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Turbulent bubbly flow in pipe under gravity and

microgravity conditions

Catherine Colin1, Jean Fabre1† and Arjan Kamp2

1 Institut de Mécanique des Fluides, Institut National Polytechnique de Toulouse,

Allée du Prof. Camille Soula, 31400 Toulouse, France
2 Centre Scientifique et Technique Jean-Féger, TOTAL, Avenue Larribau, 64018 Pau, France

Experiments on vertical turbulent flow with millimetric bubbles, under three gravity
conditions, upward, downward and microgravity flows (1g, −1g and 0g), have been
performed to understand the influence of gravity upon the flow structure and the
phase distribution. The mean and fluctuating phase velocities, shear stress, turbulence
production, gas fraction and bubble size have been measured or determined. The
results for 0g flow obtained during parabolic flights are taken as reference for buoyant
1g and −1g flows. Three buoyancy numbers are introduced to understand and quantify
the effects of gravity with respect to friction. We show that the kinematic structure of
the liquid is similar to single-phase flow for 0g flow whereas it deviates in 1g and −1g

buoyant flows. The present results confirm the existence of a two-layer structure for
buoyant flows with a nearly homogeneous core and a wall layer similar to the single-
phase inertial layer whose thickness seems to result from a friction–gravity balance.
The distributions of phase velocity, shear stress and turbulence are discussed in the
light of various existing physical models. This leads to a dimensionless correlation
that quantifies the wall shear stress increase due to buoyancy. The turbulent dispersion,
the lift and the nonlinear effects of added mass are taken into account in a simplified
model for the phase distribution. Its analytical solution gives a qualitative description
of the gas fraction distribution in the wall layer.

Key words: bubble dynamics, gas/liquid flow, turbulent flow

1. Introduction

During the past thirty years, bubbly flow in pipe has been extensively investigated
for several reasons. It is the simplest fully developed two-phase flow and despite
this simplicity it addresses some of the most important issues related to the bubble
dynamics in turbulent flow. Besides, it has several practical applications in thermal,
nuclear and chemical industries. As a consequence a large amount of experimental
results have been accumulated thanks to various measurement methods. These results
concern the radial distributions of phase fraction, bubble velocity, bubble size, liquid
velocity and turbulence.

Most of these studies were focused on vertical upward flow with particular attention
paid to the radial distribution of bubbles and to the turbulence that they induce in
the liquid. Local gas fraction, bubble velocity and bubble size were measured by a
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resistive probe (Herringe & Davis 1976; van der Welle 1985; Liu & Bankoff 1993a),
by an optical probe (Grossetête 1995; Kamp 1996; Shawkat, Ching & Shoukri 2008)
and by a wire mesh sensor (Prasser, Krepper & Lucas 2002). Different gas fraction
distributions were observed: a void peak consisting of a bubble layer near the pipe
wall or a void core with a convex profile. Intermediate shapes were also observed
with a peak in the gas fraction profiles near the wall and a secondary smaller
peak farther from the wall. The radial migration of the bubbles was shown to be
strongly dependent on their size (Zun 1988; Zun et al. 1993; Liu 1993, 1998). Bubbles
of 2–3 mm diameter move toward the pipe wall under the effect of the lift force
whereas larger bubbles move toward the pipe centre due to the lift reversal (Tomiyama
et al. 2002). The action of the pressure gradient in the radial direction due to the
non-uniformity of the turbulence of the liquid phase (Drew & Lahey 1982) and the
turbulent dispersion by the turbulent eddies also play a significant role in the radial
bubble distribution (Lopez de Bertodano, Lahey & Jones 1994; Lucas, Krepper &
Prasser 2007; Shawkat et al. 2008).

In most of the experiments the velocity of the liquid phase was measured either by
laser Doppler anemometry (Theofanous & Sullivan 1982; Hosokawa & Tomiyama
2004) or by a hot film (Wang et al. 1987; Liu & Bankoff 1993a; Shawkat
et al. 2008) or by electrochemical and conductivity techniques (Nakoryakov et al.

1981). Particle image velocimetry (Hasan, Schmidl & Ortiz-Villafuerte 1998; Fujiwara,
Minato & Hishida 2004) and more recently molecular tagging velocimetry (Hosokawa
& Tomiyama 2009a) were also used to investigate the three-dimensional structure of
turbulence and the budget of turbulence kinetic energy. One of the main findings is
that the bubbles tend to flatten the velocity profile when a peak of gas fraction exists
near the wall, whereas the opposite is observed when the gas fraction is maximal at
the axis. Another major finding concerns the turbulence enhancement or suppression in
comparison to single-phase flow (Serizawa, Kataoka & Michiyoshi 1975; Michiyoshi
& Serizawa 1986; Wang et al. 1987) depending on the ratio of bubble-induced to
shear-induced turbulence (Shawkat et al. 2008).

Fewer studies consider vertical downward flow. The experimental results concern the
radial distribution of gas fraction (Wang 1985; Nakoryakov et al. 1996), bubble size
and velocity (Hibiki et al. 2004), liquid velocity and turbulence (Kashinsky & Randin
1999). In these experiments a migration of the bubbles toward the pipe centre was
observed. The mean velocity of the liquid is smaller than in single-phase flow near the
pipe centre, and so the velocity profiles are flatter. As in upward flow at low liquid
flow rate, the turbulence level is higher than in single-phase flow, whereas it can be
smaller for high liquid flow rate and low gas fraction.

There are even fewer studies on the local structure of bubbly flow at microgravity
conditions. Examples of them are the experiments of Lahey & Bonetto (1994) that
mimic microgravity flow by using neutrally buoyant particles, those of Takamasa et al.

(2003) and Hazaku, Takamasa & Hibiki (2012) who investigated the behaviour of
the dispersed phase in bubbly flow through the distribution of phase, interfacial area
and mean velocity, and those of Kamp (1996) that will be extensively used in the
present study because the data are the only ones that cover both the gas and the
liquid phases. What makes two-phase flow, and especially bubbly flow, so specific is
that it is extremely sensitive to gravity. A thorough and comprehensive review of the
numerous experimental studies available today reveals that we have only a fragmentary
knowledge of its effect. Moreover the corresponding data are usually incomplete and
sometimes contradictory. Thanks to experimental results that were obtained under
various gravity conditions (upward, downward and microgravity flow) in the same
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FIGURE 1. Experimental facility.

facility (Kamp 1996) and that were never published in their entirety, we can provide

some possible answers to this important issue. This set of data is unique because it

involves three different gravity conditions and in particular a microgravity condition

that can be regarded as a reference case. In the absence of buoyancy, the bubble slip

is suppressed and so are the lift force and the bubble-induced turbulence. The objective

of the present study is therefore to quantify the contribution of buoyancy to flow

dynamics and phase distribution.
Bubbly flow experiments were performed in a pipe of 4 cm diameter with bubbles

of 2–4 mm diameter, comparable to the turbulence length scale. To highlight the role
of gravity in the phase distribution and the turbulence in the liquid, the experiments
were carried out with the same experimental set-up in microgravity, upward and
downward flows. The experimental facility and the experimental conditions are
presented in § 2. The measurements techniques involving an optical probe for the
characterization of the gas phase and a thermal probe for the measurement of the
liquid velocity are described in §§ 3 and 4. The radial distributions of gas fraction,
bubble diameter, and gas and liquid mean and fluctuating velocities are presented in
§ 5. In § 6, the relative contributions of friction and buoyancy to the kinematic flow
structure and the phase distribution are demonstrated and correlated to the value of
various buoyancy numbers that were introduced for this purpose.

2. Experimental facility and operating conditions

2.1. Experimental facility

The experimental facility (figure 1) was designed to perform ground-based experiments
in upward and downward flows as well as in parabolic flight experiments at
microgravity conditions. Apart from the mixer and the local instrumentation, this
facility is the same as the one presented in Colin, Fabre & Dukler (1991). The
test section consisted of a transparent Plexiglas pipe of 40 mm inner diameter D
and 3.17 m length. Near the inlet and the outlet, the pipe was surrounded with
parallelepiped-shaped boxes filled with water to reduce the image distortion of the
flow visualizations. For the present experiments a specific mixer was designed. The
water was introduced in the pipe axially and the air bubbles were injected through
24 hypodermic needles of 0.34 mm diameter, among which eight were uniformly



located on a circle of 16 mm diameter and 16 on a circle of 32 mm diameter. This
device provided a uniform bubble size distribution.

The microgravity experiments imposed some special constraints for the fluid
management. Air was stored in a 20 l tank under the initial pressure of 200 bars and
supplied at a lower pressure through a sonic nozzle. The air flow rate was measured
with one of the orifice plates covering the range of gas flow conditions. Water was
stored in a 50 l reservoir and circulated by a centrifugal pump providing 120 l min−1

under 1.5 bar pressure. Its flow rate was measured by an electromagnetic flowmeter.
The temperature of the liquid was kept constant by a cooling system. As the volume
consumed during the flights exceeded the volume of the reservoir it was necessary to
circulate the water. A rotating gas–liquid separator was located at the outlet of the test
section (Colin et al. 1991).

The test section was equipped with pressure taps for the determination of the
pressure gradient and with a conductive probe for the volumetric gas fraction. This
probe, located downstream of the local measurement test section (figure 1), consists of
three pairs of electrodes, each electrode being a quarter of a cylinder flushed mounted
at the pipe wall (Colin et al. 1991). The main electrode pair of 3 cm height is placed
between two guard electrode pairs of 1 cm height. Taking into account the distance
between each pair, the measurement volume can be viewed as a cylinder of height D
whose conductance, maximum when filled with water, decreases with increasing gas
fraction. The probe is calibrated in bubbly flow by using quick-closing valves.

High-speed video pictures were also taken through the visualization sections with
two high-speed video cameras (Kodak Ektapro EM) operating at 1000 frames s−1. The
bubble size and velocity distributions were obtained by image processing.

At 70D from the mixer the test section was also equipped with a traversing
mechanism controlled by a micrometre screw that allowed the radial displacement
of a single hot-film probe or a dual fibre-optical probe. The uncertainty in the probe
position was smaller than 0.05 mm. The radial distributions of gas fraction, bubble
velocity and bubble diameter were determined from the measurements performed
with the dual optical probe. The liquid velocity in the axial direction was measured
by hot-film anemometry. The local measurements required specific signal processing
described in §§ 3 and 4.

2.2. Flow conditions

The liquid volumetric flux jL ranged between 0.27 and 1 m s−1 and the gas flux jG

was smaller than 0.05 m s−1. The flow conditions are indicated in table 1. For each
liquid flux value we performed upward, downward and microgravity experiments. The
first column contains the reference of each run. It consists of a letter and a number.
The letter characterizes the gravity condition (S, U, D, M are for single-phase, upward,
downward and microgravity flow respectively) and the number times 104 is about the
value of the Reynolds number as defined below. The table also specifies:

(i) the pressure gradient, dP/dx, determined from pressure transducers;

(ii) the volumetric gas fraction, 〈α〉m, measured by conductive probes;

(iii) the mean gas fraction, 〈α〉, determined from a cross-sectional average of its local
value α, whenever it was measured;

(iv) the mean fluxes of gas and liquid, 〈αUG〉 and 〈(1 − α)UL〉, whenever α was
known;



Run jL jG 〈α〉m 〈αLUL〉 〈αUG〉 〈α〉 dP/dz 4τw/D u∗ u∗0 d Ri∗ Re

(m s−1) (m s−1) % (m s−1) (m s−1) % (Pa m−1) (Pa m−1) (m s−1) (m s−1) (mm) — —

S1 0.27 0 0 0.26 0 0 −29 −29 0.017 0.017 — 0 10 800
S3 0.77 0 0 0.74 0 0 −160 −160 0.040 0.041 — 0 30 800
S4 1 0 0 1 0 0 −281 −281 0.053 0.052 — 0 40 000
U1 0.27 0.023 3.3 0.24 0.021 4.3 −9542 −154 0.039 0.017 3.3 2.74 11 720
U3 0.77 0.046 3.8 0.75 0.044 4.3 −9669 −281 0.053 0.043 3.5 1.50 32 640
U4 1 0.023 1.8 0.95 0.022 1.9 −9935 −311 0.056 0.053 3.4 0.60 40 920
U4a 1 0.034 2.2 — 0.035 2.7 −9914 −369 0.061 0.053 3.4 0.72 41 360
D2a 0.5 0.018 6.8 — — 4.9 +9068 −261 0.051 0.030 2.5 1.84 20 720
D2 0.5 0.033 11.3 — — 8.5 +8635 −341 0.058 0.031 2.4 2.44 21 320
D3a 0.77 0.028 5.4 — — 4.1 +9106 −302 0.055 0.043 3.1 1.33 31 920
D3 0.77 0.053 9.5 0.75 0.053 7.5 +8662 −412 0.064 0.044 4.2 1.78 32 920
D4 1 0.024 3.1 1.05 0.024 2.4 +9225 −350 0.059 0.053 3.1 0.67 40 960
D4a 1 0.041 5.6 — — 4.2 +9014 −384 0.062 0.054 4.2 1.07 41 640
M1 0.27 0.030 10.0 0.24 0.021 5.5 −35 −35 0.019 0.017 1.8 0 12 000
M3 0.78 0.046 5.4 0.75 0.044 4.1 −222 −222 0.047 0.043 2.0 0 33 040
M4 1 0.028 3.2 0.95 0.022 2.5 −360 −360 0.060 0.053 1.2 0 41 120

TABLE 1. Flow conditions for single-phase (S), upward (U), downward (D) and microgravity (M) flows (αL = 1 − α).



