X P E R I M E N T S

3.1 The checkerboard models

As we discussed at the start of Section 2, cross-correlation delay
times remain linear functions of velocity perturbations for body
waves in the RT regime even for large �T (i.e. in the RT regime
the waveform remains unchanged and is only delayed). Generally
speaking, this will be the case if the heterogeneities are smooth
and their size is larger than the Fresnel zone. Both the observed
data and the predictions using (3) are linear, thus if they agree for
small model perturbations, eq. (3) remains valid even if the de-
lays are so large that the Born approximation or the linearization
of the cross-correllogram have become invalid. The question we
ask in this section is whether the observed cross-correlation delay
times themselves remain linear in more complex cases when we are
not in the RT regime. To this end, we study wave propagation in
3-D models that produces a significant amount of diffraction and
scattering. We deliberately choose a regular (checkerboard) hetero-
geneity because regularity provides a worst-case scenario in which
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reverberations can interfere constructively at certain frequencies,
leading to a significant build-up of scattered energy.

The model measures 200 × 120 × 120 m and emulates an
industry-scale borehole-to-borehole setting. As reference model, we
use an homogeneous medium with VP = 6 km s−1, VS = 3.46 km s−1

and density ρ = 2750 kg m−3, discretized by 2.88 × 106 hexahedral
spectral elements (degree 5) of 1 × 1 × 1 m, allowing accurate sim-
ulations up to 3 kHz (neglecting any time discretization errors). The
perturbed models consist of a checkerboard pattern of 12 × 12 ×
12 m cubic blocks with positive and negative velocity anomalies
of ±2 and ±5 per cent. For example, the ±2 per cent checkerboard
block model comprises a set of contiguous blocks, each with either
a uniform +2 per cent perturbation or a uniform −2 per cent pertur-
bation (see Fig. 1a). We fix VS = VP/

√
3 and ρ = 2750 kg m−3 at

every node in the model. We verified the numerical accuracy of this
mesh by checking reciprocity for a single force source, and checked
that there is no appreciable numerical dispersion by carrying out
one simulation in the ±5 per cent heterogeneous model with a finer
mesh.

We place 17 receivers at the surface (Y = 66 m, X from 20 to
100 m), and at two boreholes at X = 10 m Y = 66 m, and X = 110
m, Y = 66 m, with 22 receivers each at constant �Z = 5 m spacing.
We simulate 22 shots with explosive sources in each of the two
boreholes (44 shots in total), where shotpoints are colocated with
the 22 receivers. The source time function has a Gaussian shape
with a 0.833 kHz central frequency (central period of 1.2 ms). We
note that this realistic ‘borehole-to-borehole’ model scales up to
regional distances if we multiply times and distances with a factor
103–104. In the latter case, our shortest period of 0.5 ms scales up
to 5 s, and source–receiver distances scale up to 1000 km and more,
the distance range where strong upper mantle heterogeneity is most
troublesome for linearized tomography.

3.2 Linearity of cross-correlation delay times

As expected, the checkerboard model generates a significant amount
of scattering. Fig. 2(a) shows one example, chosen such that the
ray trajectory is almost fully in ‘slow’ cubes of the model, which
presents rather an extreme case. Note that the waveform of the
direct arrival changes dramatically, mostly because of later arriving

energy, but that the onset does not visibly arrive later, rather the
onset becomes more emergent as the velocity contrast increases.

To compute the cross-correllograms, we wish to include at least
one full period of the bandpassed wave, and define the window
boundaries t1 and t2 as follows:

t1 = tpred − σ − dtaper (4)

t2 = tpred + σ + f −1
c + dpulse + dtaper, (5)

where tpred is the predicted arrival time with uncertainty σ , dpulse is
the duration of the body wave pulse on the broad-band record, fc is
the central frequency of the passband filter and dtaper is the duration
of the windowing taper. We also correlate the broad-band signal
(using the cut-off low frequency instead of fc for t2). If an unwanted
wave arrives before t = t2, t2 is truncated to exclude the arrival. If
this brings the window length t2 − t1 < f −1

c , the frequency band is
excluded from the measurement. In our case, we took σ = 0.1 ms,
dpulse = 1.8 ms and dtaper = 0.3 ms. The maximum period is 8 ms,
and successive bandpass filters are for 4, 2, 1 and 0.5 ms central
periods, respectively. The lowest frequency band (8 ms) corresponds
to an average wavelength of 48 m, and the highest frequency band
(0.5 ms) to an average wavelength of 3 m: we thus cover wavelengths
much larger and smaller than the size of the heterogeneities.

Fig. 3 shows the cross-correllograms for the seismograms for the
checkerboard model of Fig. 2(a) in each frequency band, as well
as the cross-correlations for the broad-band signal. We see that for
the ±2 per cent model the correlation coefficient R exceeds 0.8
in each frequency band. For the ±5 per cent model we seem to
reach the limit of the usefulness of cross-correlations, since only
the two longest periods 8 and 4 ms have R > 0.8, which shows
to be a good threshold to avoid cycle-skipping. The broadband
and 1 ms passband have very similar correlation functions. The
correlation program rejected the correlation for the 0.5 ms passband
in the ±5 per cent, which is only visible in the ±2 per cent model.