(v) the friction velocity u∗ = (|τw|/ρL)
1/2 determined from the mixture momentum

balance, assuming the flow fully developed and neglecting the gas weight:

τw ≅
D

4

[

−dP

dx
− ρL γ (1 − 〈α〉)

]

, (2.1)

where τw is the wall shear stress, ρL is the liquid density and γ is the
acceleration due to gravity, equal to −g, g, 0 in downward, upward and
microgravity flow respectively;

(vi) the single-phase friction velocity u∗0, calculated with the Colebrook formula for
the liquid flow of the same mean velocity 〈UL〉 = jL/(1 − 〈α〉);

(vii) the mean bubble diameter d;

(viii) the inverse frictional Froude number that we noted Ri∗ because it has the form of
a Richardson number:

Fr−1
∗ = Ri∗ = |γ |〈α〉D

4u2
∗

; (2.2)

(ix) and the Reynolds number based on the mixture velocity and the liquid viscosity:

Re = (jL + jG)D

ν
. (2.3)

Note that the couples jL and 〈(1 − α)UL〉, jG and 〈αUG〉, 〈α〉 and 〈α〉m correspond
to different determinations of the same quantity. Their comparison is useful to assess
the measurement accuracy. The difference between jL and 〈(1 − α)UL〉 remains smaller
than 5 % except for the cases U1 and M1 for which it reaches 11 %. The difference
of 9 % between jG and 〈αUG〉 also remains acceptable except for the cases M1 and
M4 for which it reaches 21 % and 30 % respectively. Finally (〈α〉 − 〈α〉m) is less than
0.01 except for the cases D3, M3 for which it reaches 0.02 and for the case M1 for
which it is 0.045. Note that for this run, the gas fraction distribution is no longer
axisymmetric because of the dominant effect of the residual gravity leading to bubble
stratification, as explained in the next section.

The local measurements of gas fraction, bubble size and axial velocities of gas and
liquid were performed at a distance x from the mixer equal to 2.8 m (x/D = 70). Some
measurements were also performed near the mixer at x/D = 11.

The results of the experiments performed in upward, downward and microgravity
flows, supplementary data available at http://www.journals.cambridge.org/flm, are
presented in § 5.

2.3. Microgravity conditions

The microgravity conditions were obtained during parabolic flights aboard the
Caravelle ZERO-G aircraft of the French space agency CNES. Each flight campaign
was composed of three flights, each with 30 parabolas. During each parabola a
microgravity period of 20 s was available with a residual level of gravity smaller
than 2 % of the Earth’s gravity. The procedure that was followed in microgravity
deserves some particular comments for at least two reasons. On the one hand, each
period of microgravity conditions is extremely short so that a specific procedure must
be used to ensure the convergence of the statistical averages. On the other hand, in
parabolic flights there exist various effects, especially in two-phase flow, that may
cause the apparent acceleration experienced by the fluids to depart from zero: thus
special attention must be paid to ensure that these effects have a negligible influence
on the flow.



To obtain the convergence of the statistical averages, for both the turbulence and
the signal of the optical probe, five parabolas were necessary for each probe location:
this corresponded to a total averaging time of ∼75 s. Thus during each flight only six
different radial positions can be investigated for a given flow condition.

The effect of the residual level of gravity on the bubble motion was evaluated. Let
us consider the frame moving with the aircraft, ex, ey, ez being the unit vectors in
the longitudinal, the lateral and the normal directions to the floor respectively. In our
experiment the pipe axis is aligned with ex. The aircraft follows a parabolic trajectory
turning around an axis of rotation with an angular speed Ω = Ω ey of ∼0.06 rad s−1.
The accelerometers located at the axis of rotation measure the g-jitter, i.e. the residual
acceleration experienced by the aircraft at this point. The total residual acceleration
experienced by the facility consists of the sum of the acceleration of the non-inertial
frame, i.e. the plane acceleration including the g-jitter, and the Coriolis acceleration.
Since the experimental facility is located at a distance ∆x = 4 m behind the rotation
axis, the entrainment acceleration in the axial direction is |Ω ∧ Ω ∧ (∆x ex)| ≅ 0.002g.
Therefore a fluid particle moving in the pipe along the longitudinal axis of the
aircraft with a velocity V of 1m s−1 experiences a Coriolis acceleration 2Ω ∧ (Vex)

of −0.01g in the direction perpendicular to the pipe axis ez. The g-jitter measured
by the accelerometers ranged between ±0.03g. The total residual acceleration Jz

in the z-direction can therefore reach 0.04g and it can disturb the bubble motion.
This residual acceleration leads to a hydrostatic pressure difference over the bubble
diameter d equal to ρLJzd. This pressure difference has to be compared to the effect
of the turbulence responsible for the radial migration of the bubbles. In microgravity,
the turbulence is only produced by the wall shear stress ρLu2

∗. The ratio of these
two forces u2

∗/(Jzd) is theoretically infinite in 0g conditions. Because of the residual
gravity in the parabolic flight experiments, it remains finite. For the cases M3 and
M4 it is greater than 3 and 7 respectively but for the case M1 it is only 0.4.
For this last case, the g-jitter is expected to disturb the radial migration of the
bubbles in the pipe: it explains why 〈α〉, 〈(1 − α)UL〉 and 〈αUG〉, that result from
local measurements, differ for this case from their corresponding global quantities
〈α〉m, jL, jG.

3. Measurements in the gas phase

Resistive and fibre-optical probes have been widely used in gas–liquid flow for
the measurement of gas fraction, bubble size and velocity. Single probes have been
used to detect the presence of each phase from the conductivity or optical index
contrast between the phases whereas dual probes have been used to determine
the bubble velocities and their chord lengths pierced by the probe tip. From the
probability distribution of the chord lengths, the distribution of the bubble diameters
can be calculated with an assumption on the bubble shapes. The relationship between
the chord length distribution and the bubble size distribution has been given in
previous studies (Herringe & Davis 1976; Clark & Turton 1988). Converting the
chord length distribution into bubble size distribution requires a great number
of measured chord lengths to avoid cumulative errors. In a statistical simulation
Clark & Turton (1988) used five thousand chord lengths to obtain a sufficiently
accurate result. In their simulation a chord length distribution was generated by a
Monte Carlo method from a given triangular bubble size distribution. The backward
transformation of the chord length distribution provided a size distribution in good
agreement with the triangular size distribution. To reduce the number of chord



lengths, Liu & Clark (1995) proposed a method to determine the mean and
standard deviation of the bubble size distribution from the mean and standard
deviation of the measured chord length distribution. These authors also developed
an analytical approach to transform the chord length distribution into a bubble size
distribution. In their method the chord length and bubble size distributions were
assumed to follow either a Gamma probability function or a Rayleigh probability
function.

In the present study, a similar approach was used to transform the measured chord
length distributions into bubble sizes distributions (Clark & Turton 1988), assuming
that the bubble size distributions follow a log-normal law (Kamp 1996). The bubble
size distributions, determined from the measurements with a dual fibre-optical probe,
were compared to the bubble size distributions obtained from image processing of
high-speed video recordings. In our experiments, the two fibres were 3.8 mm apart.
The tip diameter was ∼50 µm.

3.1. Gas fraction and bubble velocity

The bubble presence was detected from the fibre probes. When their signal is greater
than a threshold value the characteristic function of the gas phase is set to unity or else
to zero. The local gas fraction followed directly from its time average.

Two steps were necessary to determine the velocity of individual bubbles. In a
first step a characteristic time of transit tp of the gas between the tips of the dual
probe was determined from the cross-correlation function of the probe signals; tp

corresponds to the time of the maximum correlation. In a second step, we searched for
the transit time of individual bubbles within a guessed interval [tmin, tmax] around tp. If
an interface is detected at the upstream tip and another at the downstream tip at a later
time ∆t that belongs to [tmin, tmax], then the two interfaces are deemed to belong to the
same bubble. Thus its corresponding velocity uB was calculated, knowing the distance
l between the tips: uB = l/∆t. Then, the residence time ∆t1 of the bubble at the first
tip was converted to a corresponding chord length y from the measured bubble velocity

y = uB∆t1. The mean velocity of the gas phase UG and its variance u2
G were obtained

by averaging the bubble velocities weighted by the residence time:

UG =
N
∑

i=1

∆t1i uBi

/ N
∑

i=1

∆t1i, u2
G =

N
∑

i=1

∆t1i (uBi − UG)2

/ N
∑

i=1

∆t1i. (3.1)

3.2. Bubble size distributions

From a great number of bubbles pierced by the two tips, the chord length distribution
was obtained and the corresponding bubble size distribution was determined, using the
method of Clark & Turton (1988).

The bubbles were assumed to move parallel to the direction of the probe tips. For
a bubble size ranging between 1 and 6 mm, their shape in water is spherical in 0g

flow and ellipsoidal in 1g flow with a major axis d and a minor axis Ed, where
the aspect ratio E = E(d) depends on the bubble diameter (E = 1 in 0g flow). The
ellipsoidal bubbles moved mainly in a direction parallel to their minor axis (Ellingsen
& Risso 2001). In what follows, the minor axis of the bubbles is supposed to be
aligned with the probe axis. From the chord length distribution W(y) measured by the
optical-fibre probe, the bubble diameter distribution Ps(d) is calculated by a backward
transformation detailed in the Appendix.



r+ u′
L UL le λ η ls/λ tλ 1/tλ

(m s−1) (m s−1) (m) (m) (m) — (s) (s−1)

0 0.05 1.22 8 × 10−3 1.6 × 10−3 9 × 10−5 0.78 1.3 × 10−3 763
0.9 0.10 0.85 8 × 10−4 3.5 × 10−4 3 × 10−5 3.60 4.1 × 10−4 2400

TABLE 2. Turbulence space and time scales estimated in single-phase flow for Re = 40 000.

4. Measurements in the liquid phase

4.1. Hot-wire probe characteristics and calibration

The longitudinal instant velocity component of the liquid phase was measured by hot-
wire anemometry. A boundary layer probe Dantec 55R15, with a wire perpendicular
to the flow direction was connected to the Dantec Streamline anemometer operated
by a microcomputer. The measurements were performed with a constant overheat
ratio equal to 1.07. The overheat ratio was automatically adjusted by the Streamline
anemometer before each measurement to avoid errors due to the change in the liquid
temperature. The probe was calibrated in single-phase flow. It was located on the pipe
axis and the calibration curve was obtained by varying the liquid flow rate QL. The
output voltage of the anemometer was related to the mean liquid velocity on the pipe
axis U0 calculated from the liquid flow rate and an exponent n, whose value was fitted
from the data given in Schlichting (1968, p. 599):

U0 = (2n + 1)(n + 1)

2n2

4QL

πD2
, (4.1)

with n = 4.09Re0.0467. The probe calibration was performed before and after each
experiment. The wire of the probe had a diameter of 0.07 mm and a sensitive length
of 1.25 mm. It is important to estimate the size of the turbulent scales of the flow with
respect to the film size. The wire diameter df and its length lf have to be smaller than
the turbulent length scale. The time and length scales of the turbulence were estimated
in single-phase flow. Three length scales were calculated: the integral length scale le,
the Taylor microscale λ and the Kolmogorov length scale η:

le = κy, λ =
(

15νu′2
L

ε

)1/2

, η =
(

ν3

ε

)1/4

, (4.2)

with y = D/2 − r the distance from the wall, ν the liquid kinematic viscosity, u′
L a

turbulence velocity scale and ε = u′3
L /le the dissipation rate of the turbulence kinetic

energy estimated from the integral length scale le. For a Reynolds number of 40 000
corresponding to the highest flow rate of our experiments these length scales were
determined at two radial positions r of the pipe: at the pipe axis (r = 0) and as close
as possible to the wall (r = 1.8 cm). The different values are reported in table 2. In the
central part of the flow, the sensitive length of the wire ls, is smaller than the Taylor
microscale whereas in the near-wall region ls becomes greater than λ. The turbulent
fluctuations are thus partly filtered near the wall. Across the pipe the Kolmogorov
length scale remains of the same order of magnitude as the film diameter. The time
scale tλ is equal to the Taylor microscale divided by the local mean axial velocity
(table 2). The frequency of the signal acquisition was chosen greater than 1/tλ to avoid
turbulence filtering.
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The mean axial velocity of the liquid UL and the turbulence fluctuation (u2
L)

1/2

denoted u′
L were measured at a distance x = 70D from the pipe entrance for different

Reynolds numbers Re = jLD/ν. The measurements were compared to Laufer (1954) at
Re = 50 000. In figure 2 the mean axial velocity scaled by the axis velocity U0 and the
axial contribution of the turbulence energy scaled by the friction velocity u∗ are plotted
versus the dimensionless radial coordinate r+ = 2r/D: they are in good agreement with
the Laufer results.

4.2. Phase discrimination

When the probe tip is piercing a bubble the output voltage of the anemometer drops,
due to the weak cooling of the wire in air. The part of the signal corresponding to the
bubble passage has to be suppressed before calculating the statistics of the liquid flow.

The passage time of a bubble of 1 mm diameter moving at 1 m s−1 is equal to
1 ms. At least five points are required for the detection of the smallest and fastest
bubbles: thus a sampling frequency fs of 5 kHz was chosen for an accurate detection
of the bubble passages from the output signal of the anemometer. The detection was
performed using a classical algorithm that combines thresholds of both the slope and
the level of the signal (Liu 1993; Farar, Samways & Bruun 1995). The axial mean and
root mean square (r.m.s.) velocity of the liquid phase, UL and u′

L, were calculated. The
uncertainty was ∼5 % for the mean value and 10 % for the r.m.s.

5. Experimental results

The analysis of the influence of the gravity upon the local structure of the flow
requires experiments to be performed in the same experimental facility (same pipe
diameter, same mixer and same fluid) with different levels of gravity. In this study
the same two-phase flow loop was used for upward (−1g), microgravity (0g) and
downward flow (1g). The experiments were carried out at three different classes of the
Reynolds number Re defined in (2.3): 10 000, 30 000 and 40 000. It is expected that
the shear-induced turbulence is nearly the same for flows belonging to the same class.
The dimensionless number Ri∗ expressing the ratio between the buoyancy and the wall
friction and defined in (2.2) has been specified for each run in table 1. It is zero in
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FIGURE 3. Evolution of gas fraction (squares) and bubble diameter (triangles) between
x/D = 11 (open symbols) and x/D = 70 (solid symbols): (a) upward flow; (b) downward
flow.

single-phase flow as well as at microgravity conditions where the only driving force is
the pressure gradient. It would be nearly infinite in the case of bubbles rising freely in
a vertical column: then the driving force would be the buoyancy. Between these two
extreme cases there exist some intermediate situations like those investigated in the
present study:

(i) The experiments for which Ri∗ is smaller than 1 correspond to friction-dominated
flows: S1, S2, S3, U4, D4, M1, M3, M4. The turbulence is mainly produced by
the wall shear stress as is the case at microgravity conditions and the friction
velocity u∗ is close to the single-phase value u∗0

(ii) The large-Ri∗ experiments correspond to gravity-dominated flows: U1, U3, D3.
They are interesting to highlight the role of the bubble-induced turbulence.

5.1. Flow development

In two-phase vertical flow and more specifically in the bubbly regime, the flow is
seldom fully developed. There are at least two reasons that prevent the flow reaching
equilibrium:

(i) Coalescence or break-up that modifies the bubble diameter and thus the slip
velocity. However far enough from the inlet, the mean bubble diameter should
reach an equilibrium value.

(ii) Expansion or compression of the gas phase due to the pressure gradient. This
effect may be significant in vertical flow because of the influence of the
hydrostatic pressure gradient imposed by the weight of the liquid phase.

The influence of the bubble size and the developing length were clearly pointed out
by Herringe & Davis (1976), Serizawa & Kataoka (1988) and Liu (1993) in upward
flow. As the bubble size increases along the pipe due to bubble coalescence and gas
expansion the gas fraction profile changes. The bubble diameter and the gas fraction
were chosen for the present experiments to check the flow development. The results
are shown in figure 3 in which the radial distributions of the gas fraction and the
mean Sauter diameter are plotted for two different distances from the mixer. Bubbles



of ∼2 mm diameter are generated through needles located at two radial positions:
r+ = 0.4 and r+ = 0.8. The diameters are quite uniform, with an r.m.s. value of 10 %,
and the bubbles are rapidly dispersed downstream of the mixer.

In upward flow, at only 11D from the mixer (inlet), a void peaking is observed
at a distance of 2 mm from the wall, corresponding to bubble diameter of 4 mm.
At the peak location a substantial increase in the bubble diameter is observed: this
is consistent with the fact that the higher the gas fraction the greater the collision
frequency and thus the bubble coalescence. At x = 70D (outlet), the peak in the gas
fraction profile is weaker and located farther from the wall, because of the increase
in bubble size. The bubble diameter ranges between 3 and 4 mm. Some bubbles have
migrated to the central part of the pipe. Zun (1988) also reported that in vertical
upward flow, bubbles with a diameter smaller than 5 mm are driven towards the pipe
wall, whereas bubbles with a diameter greater than 5 mm move toward the pipe centre.
The experiments by Tomiyama et al. (2002) on transverse migration of single bubbles
in simple shear flows clearly pointed out the change of the sign of the lift coefficient
for a bubble diameter close to 5 mm in air–water systems.

In downward flow, the bubble diameter does not change significantly. It remains
close to 3 mm and the radial distribution is rather uniform except close to the wall.
The global gas fraction decreases slightly between x = 4D (inlet) and x = 70D (outlet):
this is an effect of the hydrostatic pressure that increases the pressure and thus the
gas density. The mean and r.m.s. gas velocities were also measured at x = 4D and
x = 70D. They do not evolve along the pipe, because the bubble diameter and thus
the slip velocity does not change. In contrast to upward flow, the flow structure
remains the same in downward flow. On the one hand, pressure and coalescence
have opposite effects upon the development of bubble size, contrary to upward flow:
coalescence tends to increase the mean diameter whereas pressure tends to decrease
it whenever the hydrostatic pressure gradient is greater than the frictional pressure
gradient. On the other hand, the rate of coalescence seems to be smaller in downward
than in upward flow since near the outlet the mean bubble diameter reaches 5 mm
in upward flow and 3 mm in downward flow. According to the model developed by
Kamp et al. (2001), the coalescence rate is the product of the collision frequency and
the coalescence probability. The collision frequency is proportional to the square of
the gas fraction and to the bubble relative velocity. The coalescence probability is an
exponential decreasing function of the r.m.s. of a Weber number We = ρL (δU)2 d/σ ,
where δU is the local instant relative velocity of two bubbles. The coalescence rate
is thus proportional to α2 δU exp[−δU (ρLd/σ)1/2]. Since the gas fraction in upward
flow in the outer half of the pipe (r+ > 0.7) is comparable to that in downward flow
in the inner half of the pipe (r+ < 0.7), the main difference should be attributed to
δU. Indeed δU is proportional to the turbulent velocity scale u′

L, which is equal to
0.1 m s−1 in upward flow (r+ > 0.7) and 0.05 m s−1 in downward flow (r+ < 0.7).
Since the coalescence rate is an increasing function of δU, it explains the higher rate
of coalescence in upward flow.

At microgravity conditions, previous experiments with the same facility (Colin et al.

1991) have shown that the bubble size drastically increases along the pipe because
of coalescence: the bubble velocity is almost insensitive to their size and the time of
contact during bubble–bubble collisions can be large thus promoting the collision
efficiency. As it seemed impossible to prevent the flow development the bubble
coalescence was inhibited for the microgravity experiments. This allowed minimizing
of the effect of gravity fluctuations on the radial motion of the bubbles (see § 2.3) and
obtaining comparable bubble sizes for both laboratory and microgravity experiments.



This was done by adding 1.6 × 10−3 mol m−3 of sodium dodecyl sulphate to the tap
water. This concentration is smaller than the minimal concentration of surfactant of
0.05 mol m−3 at which drag reduction was observed for a 2 mm diameter air bubble
rising in still water (Duineveld 1994). At microgravity conditions the concentration
of surfactant required to immobilize the interface is expected to be still greater than
for terrestrial experiments so that the Marangoni effect promoted by the transport of
surfactant at the bubble surface was negligible in our case. The mean bubble diameter
measured by image processing for the different runs is equal to 1.8 mm for the run
M1, 1.2 mm for run M4 and 2 mm for run M3 (table 1).

5.2. Vertical upward flow

The results of the runs U1, U3, U4 obtained at x/D = 70 are plotted in figure 4. The
radial distributions of the local gas fraction α, the Sauter diameter d, the mean velocity
U and the r.m.s. velocity u′ of both phases are displayed on these graphs. In these
experiments, Ri∗ ranges between 0.6 (U4) and 2.8 (U1). Thus for U1 the effect of
buoyancy should be dominant, whereas for U4 it should be small. With Ri∗ = 1.5, U3
is an intermediate case. Note that for U4, the gas velocities and the bubble diameters
were not determined near the pipe centre because the gas fraction was too small and
the time required for the statistical averages to converge was not reached.

For the different runs, the mean diameter ranges mostly between 3 and 4 mm. A
slight increase is observed near the pipe wall where the gas fraction is maximum and
where bubble coalescence is expected to take place. The gas fraction profiles exhibit a
classical peak near the wall. For U3 and U4, the maximum value in the gas fraction
profiles is located at a distance from the wall of ∼0.5d and the thickness of the
gas fraction peak is ∼d. A bubble layer moves along the wall. These gas fraction
profiles display two separate regions: a bubble layer along the wall and a core region
(r+ < 0.7) with a low or negligible (U4) value of the gas fraction. For the lower liquid
velocity (run U1) and higher values of Ri∗, the gas fraction profile is relatively flat
with a small peak near the wall: the two regions are not clearly visible.

The present results are compared in figure 4 to the data of Liu & Bankoff (1993a)
obtained in a pipe of diameter D = 38 mm at a distance x = 36D from the mixer for
jL = 0.97 m s−1, jG = 0.027 m s−1. These conditions as well as the resulting value of
gas fraction 〈α〉 = 0.02 are close to those of U4. Although the mean bubble diameter
is smaller in the experiments of Liu & Bankoff (1993a) than in our experiments, the
gas fraction profiles are almost the same: the gas fraction is very small in the inner
half of the pipe and the location of the maximum is nearly the same although it is
slightly closer to the wall because the bubbles are smaller.

The profiles of UL and UG are plotted in figure 4, together with the mean velocity
distribution of the liquid in single-phase flow. As already reported by other researchers,
the velocity profiles are flatter in two-phase flow than in single-phase flow. On the
one hand, the eddy viscosity may be higher in two-phase flow as the turbulence
level further suggests. On the other hand the greater velocity of the liquid near the
wall may be attributed to the momentum transfer from the fast-moving bubbles to
the liquid. Consequently, near the pipe centre, the velocity of the liquid is smaller
than in single-phase flow. The mean velocities measured by Liu & Bankoff (1993a)
are slightly greater than those obtained for U4, except near the wall. The velocity
difference between phases, UG − UL, is equal to about 0.25 m s−1 near the pipe centre.
This difference decreases to 0.1 m s−1 near the pipe wall where the gas fraction,
the mean shear and the turbulence level are greater. Different behaviours of the slip
velocity are found in the literature: in the Liu & Bankoff (1993b) measurements it
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FIGURE 4. Upward flow. From top to bottom: bubble diameter, gas fraction, mean velocity
and r.m.s. velocity, for gas (circles), and liquid (squares). Present study: open symbols or solid
lines for single-phase flow; Liu & Bankoff (1993a): solid symbols. (a) U1 : Re = 11 700; (b)
U3 : Re = 32 640; (c) U4 : Re = 40 920.

increases near the wall whereas in the measurements of Grossetête (1995), Serizawa

et al. (1975) and Hosokawa & Tomiyama (2004) it decreases near the wall. This will

be discussed in § 6.

The profiles of the r.m.s. velocities of the liquid u′
L and the gas u′

G are also plotted

in figure 4 together with the values of u′
L in single-phase flow. In the core region,

the profiles are flatter in two-phase flow than in single-phase flow. For the run U1

dominated by buoyancy, the r.m.s. velocity of the liquid is much greater than in



single-phase flow. It is in fact comparable to the r.m.s. velocity of the gas. In this case
the turbulence induced by the bubble motion is greater than the turbulence produced
by the wall shear stress as suggested by the high value of Ri∗. For U3 the turbulence
level is close to that measured in single-phase flow. For U4, at high liquid flow rate
and low gas fraction, the bubble-induced turbulence is weak and the turbulence level
is smaller than in single-phase flow. The reduction of turbulence in two-phase flow
at high liquid velocity was also shown by other authors (e.g. Serizawa et al. 1975)
and will be discussed in § 6. The r.m.s. velocities in the liquid phase found by Liu
& Bankoff (1993a) are greater than those obtained in the present study for U4. This
difference may be explained by the fact that the bubble size is not the same in both
experiments. However the data processing of the hot-wire anemometry signal may also
be responsible for this difference. Indeed the determination of the r.m.s. velocities of
the liquid is very sensitive to the phase discrimination method, which is not the same
in the two experiments. Therefore in the present study, in all the runs the same signal
processing is used whatever the gravity level.

The r.m.s. velocity of the gas phase u′
G displays a fairly uniform radial distribution.

Its value increases with the gas mean velocity. The ratio u′
G/u′

L is equal to about 1
for U1 where the bubble-induced turbulence is high. For the other cases, this ratio is
greater: close to 3 for U3 and 2.5 for U4. The values of u′

G found by Liu & Bankoff
(1993b) are slightly greater than in our experiments, especially near the pipe wall.

5.3. Vertical downward flow

For vertical downward flows, only two runs are complete enough to be presented
in this section (D3 and D4 of table 1) but other runs (D2, D2a, D3a and D4a)
of Kamp (1996) have been selected and will be included in the discussion in § 6.
D3 and D4 correspond to Ri∗ = 1.8 and 0.7 respectively. As the liquid velocity is
smaller than 0.4 m s−1, the bubble velocity becomes very small because the bubble
slip velocity is opposite and about equal to the liquid velocity. Thus the rate of bubble
coalescence is high and some large bubbles tend to have an ascending motion. The
results presented in figure 5 were obtained at a distance from inlet of x/D = 70, as
for upward flow. The present results are compared to the measurements of Nakoryakov
et al. (1996) revisited by Kashinsky & Randin (1999) performed in a 42.2 mm pipe:
D3 and D4 have been compared to their results corresponding to flow conditions
d = 1.48 mm, jL = 0.75 m s−1 and jG = 0.043 m s−1 and d = 1.7 mm, jL = 1 m s−1

and jG = 0.02 m s−1 respectively.
The bubble size distribution is almost uniform with the distance from the axis, the

Sauter diameter being ∼3 mm (run D4) and 4 mm (run D3). As the greater value
corresponds to the greater gas fraction this suggests the role of coalescence, which
increases with the gas fraction.

The gas fraction profiles in figure 5 present a maximum near the pipe centre. The
void peaking observed in upward flow is absent (run D4) or attenuated (run D3). In
the present case the lift force is directed towards the pipe axis so that the bubbles
accumulate in the central region of the pipe. The presence of a second maximum
near r+ = 0.7 in D3 has already been observed by other authors for high gas fraction
(Wang 1985). As in upward flow, the gas fraction profiles display two regions: a
core region with an almost homogeneous value of the gas fraction and a wall region
completely free of bubbles. The transition between these two regions is quite sharp. In
the experiments of Kashinsky & Randin (1999) the gas fraction distribution slightly
differs from the profile of run D4: the bubbles are less concentrated in the inner region
of the pipe. This difference is attributed to the bubble size: in our experiments the
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FIGURE 5. Downward flow. From top to bottom: bubble diameter, gas fraction, mean
velocity and r.m.s. velocity, for gas (circles), and liquid (squares). Present study: open
symbols or solid lines for single-phase flow; Kashinsky & Randin (1999): solid symbols.
(a) D3 : Re = 32 920; (b) D4 : Re = 40 960.

bubble diameter is ∼3 mm against 1.7 mm in the experiments of Kashinsky & Randin

(1999).

As in upward flow, the mean velocity profiles of the liquid are also flatter in

downward flow than in single-phase flow (figure 5). The liquid is slowed down

by the bubbles in the central region of the pipe. Like the gas fraction, the results

of D3 display a maximum velocity for r+ ≈ 0.7. In contrast to the results of D4



the measurements of Kashinsky & Randin (1999) show that the profiles measured
in single- and two-phase flow are very close. Again, this difference with our
measurements seems to be due to their smaller bubble diameters. Similar velocity
profiles observed for D3 are also observed in the results of Kashinsky & Randin
(1999) even though the gas velocity is not exactly as in D3. They also observed the
flattening of the mean velocity profile for higher gas fractions.

The bubble slip velocity varies between −0.3 m s−1 near the pipe centre and
−0.15 m s−1 closer to the wall. As in vertical upward flow, a decrease of the bubble
slip velocity is measured near the wall.