To check on the linearity of the measured delay times we compute
the cross-correlations for 1716 seismograms from 44 sources to 61
receivers (using only crossing wave paths, those along the same
borehole were excluded). The idea is that, as long as the cross-
correlation delay times scale linearly with the amplitude of the
velocity contrast, the delays of the ±2 per cent model can be used
to predict those in the ±5 per cent by multiplying them by 5/2 = 2.5.

Figure 1. (a) The 3-D checkerboard model (±5 per cent) and (b) the 3-D Gaussian correlated model (±5 per cent and correlation length of 12 m) with the
source and receiver locations (grey spheres) used in the synthetic experiments. For viewing purposes, only a 12 m thick the slice between the two boreholes
are plotted. The source at the borehole (X = 10 m, Z = −85 m) and the receiver at the surface (X = 90 m, Z = 0 m) corresponding to the traces of Fig. 2 are
shown with a black star and a black triangle, respectively.
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684 E. D. Mercerat and G. Nolet

Figure 2. Seismograms along the same path from the explosive source at X = 10 m and Z = −85 m to the receiver at X = 90 m, Z = 0 m for: (a) the
checkerboard models with ±2 and ±5 per cent anomalies, and (b) the Gaussian models with standard deviations of ±2, ±5 and ±10 per cent and a correlation
length of 12 m for the anomalies. For comparison, the seismogram along the same path in the homogeneous model is shown on top of each plot. Note the large
change in waveform of the direct arrival, specially for the checkerboard model. The incipient arrival at 34 ms for the homogeneous model indicates a boundary
reflection and puts a limit to the largest size of the cross-correlation window that can be analysed.

Figure 3. Cross-correlations of the seismograms in Fig. 2(a) for the checkerboard models (a) ±2 per cent and (b) ±5 per cent with the reference seismogram
for the homogeneous model. A zoom from –1 to 1 ms delay times are shown in (c) and (d), respectively. The broad-band signal is indicated as BB. The labels
in the vertical axis indicate the bandpass central periods from 8 to 0.5 ms. The level R = ±0.8 is shown over each cross-correlogram with a gray shadow
area. Note the occurrence of cycle skips for the shorter periods and the broad-band signal in the case of ±5 per cent velocity variations. The stars indicate the
maxima of each cross-correlogram.
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Figure 4. Cross-correlation delay times measured for the ±5 per cent versus those in the ±2 per cent checkerboard models. The straight line denotes a slope
of 5/2. BB is for broad-band data, and the other 5 bands with dominant periods of 8 ms, 4 ms, 2 ms, 1 ms and 0.5 ms. Very few correlations pass the condition
that R > 0.8 for the passband with dominant period of 0.5 ms.

Delay times with R < 0.8 were rejected, in an effort to try to avoid
cycle skips automatically. Note that equation (1) implicitly assumes
that the two signals are not identical, and that R < 1 represents not
necessarily a bad omen, it only tells us that we are outside of the RT
regime. However, as R becomes smaller it is clear that non-linearity,
because of cycle skips or otherwise, becomes a problem.

The results are summarized in Fig. 4. The scatter in the data
represents all effects not included in the linearized theory, since the
seismograms are essentially without noise. The fit to the line with
a slope of 5/2 is very good. However, there is a small bias visible,
since there are more data to the right of the straight line. In other
words, the arrivals in the ±5 per cent model are somewhat faster
than those in the ±2 per cent model. This is a direct consequence
of the Wielandt effect, that is, the slight asymmetry in wave front
healing for positive and negative delays (Wielandt 1987; Hung et al.

2001; Malcolm & Trampert 2011). The positive delays acquired in
the slow checkerboard cubes are more than compensated by the
fast delays that suffer slightly less healing. In fact, if we force a
line fit with offset zero and determine the slope using an L1 misfit
criterion to minimize the influence of outliers, we find slopes that are
systematically lower than 2.5 [between 2.01 for the lowest frequency
band (8 ms of central period), and 2.25 for the highest (0.5 ms of
central period)]. This error of 10–20 per cent is a consequence of the
Wielandt effect, which thus turns out to be the major contributor to
non-linearity in cross-correlation estimates, once cycle skips have
been removed as outliers.