For the two runs, different r.m.s. velocity profiles are observed in the liquid
(figure 5). In D3, the distribution of u′

L is almost uniform: except near the wall
where the bubbles are absent the liquid turbulence is higher than in single-phase flow
suggesting the role of the bubble slip. The flow is dominated by the bubble-induced
turbulence as the value of Ri∗ suggests. This effect is also observed in the experiments
of Kashinsky & Randin (1999) but less pronounced because of lower gas fraction.
In D4, the values of u′

L are comparable to those observed in single-phase flow with
some differences: for 0.4 < r+ < 0.9, u′

L is much smaller than in single-phase flow.
These trends were also observed by Kashinsky & Randin (1999) with smaller bubble
diameter. In the core region the profiles of u′

L are flatter for D3 and D4 than in
single-phase flow.

Like the liquid phase, D3 and D4 display a different behaviour of the r.m.s.
velocities of the gas phase: as usually observed u′

G is much greater than u′
L in run

D4 while for run D3 the turbulence of the gas phase is comparable to that of the
liquid phase. These features were already pointed out for upward flow. We must note
in passing that in run D3 the turbulence of the gas phase is in fact 20 % lower than the
turbulence in the liquid phase. This result is rather unexpected.

5.4. Microgravity flow

For flow at microgravity conditions the effect of buoyancy is suppressed. Only some
disturbing effects of the g-jitter remain that are difficult to suppress in parabolic flights.
The most specific difference with upward or downward flow is the fact that the bubble-
induced turbulence should disappear. Because Ri∗ is nearly zero the flow is dominated
by the shear-induced turbulence. Three runs (M1, M3 and M4 of table 1) are presented
in this paper. For these experiments the bubble size could not be measured because
the available time was too short for the statistics to converge. Nevertheless a typical
bubble size was obtained from image processing. The radial distributions of gas
fraction, mean and r.m.s. velocity of both phases are plotted in figure 6.

The gas fraction profiles present a shape quite similar to that of downward flow.
However, the profiles are flatter and more homogeneously distributed in microgravity:
there is no outer-half region without bubbles like in downward flow. For M3 and M4,
the shapes of the profiles in the two experiments are very close. For M1 a difference
is observed: in this run, the gas fraction is unusually high near the pipe centre and low
elsewhere. We verified the measurement accuracy (see § 2.1): it appears that though
〈α〉m and 〈α〉 are in reasonable agreement for M3 and M4, 〈α〉m is twice as large as
〈α〉 for M1. This discrepancy between the cross-sectional average and the volumetric
measurement is attributed to a perturbation of the radial motion of the bubbles due
to the residual acceleration (g-jitter) during the short period of microgravity, as it was
explained in § 2.3.

In two-phase flow, the velocity profiles of the liquid are similar to single-phase
flow although they are slightly flatter. The most important feature is that the mean
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FIGURE 6. Microgravity flow. From top to bottom: gas fraction, mean velocity and r.m.s.
velocity, for gas (circles) and liquid (squares). Present study: open symbols or solid lines for
single-phase flow. (a) M1 : Re = 12 000; (b) M3 : Re = 33 040; (c) M4 : Re = 41 120.

gas velocity is equal to that of the liquid, as expected in the absence of buoyancy.
Lahey & Bonetto (1994) obtained similar results with neutrally buoyant particles. The
bubble slip velocity cannot be determined because it is smaller than the measurement
uncertainty. As explained in § 2.1 jL and jG are compared to 〈(1 − α)UL〉 and 〈αUG〉
respectively. Whereas they should be equal, 〈αUG〉 is 20 % to 30 % smaller than jG for
M1 and M3, pointing out the perturbation induced by the residual gravity.

The r.m.s. velocity of the liquid is close to or slightly greater than that measured in
single-phase flow. The comparison of runs U1 and M1 corresponding to similar flow
rates clearly shows the role of buoyancy in the turbulence of the liquid phase. While
the turbulence is controlled by the slip velocity in upward flow, it becomes shear
dependent when the gravity is suppressed.

Finally the r.m.s. velocity of the gas phase in figure 6 is twice to three times
greater than the turbulence in the liquid phase. This is also a specific behaviour of
microgravity flow.

6. Discussion

In single-phase turbulent pipe flow, both inertia and viscous forces control the
fluid motion so that the flow is completely characterized by the ratio of these two



forces: the Reynolds number. In two-phase flow the scaling is far more complex and
does not reduce to one dimensionless number, not only because there are two phases
with different physical properties and volumetric flux, but also because another force
comes into play: the buoyancy. Since the present experiments extend over a wide
range of Ri∗, it is possible to demonstrate its contribution. But its parameterization
would require results from many more flow conditions than those of the present study.
Unfortunately the published data are often incomplete, most of the time because the
wall friction has not been determined. Thus no additional data are available, except
those of Nakoryakov et al. (1996) revisited by Kashinsky & Randin (1999). The
method that we adopted here is to compare our data to existing analytical models to
highlight the length or velocity scales that control the physics.

6.1. Preliminary remark

As will become obvious hereafter, the friction velocity u∗ has to be known, not only
because it is used in Ri∗ to compare buoyancy and friction, but also because it is
essential for the understanding of various aspects of two-phase flow in pipes. Thus it
must be determined with an acceptable accuracy. In single-phase flow, various methods
exist for determining u∗ from τw. The wall shear stress can be measured by various
techniques: flush-mounted hot-film probe, Preston tube, polarography, etc. It can be
also determined by indirect methods: log-law fitting, extrapolation at the wall of either
the turbulence shear stress or of the turbulence kinetic energy (see a comparison of
these methods in Fabre, Masbernat & Suzanne (1983)).

In vertical fully developed bubbly flow, the wall shear stress can be determined from
(2.1) if both pressure gradient and gas fraction have been measured. However, in this
equation dP/dx and ρL γ (1 − 〈α〉) are close to each other and their difference 4τw/D

is so small that it is difficult to measure with great accuracy. Nevertheless this method
has been selected in the present study and special care has been taken to determine
dP/dx and 〈α〉 as accurately as possible.

Additional results would have been welcome but in most previous studies, either the
pressure gradient was missing or some doubt exists regarding its accuracy or that of
the gas fraction. In principle another indirect method developed in single-phase flow
could be used. But log-law fitting is impossible since we know little about its validity
in two-phase flow. All that remains is the extrapolation of the turbulence shear stress
at the wall: using this method would allow consideration of the rich set of data of
Liu (1989). We tried to do this but unlike fully developed single-phase flow where the
shear stress distribution varies linearly with the radial coordinate, we can say nothing
regarding two-phase flow: its gradient increases with r so much that the near-wall data
are too sparse for the wall shear stress to be determined accurately.

6.2. Liquid mean velocity

Fully developed turbulent single-phase flow in pipes can be viewed as a three-layer
flow. These layers are, from the wall to the axis: the viscous, the inertial and the wake
layers. When the Reynolds number increases the inertial layer grows to the detriment
of both the viscous and the wake layers. In the inertial layer the velocity follows the
logarithmic law expressed for a smooth regime by:

UL

u∗
= 1

κ
log
(y u∗

ν

)

+ B, (6.1)

where y is the distance from the wall, κ = 0.41 the von Kármán constant and B = 5.5
an additive constant. In the wake layer the velocity is slightly greater than that
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FIGURE 7. Velocity distributions for various runs compared to the log-law (6.1) (—): (a)
Ri∗ = 0; (b) Ri∗ > 0. The figures at the far right of (b) are the values for Ri∗.

predicted by the log-law: the additional velocity is modelled by a wake function, hence
the name of the layer.

From an experimental study of a bubbly boundary layer in upward flow Marié,
Moursali & Tran-Cong (1997) showed that the liquid velocity follows the log-law
in the inertial layer. However the von Kármán constant has to be modified for (6.1)
to fit the experiments. What about its validity for bubbly flow in a pipe? From the
experimental data in upward flow (Nakoryakov et al. 1981), Marié et al. (1997) found
that the log-law persists with a decrease of its slope for a gas fraction smaller than
10 % in the core region. In contrast, from the data in downward flow (Nakoryakov
et al. 1996) they showed that the log-law persists without any modification of the von
Kármán constant.

The present results are plotted in figure 7 in wall coordinates, y+ = y u∗/ν and
U+ = UL/u∗. We distinguished the Ri∗ = 0 flow conditions (figure 7a) from the Ri∗ > 0
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ones (figure 7b): thus figure 7(a) includes single-phase and microgravity flows whereas
figure 7(b) includes upward and downward flows.

In the absence of buoyancy (figure 7a), the liquid velocity displays the same
behaviour in single-phase and in two-phase flows: there exists a wall layer where
the log-law (6.1) is valid, and a wake region. Thus in the absence of gravity the
structure of the liquid flow is not sensitive to the presence of bubbles.

For gravity-dependent flows (figure 7b) the velocity distribution presents an
important difference. If an inertial layer were to exist as for γ = 0, the wake layer
would be replaced by a core flow where the velocity is nearly constant. Thus we will
talk about a core region rather than a wake region: it will be shown further that the
homogeneity of the flow in that region concerns most of the physical quantities. In
the inertial layer located in the wall region, the validity of the log-law depends on
the value of Ri∗. When Ri∗ < 1 the log-law is still valid even though its y+-range of
validity decreases when Ri∗ increases. When Ri∗ > 1 the available data are insufficient
to conclude safely on the validity of the log-law. Nevertheless we believe that it
remains valid with the same slope in the semi-log representation of figure 7. We
observe also that when Ri∗ increases above unity, the y+-range of constant velocity
increases to the detriment of the wall layer. The ratio of the core diameter to the
wall layer thickness quantifies the relative importance of buoyancy and friction. The
existence of these two regions, a wall layer and a core, is an important feature of
gravity-dominated two-phase flows that will be confirmed below. We made a crude
estimate of the wall layer thickness δ, plotted in figure 8(a). According to the present
results δ/D is proportional to Ri−1

∗ , yielding

δ = 0.48
u2

∗
〈α〉|γ | . (6.2)

This correlation, which works equally well in upward and in downward flow, suggests
that the thickness of the inertial layer that persists in two-phase flow is independent
of the pipe diameter and results from a balance between friction and buoyancy. This
conclusion is in contradiction with previous studies, and in particular that of Liu
& Bankoff (1993a) that state that δ is controlled by the bubble diameter d. But it



would be surprising if the layer thickness were controlled by the bubble size since in
downward flow there are no bubbles in that layer.

Let us come back to the log-law and its parameters κ and B. Since the slope of the
velocity distribution does not change, the von Kármán constant κ keeps the value 2.5
that it takes in single-phase flow. While κ remains unchanged in two-phase pipe flow,
the conclusion is different for B. As figure 8(b) shows, the additive constant decreases
for Ri∗ > 1. Its behaviour is well-represented by

B = 5.5 − 5(Ri∗ − 1)H(Ri∗ − 1), (6.3)

where H is the Heaviside function. It is remarkable that the behaviour of B changes
at Ri∗ = 1: it could have justified the choice of the buoyancy number Ri∗ but
others dimensionless numbers involving a velocity scale different from (|γ |D)1/2 (e.g.
(|γ |d)1/2 or ULG) would have been possible. Although Marié et al. (1997) observed
a modification of κ in boundary layer flow, Hosokawa, Suzuki & Tomiyama (2010)
confirm for duct flow the trends that we observe for κ and B.

Why is the additive constant modified in two-phase pipe flow? The answer is not
clear. In single-phase flow a general expression for B that includes the effect of the
wall roughness ks is (Fabre et al. 1983)

B = 5.5 − 1

κ
log

(

1 + 0.3
ksu∗

ν

)

. (6.4)

For a hydraulically smooth wall B equals 5.5 whereas it decreases when the
roughness Reynolds number ksu∗/ν increases. In two-phase flow, the decrease of B

has sometimes been interpreted as due to the roughness induced by the bubbles near
the wall. But this explanation does not hold because (6.3) also fits the results in
downward flow where the wall layer is almost free of bubbles. Since the critical value
of Ri∗ above which B starts to decrease is close to unity, one can infer that, when the
buoyancy effect dominates, the core layer generates fluctuations imposed on the wall
layer like waves imposed by the gas on the liquid film in annular flow. This is of
course an open question that two-phase flow codes may help to close.

6.3. Turbulent shear stress

Because we used a single probe in our experiments the shear stress was not measured.
However it can be deduced from the x-component of the mixture momentum assuming
that the flow is fully developed and that the mean and turbulent contributions of
the gas inertia remain negligible. With these assumptions, the x-component of the
momentum balance can be written

−dP

dx
+ 1

r
[r(1 − α)τL] − ρL(1 − α)γ = 0, (6.5)

where the shear stress τL contains viscous and turbulent contributions:

τL = ρLν
dUL

dr
− ρLuLvL. (6.6)

Integrating (6.5) with respect to r and introducing τw and Ri∗ leads to

(1 − 〈α〉) τL

τw

= r

R

[

1 ∓ Ri∗

(

1 − 〈α〉r
0

〈α〉

)]

, (6.7)

where 〈α〉r
0 is the average gas fraction within an inner cylinder of radius r. Note that

the shear stress τL/τw is positive even if the two quantities τw and τL are negative. In
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FIGURE 9. Dimensionless turbulent shear stress calculated from equation (6.7). (a) Ri∗ = 0:
—, S3 and S4; �, M3; �, M4. (b) Ri∗ > 0: ♦, D3; �, D4; �, U3; �, U4; —, Liu & Bankoff
(1993a) experiment; and •, calculation from (6.7).

addition, since γ > 0 (respectively, < 0) for upward (respectively, downward) flow, the
∓ sign in the bracketed term of (6.7) is negative (respectively, positive) to account for
the definition of Ri∗.

In single-phase flow τL/τw is linear with respect to r. But in two-phase flow there
exist only two specific cases for which (1 − α)τL/τw, and not τL/τw, has the same
property: (i) for the improbable case of a homogeneous gas fraction distribution and
(ii) at microgravity conditions because Ri∗ = 0. These cases apart, (1 − α)τL/τw as well
as τL/τw are not linear with respect to r.

If the distribution of α is known τL may be determined from (6.7). Except in
the near-wall region the viscous stress in (6.6) is negligible and the shear stress is
nearly equal to the turbulent shear stress. An equation equivalent to (6.7) was used
by Wang (1985) to estimate the gas fraction distribution from the turbulent shear
stress measurements. He found a good agreement with the measured values in a
downward bubbly flow. In the present study, we used (6.7) to calculate the shear stress
from the gas fraction. The method was validated from the results of Liu & Bankoff
(1993a) by comparing their predicted and measured values (figure 9). However it was
necessary to calculate τL from smooth distributions of α and UL. The distribution of
the turbulent contribution uLvL/u2

∗ is displayed in figure 9. As we did for the velocity
distribution, we separated the Ri∗ = 0 conditions (figure 9a) from the others (figure 9b)
to demonstrate the gravity effects.

If Ri∗ = 0, (1 − α)τL/τw must be linear with respect to r. So must be (1 − α)uLvL/u2
∗,

apart from the wall region. This is clearly the case for the two single-phase flow
conditions: the solid lines are indeed indistinguishable (figure 9a), except in the
viscous sub-layer where the turbulent shear stress becomes negligible with respect
to the viscous counterpart. For two-phase flow at microgravity conditions, the linearity
of (1 − α)τL/τw leads to that of uLvL/u2

∗ because α is small and almost homogeneous.
For gravity flows (figure 9b), uLvL/u2

∗ is everywhere smaller than in single-phase
flow. Moreover the qualitative behaviour of the shear stress distribution is the same in
upward and downward flow. This is due to the fact that the square-bracketed term of
(6.7) is always smaller than unity. For upward flow the sign before the parenthesis is
negative and the gas fraction in a cylinder of radius r is always smaller than that of



the pipe because the bubble density is greater near the wall. Conversely, for downward
flow the sign is positive, as the gas fraction in a cylinder of radius r is greater than
that of the pipe because the bubble density is greater at the pipe axis. This shear stress
reduction by the presence of bubbles may be understood as follows. In upward flow
the inner cylinder is denser than the surrounding annulus: thus it exerts a buoyant
force on the annulus reducing by an equal quantity the friction at the inner surface of
the annulus. A similar explanation applies to downward flow, considering that friction
force and buoyancy are in opposite directions: the greater Ri∗ the smaller uLvL/u2

∗. It
is important to note that even if uLvL/u2

∗ is smaller in bubbly flow than in single-phase
flow it is not always the case for uLvL. Indeed the value of u∗ may be larger in bubbly
flow, especially when Ri∗ > 1.

The shear stress distribution of gravity flows (Ri∗ 6= 0) also displays the two-layer
structure demonstrated in the previous subsection for gravity flows: a central core
where the turbulent shear stress increases slightly with r and a wall region with a
sharp gradient. The dimensionless radius of the homogeneous core is equal to about
0.7–0.8 and seems to have little sensitivity to Ri∗.

6.4. Turbulence of the liquid phase

The present results will be discussed and compared to the existing turbulence models,
which we recall here. In two-phase flow, turbulence originates from two different
mechanisms: (i) the work of friction responsible for the shear-induced turbulence and
(ii) the bubble slip that generates the bubble-induced turbulence. The first mechanism
exists in single-phase flow whereas the second is specific to two-phase flow. Lance
& Lopez de Bertodano (1994) assumed that for low gas fraction the two mechanisms
are weakly coupled. As a consequence the turbulence kinetic energy can be expressed
as the sum of the shear- and the bubble-induced turbulence, kL = kLS + kLB. For fully
developed axisymmetric flow and in the limit of zero coupling, the transport equations
of kLS and kLB are

−(1 − α) uLvL

dUL

dr
− (1 − α) ε + 1

r

d

dr

[

(1 − α)
νt

σk

r
dkLS

dr

]

= 0, (6.8)

1

r

d

dr

[

(1 − α)
νt

σk

r
dkLB

dr

]

+ kLB∞ − kLB

tb

= 0. (6.9)

In (6.8) the first term is the production of turbulence kinetic energy, the second is the
rate of viscous dissipation and the third is the turbulence energy diffusion written in
terms of the eddy viscosity νt. In (6.9) the first term is the energy diffusion and in the
second kLB∞ is the turbulence kinetic energy added to the liquid by bubbles rising at
the velocity U∞ in still liquid and tb is the bubble response time defined as

tb = U∞

2γ
. (6.10)

Equations (6.8) and (6.9) possesses two explicit solutions. That of (6.8) is
well known in single-phase flow. Indeed wherever the diffusion term is negligible,
production and dissipation balance: this is the case in the inertial layer. Extrapolating
the eddy viscosity model νt = Cµk2

LS/ε from single-phase flow yields that the
turbulence kinetic energy and the shear stress are simply proportional:

kLS = uLvL
√

Cµ

. (6.11)



Equation (6.9) also has a simple solution. If tb, the bubble response time, is much
smaller than the eddy diffusivity time scale, (6.9) reduces to kLB∞ = kLB: this should be
satisfied in the core if u∗ULG/(γ D) ≪ 1. The study of Lance & Bataille (1991) carried
out at high bubble Reynolds number, ReB = d ULG/ν, in uniform bubbly flows shows
that kLB∞ can be expressed as

kLB = kLB∞ = f (α)U2
LG. (6.12)

This has been confirmed by Garnier, Lance & Marié (2001), Larue de Tournemine
(2001) and more recently by Riboux, Risso & Legendre (2010). The measurements
of u2

L/U2
LG, which are expected to behave as kLB/U2

LG, demonstrate that (Garnier et al.

2001)

(uL/ULG)2 ≈ α. (6.13)

These two solutions tell us which mechanism is dominant. The ratio of the bubble-
induced to shear-induced turbulence is expressed at small α by

kLB

kLS

∝ α U2
LG

uLvL

. (6.14)

In two-phase flow, bubble-induced turbulence should be negligible:

(i) at microgravity conditions since ULG ≈ 0;

(ii) when Ri∗ is small, because U2
LG is a function of γ d and it can be argued that

kLB/kLS = (d/D)O(Ri∗);

(iii) when d/D is small.

But even when Ri∗ and/or d/D are small, some flow regions must exist where the
bubble-induced turbulence is significant: this is the case where the shear stress is small
enough (uLvL ≪ αU2

LG), i.e. in the core region. This may be confirmed by plotting the
production of the shear-induced turbulence, i.e. the first term of (6.8). In dimensionless
form it is given by

Π+ = −(1 − α) uLvL

dUL

dr

D

2u3
∗
. (6.15)

In single-phase flow (figure 10a) two regions that correspond to the layers already
mentioned in § 6.2 can be distinguished: a wall region corresponding to the inertial
layer and a central region corresponding to the wake layer. In microgravity a similar
trend is observed since the distributions of (1 − α) uLvL and UL are similar to what
they are in single-phase flow. In gravity flow (figure 10b) two layers also exist. But we
have seen in § 6.2 that, if an inertial layer exists, the wake layer is replaced by a core
layer characterized by a homogeneous velocity distribution. In that layer Π+ vanishes
completely (figure 10b): the rising bubbles inhibit the production of shear-induced
turbulence by reducing the turbulence shear stress.

What are the consequences for the turbulence kinetic energy? Because we used a
single wire probe, we could not determine kL. Thus the discussion will be focused
on its signature, the r.m.s. x-velocity u′

L that is plotted in figure 11. The predicted
shear-induced turbulence contribution is also plotted. It was estimated as follows: we
calculated kLS from (6.11) and uLvL given in § 6.3, and then the r.m.s. contribution
of the shear-induced turbulence u′

L ≈ (2kLS/3)1/2 by assuming that turbulence is
isotropic. As in the previous subsections, the results are presented by distinguishing
the cases corresponding to Ri∗ = 0 (figure 11a) and the cases corresponding to Ri∗ > 0
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FIGURE 10. Production of shear-induced turbulence kinetic energy. (a) Ri∗ = 0: —, S3 and
S4; �, M3; �, M4. (b) Ri∗ > 0: ♦, D3; �, D4; �, U3; �, U4.
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FIGURE 11. Dimensionless r.m.s. velocities of the liquid. (a) Ri∗ = 0: (—), S3 and S4; (�),
M3; (�), M4; (- -), estimated from (6.11). (b) Ri∗ > 0: (♦), D3; (�), D4; (N), U1; (�), U3;
(�), U4; (- -), estimated from (6.11). The figures adjacent to the plots in (b) are the values
for Ri∗. The dashed lines in (b) were claculated for Re = 30 000 to compare to U3 (open
diamonds) and Re = 40 000 to compare to U4 (open squares).

(figure 11b). The single-phase flow distributions, considered as a reference, show little
sensitivity to the Reynolds number (figure 11a). As expected this is still nearly the
case at microgravity conditions because of the absence of bubble-induced turbulence:
in that case the liquid phase behaves almost as if it were alone in the pipe. A different
behaviour is observed for Ri∗ > 0 (figure 11b). To throw light on these results we
added the value of Ri∗. If we accept that u′

L is a good signature of the turbulence
intensity, we can draw the following conclusions.

(i) It is not as easy to identify the two layers with u′
L as it is with Π+. This is

because the shear-induced turbulence goes into the core by turbulent diffusion.
Nevertheless figure 11(b) with the exception of run U1 shows the existence of a
wall layer where u′

L/u∗ is almost independent of Ri∗.



(ii) For upward and downward flows the turbulence in the core increases with Ri∗: the
greater Ri∗ the larger the effect of buoyancy on bubble-induced turbulence.

(iii) For given Ri∗ the turbulence level in the core is smaller in upward flow than
in downward flow. Why is it so? On the one hand there are fewer bubbles in
upward flow than in downward flow and there is less bubble-induced turbulence.
On the other hand the shear-induced turbulence is created near the wall and part
of it goes into the core through turbulent diffusion: in upward flow a smaller
amount is produced near the wall because there is less liquid and the amount of
turbulence transferred through turbulent diffusion has to fill a region that contains
more liquid.

(iv) The turbulence level in the core can be lower in two-phase flow than in
single-phase flow (e.g. case U4). This may happen when Ri∗ is small enough.
Serizawa & Kataoka (1990) attributed this ‘turbulence reduction’ to a transfer of
turbulence kinetic energy from the liquid to the bubble surface energy such that
the resulting deformation would lead to eddy break-up and to energy dissipation
increase. Although this explanation is attractive, we believe in a simpler physical
mechanism. At small Ri∗, the bubble-induced turbulence is small or at least
much smaller than the shear-induced turbulence. But this last mechanism is less
effective than in single-phase flow because the bubbles inhibit the turbulence
production through the reduction of the turbulence shear stress (see figures 9
and 10). In this case uLvL/u2

∗ and also uLvL are smaller in bubbly flow than in
single-phase flow.

(v) The turbulence level in the core can be much larger in two-phase flow than
in single-phase flow (e.g. case U1 in figure 11b). When Ri∗ is large enough,
(6.14) shows that kLB can be much larger where it is produced than kLS. As a
consequence, when Ri∗ increases the core radius increases to the detriment of the
inertial layer. For large enough Ri∗ it may even happen that the core invades the
cross-section in such a way that the inertial layer disappears (see for example
figure 7 for the case U1). These cases are particularly interesting: indeed as the
core turbulence mainly comes from bubble slip they can be used to verify (6.13).
Assuming uncoupled mechanisms it is always possible to determine kLB ≈ kL − kLS

if kLS is known. One might estimate kLS through the value kL0 it takes in single-
phase flow. But the assumption kLS ≈ kL0 would overestimate the shear-induced
turbulence, as pointed out before. Hopefully there are cases for which kLS is small
compared to kL so that most of the energy comes from bubble-induced turbulence
(kLB ≈ kL). Equation (6.14) suggests that this assumption should be true for large
enough value of 〈α〉U2

LG/u2
∗, i.e. of Ri∗. The present experiments at Ri∗ > 1 plotted

in figure 12(a) show that the core turbulence is scaled well by αU2
LG as the

theory of (6.12) and (6.13) predicts, and that u′2
L /(αU2

LG) nearly falls in the range
[1.5, 2.5] found by Lance & Bataille (1991).

While the turbulence kinetic energy in the wall layer possesses all the features
displayed in single-phase flow that of the core is more specific. In some respects it
may even appear surprising. Its signature u′

L,axis/u∗ is plotted in figure 12(b). When√
〈α〉ULG/u∗ is greater than ∼0.5, it is dominated by the bubble-induced turbulence

with a rough asymptotic value of
√

2α ULG/u∗. When
√

〈α〉 ULG/u∗ approaches zero, it
tends to the acknowledged value of ∼0.8 in single-phase flow and it slightly increases
to greater values for greater 〈α〉 in microgravity where a fluctuating motion of the
bubbles exists. But we do not know what happens for

√
〈α〉 ULG/u∗ < 0.5. It is likely
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FIGURE 12. Dimensionless liquid r.m.s. velocities. (a) In the core for Ri∗ > 1: N, U1; �, U3;
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FIGURE 13. Bubble slip velocity compared to the rise velocity in still liquid from (6.16)
(horizontal grey line): (a) (△), M1; (♦), M3; (�), M4; (�), D3; (�), D4; (b) (N), U1; (�), U3;
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that u′
L,axis/u∗ goes through a minimum. It must be stressed that given the small

number of flow conditions this graph has no predictive capability.

6.5. Bubble slip velocity

Buoyancy induces a drift between the two phases. The resulting slip velocity is
positive in upward flow, negative in downward flow and near zero at microgravity
conditions. The absolute value of the slip velocity is plotted in figure 13(a) for
downward and microgravity flows and in figure 13(b) for upward flow.

The terminal velocity in still liquid U∞ of ellipsoidal bubbles of equivalent diameter
d is well-predicted, for the capillaro-gravity regime by the relation of Mendelson



(1967):

U∞ =
(

2.14
σ

ρLd
+ 0.505 γ d

)1/2

, d > 0.44

√

σ

ρLγ
. (6.16)

The present upward or downward experiments belong to this regime since the
condition is fulfilled for d > 1.2 mm. Equation (6.16) gives a terminal velocity in
still liquid of 0.26–0.24 m s−1 for bubbles of 3–4.5 mm equivalent diameter.

The microgravity experiments do not belong to the capillaro-gravity regime: the
residual gravity in the x-direction is less than 0.002 times the terrestrial gravity and
thus the inequality of (6.16) is not satisfied. They belong rather to the viscous regime
predicted by the Hadamard–Rybczynski equation (see Clift, Grace & Weber 1978):

U∞ = 1

12

γ d2

ν
, d <

(

36
ν2

γ

)1/3

. (6.17)

For example bubbles of 1.2 mm diameter that satisfies the above condition would have
a velocity of U∞ ≅ 3.7 mm s−1 because of the residual gravity.