Histograms for the correlation coefficients that passed the thresh-
old of R > 0.8 are shown in Fig. 5 for each frequency band. We
note that cross-correlograms can be rejected for a number of rea-
sons, such as a too short window (t1, t2) for the longer periods, or
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686 E. D. Mercerat and G. Nolet

Figure 5. Histograms of the correlation coefficients (cut-off at 0.8) for
the ±2 per cent checkerboard (top panel) and the ±5 per cent checker-
board (bottom panel). The vertical scale is in percentage. The number of
accepted cross-correlation delays in each frequency band is shown between
parentheses.

spurious numerical arrivals from the boundaries of the model, so
that the number of accepted data in a frequency band is not a
representative measure of the quality of the cross-correlations for
that band. But the fact that even for the ±5 per cent model no less

than 1183 delay times survive the R > 0.8 threshold in the band
with dominant period of 1 ms, compared to 1375 for the 2 per cent
model, is encouraging. Note also that the range of observed delays in
Fig. 4 increases with decreasing period, an indication that wave front
healing is a serious problem for the lower frequencies, and again an
argument to use finite-frequency theory for their interpretation.

3.3 The Gaussian models

Both reviewers of the first version of this research note asked what
the linearity would be in a model with a smoother and less regular
pattern of heterogeneity. In response to this, we also carried out a
short experiment for an elastic 3-D model with stochastic velocity
variations. We used the SGSIM program from the GSLIB software
library (Deutsch & Journel 1998) to generate a Gaussian random
field of mean compressional velocity VP = 6 km s−1 varying with
three different standard deviations of 0.12 km s−1 (±2 per cent),
0.3 km s−1 (±5 per cent) and 0.6 km s−1 (±10 per cent), respectively.
To allow comparison with the checkerboard models, an isotropic
spatial correlation length of 12 m was used. Shear velocity is defined
by VS = VP/

√
3 and density is fixed at ρ = 2750 kg m−3. The

dimensions, the source-receiver set-up and the numerical mesh are
the same as for the checkerboard models. A slice through this type
of models is shown in Fig. 1(b).

In order to avoid a major computational effort, we limit the com-
putations to four well-distributed explosive sources: two in the first
borehole (X = 10 m, Y = 66 m, Z = −30 and −85 m), and two
in the second one (X = 110 m, Y = 66 m, Z = −30 and −85
m). Fig. 2(b) shows an example of the seismograms generated for
these models, and the linearity of the cross-correlation delays be-
tween the 2–5 and 5–10 per cent can be judged from Fig. 6, where
we plot the results for the 4 ms band. Results for the other bands
are similar. From Fig. 6 we observe that the Gaussian models pro-
duce less scatter than the checkerboard model, as expected. The
waveform of the direct arrival is less perturbed, at least up to the
model with ±5 per cent velocity variations. The linearity of the
delay times remains valid even for the model with ±10 per cent
variations.

Figure 6. Cross-correlation delay times in the band of central period of 4 ms measured for: (a) the ±5 per cent versus those in the ±2 per cent Gaussian
models, and (b) the ±10 per cent versus those in the ±5 per cent Gaussian models. The straight line denotes a slope of 2.5 for (a) and 2 for (b).
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4 D I S C U S S I O N

The deviation from linearity at the larger contrast level of ±5 per
cent in the checkerboard model is about 10–20 per cent in the de-
lay times, still acceptable in view of the signal-to-noise ratio one
commonly finds in realistic tomography data. However, the loss of
correlation in the shortest period band indicates that at 10 per cent
contrast we reach the limit of useful linearity of cross-correlation
delay times, at least for organized and sharply reflecting boundaries
such as we used in this worst-case example. Care should therefore
be taken in crustal and lithospheric studies or in the D′′ layer, where
partial melting or fluids may cause velocity contrasts to exceed this
threshold. The non-linearity can, in principle, be overcome by iter-
ation, that is, by predicting 3-D synthetics for the new model and
measuring the residual cross-correlation delay times (Tape et al.
2010). In particular, the studies by Obayashi et al. (2004) and Rit-
sema et al. (2009) show that well-organized scattering occurs in
the form of crustal reverberations, where the velocity contrast at
the Moho may be almost twice the limit of 10 per cent for a sharp
contrast established in this paper, and may strongly influence the
delays of SS and PP waves. But iterating because of non-linearity
should not be needed for deeper levels in the Earth’s mantle where
the velocity anomalies are limited to a few per cent even if contrasts
may be sharp (Mégnin & Romanowicz 2000; Ritsema et al. 2004).

We note that cross-correlation delay times are more linear than
waveform-based misfit measures, for the simple reason that wave-
form inversions require another linearization. For example, a delay
�T to a harmonic wave u(t) = cos (ωt) requires the development
of the harmonic in a Taylor series: cos [ω(t + �T )] = cos (ωt) −
�T sin (ωt) + . . . , and neglecting terms in �T 2 and higher. This
will fail as soon as �T is larger than a fraction of the dominant
period 2π/ω (Panning et al. 2009). In delay time tomography, this
extra linearization is avoided, and the only limitation is the linearity
of the cross-correlation measurement itself.

Note also that not all waveform information is lost in a cross-
correlation delay time: if we filter the data through a series of
bandpass filters, eq. (3) gives us a set of frequency dependent delay
times each with their own sensitivity, and some, if not all, waveform
information is recuperated. The data set computed for this note
currently serves us to study such inversion strategies. Results of
that study, which is still ongoing, will be published elsewhere.
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