In the flow core we expect the slip velocity to be close to the predicted velocity
in still liquid because both the velocity and the turbulence are nearly homogeneous
(figure 13). This is the case at microgravity conditions (figure 13a) for which the
measured slip velocity remains comparable to the value of U∞ for 1.2 mm diameter
bubbles. It is also the case for upward flow for which the slip velocity is nearly
that of the terminal velocity in still liquid in the capillaro-gravity regime (figure 13b).
However in downward flow the difference between the measured slip velocity and
the predicted velocity in still liquid is quite important (figure 13a). As the turbulence
has a negligible effect on the slip velocity in the ellipsoidal bubble regime (Eppinger
1995), only a measurement bias can explain the observed difference: this is a possible
explanation since the slip velocity is determined from the difference between two
measured velocities whose accuracy is probably not better than 2 %.

In the near-wall region, the slip velocity decreases (figure 13). Even if the bubble
diameter decreases as well (figures 4 and 5) their dynamics belong to the capillaro-
gravity regime for which the velocity in still liquid depends little on the bubble
diameter. Why is the slip velocity much smaller than the velocity in still liquid in
the wall region? A recent numerical experiment (Adoua, Legendre & Magnaudet 2009)
has shown that the drag coefficient of an oblate bubble increases with the shear
rate Sr = 2d UL,y/UL if it is greater than 0.2. For Sr = 1, they found that the drag
coefficient can be more than twice its value for a homogeneous flow. In the present
experiments Sr can increase up to 1 when the distance from the wall decreases. At this
stage it is impossible to check how much the shear rate can reduce the slip velocity
because the process is sensitive to the bubble aspect ratio, a quantity that has not been
determined in our experiments.

6.6. Fluctuating velocity of the gas phase

The ratio of the gas to liquid r.m.s. velocities u′
G/u′

L is plotted in figure 14. Its
value typically ranges between 1 and 3 and decreases near the wall. It is smaller for
downward flow than for upward flow and it seems to increase when the Reynolds
number increases.

A theoretical expression of this ratio was first established by Tchen (1947) for
particles whose density is larger or smaller than that of the carrying phase (see also
Hinze 1959, pp. 357–359). The idea of Tchen was to investigate in the linear limit



1

2

3

0.5 0

1

2

3

4

0.5 1.01.00

4(a) (b)

FIGURE 14. Ratio of the gas to liquid r.m.s. velocities: (a) N, M1; �, M3; �, M4; (b) ♦, D3;
�, D4; N, U1; �, U3; �, U4.

the response of a small particle to the excitation induced by the fluctuating velocity of

the carrier fluid. Under some restrictive assumptions (steady homogeneous turbulence,

spherical particles smaller than the Kolmogorov microscale) the Lagrangian energy

spectrum for the particle can be calculated versus that of the carrier phase. After

integrating over the whole spectrum, the ratio of the r.m.s. velocity of the particle to

that of the fluid is obtained:

u′2
G

u′2
L

= b2 − tL/tG

1 − tL/tG

, b = 3

1 + 2ρG/ρL

≅ 3, tG = (1 + 2ρG/ρL)d
2

24ν
≅

d2

24ν
, (6.18)

where the above expressions are applied to bubbles moving in a continuous liquid; tG

is the bubble relaxation time and tL is the Lagrangian integral time scale of turbulence.

The assumptions underlying the above expressions are seldom satisfied in bubbly flow.

However, the microgravity conditions seem to be a reasonable frame in which to apply

the Tchen theory because the effect of the mean slip velocity on the bubble dispersion,

also known as ‘crossing trajectory effect’ (Csanady 1964), is absent.

Some results from direct numerical simulations (Yeung & Pope 1989) or from

experiments (Sato & Yamamoto 1987) provide a relation between tL and the Eulerian

integral time scale Te : tL ≈ 0.5Te. Moreover, near the pipe axis, the Eulerian integral

time scale can be estimated versus the Eulerian length scale le and the r.m.s. velocity

of the liquid by Te ≈ le/u′
L ≈ κD/2u′

L. From these expressions, we estimated the values

of the ratio u′
G/u′

L near the pipe axis at microgravity conditions (table 3). These values

are slightly smaller than those found in the present experiments. As shown for the

runs M3 and M4 (figure 14) they are indeed close to 3, the value that would be

obtained from the Tchen theory in inviscid fluid, i.e. in the absence of drag. The

Tchen theory based on the Stokes drag assumption underestimates the ratio u′
G/u′

L

because this assumption is not valid when the bubble Reynolds number based on the

fluctuating slip velocity is not small.

An extension of the Tchen theory to higher bubble Reynolds number has been

proposed by Deutch & Simonin (1991). It allows accounting for the crossing trajectory

effect. The bubble relaxation time tG and the Lagrangian integral time scales of



Run r+ d u′
L u′

G/u′
L v′

G/v′
L

— (mm) (m s−1) — —

M1 0 2 0.03 2.3 2.3
M3 0 1.8 0.06 2.5 2.5
M4 0 1.2 0.05 2.1 2.1
U1 0 3.2 0.07 1.9 2.2
U3 0 3.5 0.05 1.9 2.2
U4 0.6 3.4 0.046 2.5 2.7
D3 0 4 0.096 1.8 2
D4 0 3 0.053 2 2.3

TABLE 3. Ratio of the gas and liquid r.m.s. velocities.

turbulence in the axial and radial directions tLx and tLr can be written:

tG = ρG/ρL + CM

3CD ULG/4d
= ULG

2γ
, tLx = tL

√

1 + (ULG/2u′
L)

2

, tLr = tL
√

1 + (ULG/u′
L)

2

. (6.19)

The ratio of the r.m.s. velocities of the bubbles and of the liquid in the axial and radial
directions are expressed versus these time scales:

u′2
G

u′2
L

= b2 + tLx/tG

1 + tLx/tG

,
v′2

G

v′2
L

= b2 + tLr/tG

1 + tLr/tG

. (6.20)

For the runs dominated by gravity, the values of u′
G/u′

L and v′
G/v′

L are estimated using
(6.20) at the pipe axis for U1, U3, D3, D4 and at 2r/D = 0.6 for U4 (table 3). The
values of u′

G/u′
L are lower than in microgravity. For U4 and D4 they are in good

agreement with the experimental values. When the bubble-induced turbulence plays a
significant role (D3 and U1) (6.20) overestimates the experimental values which are
closer to 1. The ratio v′

G/v′
L is typically 15 % higher than u′

G/u′
L because the ratio of

the Lagrangian integral time scales of turbulence tLx/tLr is close to 2.

6.7. Gas fraction

Several studies have been devoted to the prediction of the gas fraction distribution in
pipes using Eulerian two-fluid models (Drew & Lahey 1982; Antal, Lahey & Flaherty
1991; Lance & Lopez de Bertodano 1994; Lopez de Bertodano et al. 1994; Chahed
& Masbernat 1998; Chahed, Colin & Masbernat 2002; Chahed, Roig & Masbernat
2003; Lucas et al. 2007; Hosokawa & Tomiyama 2009b). Some of these models are
used here to analyse the influence of buoyancy. They start from the radial momentum
equation of each phase written for a fully developed steady flow. By assuming that the
turbulence is isotropic and that the gas inertia is negligible, one obtains the differential
equation that governs the gas fraction distribution by eliminating the pressure gradient
between these two equations:

ρLα
d(1 − α)v′2

L

dr
+ MGr = 0, (6.21)

where v′2
L is the radial contribution of the turbulent kinetic energy, MGr is the radial

component of the force MG per unit volume exerted by the liquid on the gas bubbles.
This force is expressed as a sum of three contributions: the drag, the lift and the
added mass forces (e.g. Magnaudet, Rivero & Fabre 1995). By taking into account the



direction of each contribution, the radial component reduces to

MGr = −ρLαCLULG

dUL

dr
+ MGTr, (6.22)

where the first term of the right-hand side is the lift force introducing the lift
coefficient CL and the second term is the contribution of the nonlinear terms resulting
from the averaging procedure. This last term includes the fluctuating contributions of
the drag, the lift and the added mass force. A classical approach used by most of the
authors consists in modelling the effect of turbulence by a ‘turbulent dispersion’ force
that can be written (Lance & Lopez de Bertodano 1994):

MGTr = −CDTρLkLS

dα

dr
, (6.23)

where CDT is a turbulent dispersion coefficient between 0 and 1 from different
expressions found in the literature.

Written in dimensionless form, (6.21) becomes

(αv′+2
L + CDTk+

LS)
dα

dr+ = α(1 − α)
dv′+2

L

dr+ − αCL

ULG

u∗

dU+
L

dr+ , (6.24)

where the superscript + denotes dimensionless quantities scaled with u∗ and D/2. The
above equation can be viewed as a differential equation in α once the terms of the
right-hand side and thus the distributions of U+

L and v′+
L are known. In the core region

both the gas fraction and the mean velocity are almost constant so that (6.24) tells
us nothing more than we already know. In the near-wall region this is not the case
since all the physical quantities including U+

L an v′+
L present steep gradients: the first

term of the right-hand side is positive and the second one, the lift force, is positive
in upward flow and negative in downward flow. Because their ratio ULG/u∗ is O(1) in
that region (in fact ULG/u∗ ≈ 5 in our experiments), it controls the bubble distribution
through the lift force. For bubbles smaller than ∼5 mm, the lift coefficient is positive
according to Tomiyama et al. (2002) and the lift force tends to push the bubbles
toward the wall in upward flow and toward the axis in downward flow. To avoid an
accumulation of bubbles at the wall in upward flow, most authors introduce a wall
force (Antal et al. 1991) that artificially fixes the location of the maximum gas fraction
and leads to a negative gradient of α near the wall. We verified that for gravity flows
such a model predicts the gas fraction distributions satisfactorily. But at microgravity
conditions this model is not in agreement with our current observations. Because
ULG/u∗ is very small the lift becomes negligible and the sign of dα+/dr+ is the
same as that of dv′+2

L /dr+. This is obviously untrue since the experiments confirm that
dα+/dr+ is negative while du′+2

L /dr+ and thus dv′+2
L /dr+ are positive. Special attention

has to be paid to the modelling of the turbulent terms in the interfacial momentum
transfer especially in microgravity conditions. We note in passing that microgravity
flow is an interesting test for understanding the influence of these nonlinear
terms.

From theoretical arguments Chahed & Masbernat (1998) and Chahed et al. (2002)
proposed modelling the nonlinear terms resulting from averaging the drag and the
added mass forces:

MGTr = 3

4

CD

d
|ULG|Vd − CM

r

d

dr

[

rα(v′2
G − v′2

L )
]

, (6.25)



where CM is the added mass coefficient, CD is the drag coefficient and Vd is a radial
drift velocity. This velocity is modelled as a dispersion term proportional to the gas
fraction gradient and the eddy diffusivity νt as Vd = −CDTνt dα/dr, where CDT is a
constant coefficient. With this model, (6.21) becomes in a dimensionless form

[

αv′+2
G + CM(v′+2

G − v′+2
L ) − 3

4
CDCDTCµν+

t

ULG

u∗

]

dα

dr+

= α(1 − α)
dv′+2

L

dr+ − αCL

ULG

u∗

dU+
L

dr+ − CM

α

r+
d

dr+

[

r+(v′+2
G − v′+2

L )
]

, (6.26)

where the turbulent viscosity is scaled by Cµu∗D. While this differential equation
contains some extra terms compared to (6.24), it does not include an additional
dimensionless number. Indeed, both have solutions that depend on ULG/u∗.

To transform (6.26) into a workable equation, we need to drop some terms and
to approximate some others. The square-bracketed term of the left-hand side can be
simplified as follows. The ratio of the third to the second term of the left-hand side is
∼0.2 in the capillaro-gravity regime and 0.005 in the viscous regime (this evaluation
was done with CDT = 0.35, Cµ = 0.09 and CD = 0.3ρLU2

LGd/σ for the capillaro-gravity
regime and 16ν/(ULGd) for the viscous regime). The third term will be ignored.
Because (v′+2

G − v′+2
L ) is of the order of (v′+2

L ), the first term of the left-hand side will
be ignored at small gas fraction. And for the same reason, (1 − α) is about 1 in the
first term of the right-hand side. Equation (6.26) has the same shape as (6.24), the
second terms in the bracket of the right-hand sides of these two equations being of
the order of k+

LS. In normal gravity, the dominant term is the lift force (second term
of the right-hand side) while at microgravity it is zero, the two other terms becoming
dominant.

By simplifying (6.26), we get a differential equation in α that is valid in the wall
layer (r+

c < r+ < 1, where r+
c = 1 − δ+) where the log-law for the mean velocity profile

is valid and where the turbulent kinetic energy can be estimated by a balance between
its production and its dissipation. Moreover, in this region, the turbulent shear stress is
almost piecewise linear (figure 9):

u+v+ = ar+ + b, a = 1 − c r+
c

1 − r+
c

, b = (c − 1) r+
c

1 − r+
c

. (6.27)

In this equation c is in the range [0, 1]: 0 when the shear stress is zero in the core and
1 when it is linear, i.e. in microgravity. In addition, the following approximations for
the mean velocity gradient and the turbulent terms are used:

dU+
L

dr+ = − 1

κ (1 − r+)
, v′+2

L = 2

3
k+

LS,
v′

G

v′
L

= Ct, k+
LS = u+v+

√

Cµ

, (6.28)

where Ct is a constant greater than unity (Eppinger 1995).
With these assumptions, (6.26) becomes

dα

α
=
[

a(C0 − 1)

ar+ + b
− 1

r+ + Cg

(1 − r+)(ar+ + b)

ULG

u∗

]

dr+, (6.29)

with

C0 = 1

CM(C2
t − 1)

, Cg =
3CL

√

Cµ

2κCM(C2
t − 1)

. (6.30)
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FIGURE 15. Gas fraction distribution: (a) Upward flow U3 (�), U4 (�); (b) Downward flow
D3 (♦), D4 (�); (c) Microgravity flow M3, (△) M4 (N). Lines are calculations from (6.31).

Integrating (6.29) leads to the general solution of the gas fraction distribution in the
wall layer, i.e. for r+ > r+

c ,

α

αc

= f (r+)

f (r+
c )

, f (r+) = (ar+ + b)
(C0−1)

r+

(

ar+ + b

1 − r+

)CgULG/u∗
. (6.31)

Note that the wall layer concept does not apply in microgravity. In that case, αc is
simply the value of α for an arbitrary location r+

c : it can be 0 or any other value
chosen in the range [0, 1]. For gravity flow the radius of the core is deduced from
the thickness of the wall layer as r+

c = 1 − δ+. We took for δ+ and c the experimental
values. In addition we did not include the wall force in our radial momentum balance
so that the gas fraction profile cannot be calculated up to the wall in upward flow.

The solution for α is obtained once the various constants are given. The lift
coefficient has a major effect on the radial distribution of α: we chose CL = 0.288
according to Tomiyama et al. (2002). In the experiments, the aspect ratio of the
bubbles is close to 1.5: according to Lamb (1932) the added mass coefficient for an
ellipsoidal bubble with an aspect ratio of 1.5 moving perpendicularly to its minor axis
is CM ≅ 0.4. The values of u′

G/u′
L in the near-wall region are a little smaller than the

theoretical values given by (6.20) and table 3. It is thus expected that the values of
Ct = v′

G/v′
L would also be smaller, say between 1.5 and 2: we took Ct = 1.8.

Figure 15 displays a comparison between the calculated and the measured values of
α. As the solution (6.31) has been developed for shear-induced turbulence, its validity
is limited to the wall region where the log-law applies. In that region the agreement
between the analytical solution and the experiments is quite good. But it cannot fit the
trends very near the wall and in the core where the turbulence modelling that has been
used here is failing. Despite the relatively simple and perhaps incomplete formulation
of the nonlinear terms in the interfacial momentum transfer, this simple analytical
model gives a good idea of the gas fraction distribution in various gravity conditions.
Even if it cannot be considered as a predictive tool it has the merit of highlighting the
following points.

(i) The nonlinear terms in the interfacial momentum transfer play a special role in the
gas fraction distribution. These terms are of the same order of magnitude as the lift
force in upward and downward flows. They become crucial in microgravity when



the lift force disappears. In this configuration the contribution of the turbulence
added mass force seems to be dominant. This contribution could not emerge
without the microgravity experiments.

(ii) The gas fraction distribution near the wall depends on the dimensionless parameter
ULG/u∗ that quantifies the effect of buoyancy versus friction.

Realistic progress in the modelling of the interfacial momentum transfer could
be expected from experiments and numerical simulation of Lagrangian tracking of
isolated bubbles in turbulent shear flows. Some experiments (Colin & Legendre 2001)
and numerical simulations (Legendre et al. 1999) on the motion of isolated bubbles
in a turbulent pipe flow confirmed that, on the Earth, the bubbles move towards the
wall in vertical upward flow and towards the centre in downward flow. In microgravity
where the lift force is negligible, the action of the large turbulent eddies on bubble
dispersion is dominant and the radial bubble distribution is controlled by the temporal
variations of the turbulent structures.

6.8. Wall friction

In the previous subsection we have shown that the radial distributions of velocity,
turbulence and gas fraction are sensitive to gravity and wall friction through various
dimensionless parameters:

(i) the liquid velocity and the turbulent shear stress depend on Ri∗;

(ii) the turbulence in the core region is sensitive to α1/2ULG/u∗;

(iii) the gas fraction in the wall region is controlled by ULG/u∗.

All these dimensionless numbers relate the buoyancy and friction effects, directly
or indirectly. However, though for bubbles in a viscous regime ULG is related to γ d

through a rather simple relation, as seen in (6.17), this is not the case in capillaro-
gravity regime as (6.16) shows. Because most of the experimental results have been
obtained for this regime, it may explain why the literature does not provide a clear
answer to the scaling of buoyancy to friction effects in bubbly flow.

To predict what the flow behaviour looks like it is important to evaluate these
dimensionless numbers, i.e. to estimate 〈α〉, ULG and u∗. The first two quantities can
be easily determined for given bubble diameter and volumetric quality χ = jG/(jL + jG).
In contrast the evaluation of u∗ is more problematic. Little has been done in the
previous studies to predict u∗, i.e. the wall shear stress τw. Indeed in vertical bubbly
flow the wall friction has a small influence on the pressure gradient. This is due to
the fact that 4τw/D is usually small compared to the weight of the mixture. As a
consequence the prediction of the pressure gradient does not require that the wall
shear stress τw be known with a great accuracy. This is likely to be why it has been
disregarded.

Marié et al. (1997) were perhaps the only ones to develop a theoretical model for
the wall shear stress. The model was tested against their data in an upward bubbly
boundary layer. It was also tested against downward pipe flow data. In their model the
friction velocity is one of the roots of a quadratic equation. We put this solution into
the form

u∗

u∗0

= (1 − C
√

f0/2)
√

1 + (1 − 2C
√

f0/2)Ri∗d − C
√

f0/2

1 − 2C
√

f0/2
, (6.32)

where C = 10.6, u∗0 is the friction velocity in the single-phase flow of the same liquid
velocity 〈UL〉 = jL/(1 − 〈α〉), f0 = 2 (u∗0/〈UL〉)2 is the corresponding friction factor



and Ri∗d a buoyancy parameter similar to Ri∗ except that it is scaled by the bubble
diameter rather than by the pipe diameter and that it is weighted by the difference of
gas fraction at the wall and at the core (αw − αc) and not by 〈α〉:

Ri∗d = (αw − αc)γ d

u2
∗0

. (6.33)

It must be pointed out that, if the Reynolds number is not large enough, there exists a
critical Ri∗d above which (6.32) has no real root.

To understand how the ratio u∗/u∗0 depends on Ri∗d it is useful to consider the
following simplified explicit form of (6.32) that is valid with a reasonable accuracy for
0 < Ri∗d < 1:

u∗

u∗0

= 1 + 1

2

(

1 − C
√

f0/2
)

Ri∗d. (6.34)

Since the single-phase friction factor, f0, is smaller than 0.018 for turbulent flow the
bracketed term of the right-hand side of (6.34) is positive. Furthermore it appears that
Ri∗d is always positive: this is obviously true for upward flow because γ > 0 and
αw > αc but this is also true for downward flow since if γ < 0, αw is nearly zero. The
relation predicts that the ratio u∗/u∗0 increases with the gravity parameter Ri∗d. Thus
according to (6.34) the two-phase friction velocity is always greater than that of the
single-phase flow of the same liquid velocity.

The present results of u∗ are compared to the friction velocity predicted by (6.32)
in figure 16(a). Though it is hard to assess the model, because of the experimental
uncertainty on u∗ and on (αw − αc), at least the predictions are in qualitative agreement
with the experimental results.

The model of (6.32), or of its simplified form (6.34), is based on a two-layer flow, a
wall layer and a core layer. As such it is not fully predictive since αw and αc must be
known. However (6.34) can be easily simplified to yield a workable correlation. In a
first step (αw − αc) may be approximated by 〈α〉, so that (6.34) becomes

u∗

u∗0

=
(

τw

τw0

)1/2

= 1 + 1

2

(

1 − C
√

f0/2
) 〈α〉|γ |d

u2
∗0

, (6.35)

where τw0 is the wall shear stress of the single-phase flow of velocity 〈UL〉. By
comparing to our results and to those of Kashinsky & Randin (1999) it appears that

(6.35) works well with C = 9.5. It can be further simplified because f
1/2
0 varies little

(f0 ∝ Re−1/4):

u∗

u∗0

=
(

τw

τw0

)1/2

≅ 1 + 1

4

〈α〉|γ |d
u2

∗0

. (6.36)

Equation (6.36) gives the wall shear stress τw as a product of two terms: the single-
phase wall shear stress that depends on the Reynolds number and a corrective term
that is a function of the buoyancy parameter 〈α〉|γ |d/u2

∗0. By doing so the effect of
viscosity and that of gravity are clearly identified.

As shown in figure 16(b), (6.36) works equally well for upward flow and downward
flow. Moreover for microgravity flow it is consistent with the suggestion of Colin,
Fabre & McQuillen (1996) who showed that the wall shear stress is given by a
classical single-phase correlation using the physical properties of the liquid and the
velocity of the mixture: because of the absence of drift, the mean liquid velocity 〈UL〉
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(6.32) (grey line): (�), upward flow; (N), downward flow. (b) Comparison with equation
(6.36) (—): (�), upward flow; (N), downward flow; (©), Kashinsky & Randin (1999).

is equal to the mixture velocity and their correlation is obviously equivalent to the
present one.

Last but not least (6.36) works for different bubble sizes (present study: 3–4 mm;
Kashinsky & Randin (1999) study: 0.8–1.7 mm). Because our and their experiments
have been done with the same pipe diameter but different bubble diameter, it proves
that

√
γ d is a better velocity scale than

√
γ D since a correlation using the latter would

not fit both data sets.

7. Conclusion

In vertical turbulent bubbly flow, gravity plays, through bubble buoyancy, an
important role that we have tried to understand and quantify through a set of
experiments. These experiments were performed in the same facility with millimetric
bubbles under three gravity conditions: upward, downward and microgravity flows
(1g, −1g and 0g). As the flow is also controlled by friction we chose to run these
experiments at the following Reynolds number and volumetric quality χ :

(i) At Re ≈ 4 × 104 and χ ≈ 2.5 %, the liquid flow rate is high and the gas fraction is
small: the turbulence is mainly produced by the shear stress.

(ii) At Re ≈ 104 and χ ≈ 10 %, the liquid flow rate is low and the gas fraction is
large: the turbulence induced by the bubble slip is higher than the turbulence
produced by the shear stress.

(iii) At Re ≈ 3 × 104 and χ ≈ 6 %, the contributions of both the shear-induced
turbulence and the bubble-induced turbulence are significant.

For each run, in addition to the flow conditions, i.e. flow rates and pressure gradient,
the distributions of mean and fluctuating phase velocity, shear stress, turbulence
production, gas fraction and bubble size were measured or determined. From the
dimensional results the most significant effect of gravity concerns the gas fraction
distribution: a wall peaking effect in upward flow and void coring in downward flow
in agreement with previous studies. In microgravity, the present results show that the



gas fraction profile is flatter than in downward flow with a maximum at the pipe
axis.

To quantify the relative contributions of buoyancy and friction to the kinematic
structure and the phase distribution we introduced the buoyancy number Ri∗, defined
in (2.2), which emerges from the momentum equation averaged over the pipe cross-
section. Various physical models that have been tested against the present data reveal
other buoyancy numbers ULG/u∗, or

√
〈α〉ULG/u∗, and

√
〈α〉|γ |d/u2

∗0. In the present
study Ri∗, ULG/u∗ and

√
〈α〉|γ |d/u2

∗0 extended over the ranges [0, 2.7], [0, 6.4] and
[0, 4.7] respectively.

Single-phase and microgravity flows are both insensitive to gravity (Ri∗ = 0) and
hence should possess the same kinematic structure. Indeed, the most important features
of fully developed single-phase flow are preserved in 0g flow: the mean liquid velocity
follows the log-law (figure 7) and the shear stress distribution is linear (figure 9).
As a consequence the turbulence production in the liquid is similar and leads to the
same distribution of the turbulent velocity. Concerning the gas phase we found that
the bubble slip is smaller than that possibly induced by the residual gravity. Moreover
the liquid–gas r.m.s. velocity ratio is around 3 in agreement with the Tchen theory.
Therefore microgravity flow can be considered as a reference condition from which
buoyant flows deviate.

And buoyant two-phase flows (Ri∗ > 0) do indeed deviate from single-phase flow.
Their kinematic structure is characterized by the existence of two regions, a core and a
wall layer.

(i) In the core, the phases and their mean velocity are uniformly distributed.
Accordingly the absence of velocity gradient induces a severe reduction of the
shear stress and of the turbulence induced by it (figure 9). Thus the core
turbulence comes partly from the diffusion of the shear-induced turbulence and
partly from the bubble-induced turbulence. The present results show that one or
the other dominates depending on whether the buoyancy number

√
〈α〉ULG/u∗ is

less or greater than 0.5 (figure 12). Concerning the gas phase, the slip velocity is
nearly that of a bubble of the same equivalent diameter in still liquid (figure 13).
Moreover the liquid–gas r.m.s. velocity ratio is smaller than 3 and decreases as Ri∗
increases due to the bubble slip velocity (crossing trajectory effect).

(ii) The wall layer is dominated by the shear-induced turbulence. Thus it was not
surprising to find that the log-law still applies in that layer, at least under certain
conditions. In the present study we found that, when Ri∗ < 1, the log-law is valid
as it is, i.e. with the same constants as those acknowledged in single-phase flow
(figure 7). When Ri∗ > 1, one can hardly say that the log-law is valid because of
the sparse data available within the layer. However this law can still be used to
predict the liquid velocity on the condition of the von Kármán constant κ keeping
the value it has in single-phase flow, and for the additive constant B a decreasing
function of Ri∗ (figure 9).

The two-layer concept is not new but the fact that various laws or behaviours hold
equally for upward, downward and microgravity flows is an important issue from
which other properties arise. The first one concerns the thickness of the wall layer δ

that results from the equilibrium between the shear- and the bubble-induced turbulence
(equation (6.2)) rather than from the bubble size as previous studies suggested. The
second one concerns the wall shear stress τw. It is shown that the ratio τw/τw0 can be
expressed through (6.36) versus the buoyancy parameter

√
〈α〉|γ |d/u2

∗0, regardless of
whether the flow is upward or downward.



The central issue of bubbly flow is the phase distribution. Its prediction involves
complex numerical simulations that were outside the scope of the present study.
However we selected the main mechanisms (turbulent dispersion, lift and nonlinear
effects of added mass) and we tried to model them as simply as possible. The 0g

results are invaluable in quantifying the turbulent dispersion versus the added mass
effect, while in 1g or −1g flow the lift force dominates. We ended up with an
analytical solution whose merit is to give a qualitative description of α in the wall
layer and to demonstrate the role of the buoyancy number ULG/u∗ in the solution that
applies equally to upward, downward or microgravity flow, except very close to the
wall.
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Appendix

A.1. Chord length distribution and bubble diameter distribution

The gas fraction is assumed to be locally homogeneous over a circular section of
diameter d around the probe. Let the bubble size distribution which intersect the probe
be given by the probability density function (p.d.f.) P(d). This distribution is not equal
to the distribution of the bubble sizes in this section, Ps(d), because the larger the
bubble size, the greater the number of bubbles that intersects the probe. These two
distributions are related by a weighting function proportional to d2:

P(d) = Ps(d) d2

/
∫ dmax

0

Ps(d) d2 dd. (A 1)

Consider a bubble of diameter d: it intersects the probe if its centre is at a distance
r from the probe, r being smaller than d/2. We assume that the bubble centres are
uniformly distributed in a cylinder of diameter d around the probe. After a long time,
the number of bubble centres passing through an annulus of radius r and thickness dr,
is proportional to r. The p.d.f. of the bubble diameter with a centre at a distance r

from the probe and pierced by the probe tip is P(r; d). Since P(r; d) is proportional to
r and its integral equal to 1, it follows that

P(r; d) =
{

8r/d2, 0 6 r 6 d/2

0, r > d/2.
(A 2)

When a bubble touches the probe tip at a distance r from its centre, the chord
length y intersected by the probe in the direction of a minor axis of the bubble can be
calculated from

r2 +
( y

2E

)2

=
(

d

2

)2

, (A 3)



where E is the bubble aspect ratio. We assume that the minor axis is aligned with the
direction of the probe. The probability of measuring a chord with a length y is

P(y; d) |dy| = P(r; d) |dr|. (A 4)

It can be calculated using (A 3) and (A 4):

P(y; d) = 2y

(Ed)2
. (A 5)

The p.d.f. of the chord lengths intersected by the probe becomes

P(y) = P(y; d) P(d) = 2y

(Ed)2
P(d). (A 6)

The backward transformation of Clark & Turton (1988) allows the determination of
the p.d.f. of bubble sizes P(d) versus the measured p.d.f. of the chords lengths P(y).
Since the bubbles were assumed to move in a direction parallel to their minor axis,
the maximum chord length ymax of the distribution was obtained when the probe tip
pierces the bubble with the largest size dmax along its minor axis:

ymax = E(dmax) dmax . (A 7)

Then, the p.d.f. P(d) and P(y) were divided into m classes of equal length:

for 0 6 i 6 m

{

di = dmax (1 − i/m),

yi = Eidi.
(A 8)

By using (A 8), the mean chord length Wi inside one class can be written as

Wi =
∫ yi

yi+1

P(y) dy =
∫ yi

yi+1

dy

∫ dmax

0

P(y; d) P(d) dd ≈ ∆d

m−1
∑

j=0

CijP(dj), (A 9)

where ∆ = dmax/m and

Cij =
∫ yi

yi+1

2y

(Ejdj)
2

dy = y2
i − y2

i+1

(Ejdj)
2

for 1 6 i 6 m − 1, j 6 i (A 10a)

and

C00 = 1

2

∫ y0

y1

2y

(E0d0)
2

dy = y2
0 − y2

1

(E0d0)
2
. (A 10b)

Cij is equal to zero for j > i, because a diameter dj can only give a chord with a length
y smaller than yj. Cij is a triangular matrix and the p.d.f. of the bubble size P(d) can
easily be calculated in a discretized form:

P0 = W0

C00∆d
, (A 11a)

Pi =
1

Cij

(

Wi∆d −
i−1
∑

j=0

CijPj

)

for i > 1. (A 11b)

The main drawback of this method comes from the cumulative errors in the
calculation of Pi from (A 11). In order to obtain an accurate bubble size distribution
a great number (>2000) of chord lengths is required to have a smooth distribution.



This number of chord lengths can be reduced to ∼500 by assuming that the probability
density function of the bubble size is well-fitted by a given law. In many experimental
situations and especially in the present study the bubble size distributions were well-
fitted by a log-normal law (Kamp 1996):

Ps(d) = 1√
2π σ̂d

exp

[

− log2(d/µ)

2σ̂ 2

]

, (A 12)

where µ is the median diameter of the distribution and σ̂ is a parameter characteristic
of the width of the bubble size distribution. The p.d.f. of diameter d of the bubbles
pierced by the probe was calculated from (A 1):

Ps(d) = d√
2π σ̂µ2

exp

[

−2σ̂ 2 − log2(d/µ)

2σ̂ 2

]

. (A 13)

The determination of the bubble size distribution was reduced to finding µ and σ̂ that
minimizes

m−1
∑

i=0

[

Wi − ∆d

m−1
∑

j=0

CijPj(µ, σ̂ )

]2

. (A 14)

This minimization was solved by the method of Powell (1964) that allows for the
minimization of functions depending on several variables.

The chord length distributions W(y) measured with the optical-fibre probe are
plotted in figure 17 for two different flow conditions. The number of chord lengths
N used for the conversion was lower than 500 and negative values in the bubble
size distribution were found. They correspond to error amplifications for the small
bubble sizes. In this figure the log-normal law fitting the bubble size distribution
is also plotted (solid line). The two parameters of the log-normal law µ and σ̂ ,
were determined by minimizing the difference between the measured chord length
distribution and the solid line (figure 17). The solid line represents the chord length
distributions W(y) calculated by assuming that the bubble size distributions are fitted
by log-normal laws. This method provided satisfying results with a reduced number
of samples. In particular it was very interesting when the gas fraction and the
measurement time were small.

A.2. Bubble deformation

In the conversion of the chord length distribution into bubble size distribution, the
shape of the bubbles must be given. In the range of bubble size encountered in our
experiments the bubbles can be considered as spherical in microgravity and ellipsoidal
in terrestrial gravity. For the estimation of the bubble aspect ratio E(d), the correlation
of Wellek et al. (see Clift et al. 1978, p. 181) obtained for bubbles rising in a
quiescent liquid was used:

E(d) = 1

1 + 0.163Bo0.757
for Bo < 40 and Mo < 10−6, (A 15)

where Bo is the Bond number and Mo is the Morton number based on the liquid
properties and on the equivalent bubble diameter deq:

Bo =
ρL|γ | d2

eq

σ
, Mo = |γ |ρ3

Lν
4

σ 3
, deq = E1/3d. (A 16)
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FIGURE 17. Bubble diameter distributions P(d) versus chord length distribution W(y) for
two different flow conditions: comparison between a direct backward transformation, (A 11)
(bars), and a least-square minimization assuming that the bubble distribution follows a log-
normal law (A 14) (solid line).

For air–water flow at ambient conditions of pressure and temperature, the
liquid properties are ρL = 1000 kg m−3, ν = 10−6 m2 s−1, σ = 0.07 N m−1 and the
acceleration due to gravity γ is equal to 9.81 m s−2 so that the aspect ratio E becomes
the solution of

E = 1

1 + 1283 d1.514E1.009
with Mo = 2.68 × 10−11. (A 17)

The above equation can be fitted by E = 1 − 52.6d, for d between 1 and 6 mm. This
simplified expression of E is replaced by (A 7), (A 8) and (A 11) to (A 13) are used to
calculate the p.d.f. of the bubble sizes.

Then different characteristic diameters can be calculated: d10, the equivalent mean
diameter; d20, the averaged diameter weighted by the bubble surface d2fE(d); d30, the
averaged diameter weighted by the bubble volume Ed3:

d10 =
∫ ∞

0

E1/3d P(d) dd, (A 18a)

d20 =
[
∫ ∞

0

fE(d)d2P(d) dd

]1/2

, (A 18b)

d30 =
[
∫ ∞

0

E d3P(d) dd

]1/3

, (A 18c)

fE(d) = 1

2
+ E2

2
√

1 − E2
log

1 +
√

1 − E2

E
. (A 19)
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The interfacial area per unit volume Ai can be calculated from d30 and d20 and from
the Sauter diameter d32 as follows:

d32 = d3
30

d2
20

, Ai =
6α

d32

, (A 20)

where α is the local gas fraction.

A.3. Validation of the method

High-speed video pictures of the flows were taken for four different runs in downward
flow. The minor and major axes of the bubbles were measured from image processing.
Then the bubble size distribution across the section was determined. In downward flow
the bubble size is uniform across the section. Thus a good estimation of the bubble
size distribution is obtained from a measurement at a single point of the cross-section.
The bubble size distributions determined from the chord lengths measured by the
optical-fibre probe are plotted in figure 18.

The calculations were carried out for both spherical and ellipsoidal bubble shapes
and the p.d.f.s were compared to those obtained from image processing. The average
and standard deviation µ and σ̂ are reported for downward flow conditions in
table 4. The spherical shape assumption leads to bubble sizes much smaller than
those determined by image processing whereas the ellipsoidal bubble shape assumption
gives a closer agreement even if the sizes remain smaller and the p.d.f. narrower.
It seems that the Wellek correlation for rising bubbles in still liquid underestimates
the bubble deformation in turbulent flow. The comparison between the measured and
calculated mean bubble diameter shows that the discrepancy is smaller than 20 % for



Flow conditions Image processing Optical fibre Optical fibre
Spherical bubbles Ellipsoidal bubbles

jL jG µ σ̂ µ σ̂ µ σ̂

(m s−1) (m s−1) (mm) (mm) (mm) (mm) (mm) (mm)

1.00 0.024 4.4 0.18 3.0 0.17 3.6 0.21
1.00 0.040 4.1 0.34 3.0 0.16 3.6 0.20
0.77 0.0185 4.0 0.32 3.0 0.16 3.6 0.21
0.77 0.053 4.4 0.36 3.4 0.17 4.3 0.21

TABLE 4. Log-normal law parameters in vertical downward flow for bubble sizes
distributions determined by image processing and optical probe measurements.

all the cases. A better estimate of the bubble deformation in turbulent flow should

be included in further development of the model. Another important parameter is the

orientation of the minor axis of the bubbles. In this model, the bubbles were assumed

to move with a velocity parallel to their minor axis and to the pipe axis. Even if the

minor axis of the bubbles tends to move towards the direction of their instantaneous

velocity (Ellingsen & Risso 2001) it does not necessarily remain parallel to the pipe

axis.
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GROSSETÊTE, C. 1995 Experimental investigation and preliminary numerical simulation of void

development in a vertical cylindrical pipe. In 2nd International Conference on Multiphase

Flow (ed. A. Serizawa, T. Fukano & J. Bataille), Kyoto, Japan, Elsevier.

HASAN, Y. A., SCHMIDL, W. & ORTIZ-VILLAFUERTE, J. 1998 Investigation of the three-

dimensional two-phase flow structure in a bubbly pipe flow. Meas. Sci. Technol. 9,

309–326.

HAZAKU, T., TAKAMASA, T. & HIBIKI, T. 2012 Characteristics of developing vertical bubbly flow

under normal and microgravity conditions. Intl J. Multiphase Flow 38, 53–66.

HERRINGE, R. A. & DAVIS, M. R. 1976 Structural development of gas–liquid mixture flows.

J. Fluid Mech. 73, 97–123.

HIBIKI, T., GODA, H., KIM, S., ISHII, M. & UHLE, J. 2004 Structure of vertical downward bubbly

flow. Intl J. Heat Mass Transfer 47, 1847–1862.

HINZE, J. O. 1959 Turbulence. McGraw-Hill.

HOSOKAWA, S., SUZUKI, T. & TOMIYAMA, A. 2010 Effects of bubbles on turbulence properties in

a duct flow. Multiphase Sci. Technol. 22, 211–232.

HOSOKAWA, S. & TOMIYAMA, A. 2004 Turbulence modification in gas–liquid and solid–liquid

dispersed two-phase pipe flows. Intl J. Heat Fluid Flow 25, 489–498.

HOSOKAWA, S. & TOMIYAMA, A. 2009a Application of photobleaching molecular tagging

velocimetry to turbulent bubbly flow in a square duct. Exp. Fluids 47, 745–754.

HOSOKAWA, S. & TOMIYAMA, A. 2009b Multi-fluid simulation of turbulent bubbly pipe flows.

Chem. Engng Sci. 64, 5308–5318.
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diphasique à bulles. Thesis, INP, Toulouse, France.



LAUFER, J. 1954 The structure of turbulence in fully developped pipe flow. NACA Rep. 1174.

LEGENDRE, D., COLIN, C., FABRE, J. & MAGNAUDET, J. 1999 Influence of gravity upon the

bubble distribution in a turbulent pipe flow: comparison between numerical simulations and

experimental data. J. Chim. Phys. 96, 951–957.

LIU, T. J. 1989 Experimental investigation of turbulence structure in two-phase bubbly flow. PhD

thesis, Northwest University, Evanston, Illinois.

LIU, T. J. 1993 Bubble size and entrance length effects on void development in a vertical channel.

Intl J. Multiphase Flow 19, 99–113.

LIU, T. J. 1998 The role of bubble size on liquid turbulent structure in two-phase bubbly flow. In

3rd International Conference on Multiphase Flow Lyon, France (ed. J. Bataille). CD Rom

Publication.

LIU, T. J. & BANKOFF, S. G. 1993a Structure of air–water bubbly flow in a vertical pipe-1. Liquid

velocity and turbulence measurements. Intl J. Heat Mass Transfer 36, 1049–1060.

LIU, T. J. & BANKOFF, S. G. 1993b Structure of air–water bubbly flow in a vertical pipe-2

Void fraction, bubble velocity and bubble size distribution. Intl J. Heat Mass Transfer 36,

1061–1072.

LIU, W. & CLARK, N. N. 1995 Relationships between distributions of chord lengths and

distributions of bubble sizes including their statistical parameters. Intl J. Multiphase Flow 21,

1073–1089.

LOPEZ DE BERTODANO, M., LAHEY, R. T. & JONES, O. C. 1994 Phase distribution in bubbly

two-phase flow in vertical ducts. Intl J. Multiphase Flow 20, 805–818.

LUCAS, D., KREPPER, E. & PRASSER, H.-M. 2007 Use of models for lift, wall and turbulent

dispersion forces acting on bubbles for poly-disperse flows. Chem. Engng Sci. 62,

4146–4157.

MAGNAUDET, J., RIVERO, M. & FABRE, J. 1995 Accelerated flows past a rigid sphere or a

spherical bubble. Part 1. Steady straining flow. J. Fluid Mech. 284, 97–135.
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