
HAL Id: hal-00875638
https://hal.science/hal-00875638

Preprint submitted on 22 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the PROBABILISTIC MIN SPANNING TREE
problem

Nicolas Boria, Cecile Murat, Vangelis Paschos

To cite this version:
Nicolas Boria, Cecile Murat, Vangelis Paschos. On the PROBABILISTIC MIN SPANNING TREE
problem. 2011. �hal-00875638�

https://hal.science/hal-00875638
https://hal.archives-ouvertes.fr

Laboratoire d'Analyse et Modélisation de Systèmes pour

l'Aide à la Décision
CNRS UMR 7243

CAHIER DU LAMSADE

306

Mars 2011

On the PROBABILISTIC MIN SPANNING TREE problem

Nicolas Boria, Cécile Murat, Vangelis Th. Paschos

On the probabilistic min spanning tree problem∗

Nicolas Boria1 Cécile Murat1 Vangelis Th. Paschos1,2

1LAMSADE, CNRS and Université Paris-Dauphine, France

{boria,murat,paschos}@lamsade.dauphine.fr
2Institut Universitaire de France

March 28, 2011

Abstract

We study a probabilistic optimization model for min spanning tree, where any vertex vi
of the input-graph G(V,E) has some presence probability pi in the final instance G′ ⊂ G
that will effectively be optimized. Suppose that when this “real” instance G′ becomes known,
a spanning tree T , called anticipatory or a priori spanning tree, has already been computed
in G and one can run a quick algorithm (quicker than one that recomputes from scratch),
called modification strategy, that modifies the anticipatory tree T in order to fit G′. The goal
is to compute an anticipatory spanning tree of G such that, its modification for any G′ ⊆ G
is optimal for G′. This is what we call probabilistic min spanning tree problem. In
this paper we study complexity and approximation of probabilistic min spanning tree

in complete graphs under two distinct modification strategies leading to different complexity
results for the problem. For the first of the strategies developed, we also study two natural
subproblems of probabilistic min spanning tree, namely, the probabilistic metric

min spanning tree and the probabilistic min spanning tree 1,2 that deal with metric
complete graphs and complete graphs with edge-weights either 1, or 2, respectively.

1 Introduction

The basic problematic of probabilistic combinatorial optimization (in graphs) is the following.
We are given a graph G(V,E) on which we have to solve some optimization problem Π. But,
for some reasons depending on the reality modeled by G, Π is only going to be solved for some
subgraph G′ of G (determined by the vertices that will finally be present) rather than for the
whole of G. The measure of how likely it is that a vertex vi ∈ V will belong to G′ (i.e., will be
present for the final optimization) is expressed by a probability pi associated with vi. How we
can proceed in order to solve Π under this kind of uncertainty?

A first very natural idea that comes to mind is that one waits until G′ is specified (i.e., it
is present and ready for optimization) and, at this time, one solves Π in G′. This is what is
called reoptimization. But what if there remains very little time for such a computation? In
this case, another way to proceed is the following. One solves Π in the whole of G in order to
get a feasible solution (denoted by S), called a priori or anticipatory solution, which will serve
her/him as a kind of benchmark for the solution on the effectively present subgraph G′. One
has also to be provided with an algorithm that modifies S in order to fit G′. This algorithm
is called modification strategy (let us denote it by M) and produces from S a solution S′ that is
feasible for Π in G′. The objective now becomes to compute an anticipatory solution that, when

∗Research supported by the French Agency for Research under the DEFIS program TODO, ANR-09-EMER-
010.

1

modified by M, remains “good” for any subgraph of G (if this subgraph is the one where Π will
be finally solved). This amounts to computing a solution that optimizes a kind of expectation
of the value of the modification of S over all the possible subgraphs of G, i.e., the sum of the
products of the probability that G′ is the finally present graph multiplied by the value of S′.
Obviously, the presence-probability of G′ is the probability that all of its vertices are present and
the other vertices outside G′ are absent. This expectation, depending on both the instance of
the deterministic problem Π, the vertex-probabilities, and the modification strategy adopted, is
called the functional and is expressed by:

E(G,S, M) =
∑

V ′⊆V

Pr
[
V ′

]
m

(
G′, S′, M

)
(1)

where Pr[V ′] =
∏

vi∈V ′ pi
∏

vi∈V \V ′(1−pi) is the distribution describing probability of occurrence
of a specific subset V ′ ⊆ V , i.e., of the graph G[V ′] and m(G′, S′, M) is the value of the solution S′

produced by application of M on the anticipatory solution S.
Seen in this way, the probabilistic version probabilistic Π of a (deterministic) combinatorial

optimization problem Π becomes another equally deterministic problem Π′, the solutions of which
have the same feasibility constraints as those of Π but with a different objective function where
vertex-probabilities intervene. In this sense, probabilistic combinatorial optimization is very close
to what in the last couple of years has been called “one stage optimisation under independent
decision models”, an area very popular in the stochastic optimization community. It is hopefully
clear from (1) and from the whole discussion above, that m(G′, S′, M) strongly depends on the
modification strategy M used to adapt the anticipatory solution S to the present graph G′. So,
both E(G,S, M) and the a priori solution S∗ optimizing it, also strongly depend on M. In other
words, as we will see later, for a fixed instance I of a deterministic problem Π, two distinct
modification strategies induce two distinct probabilistic problems having I and Π as common
deterministic supports. These two distinct problems may have very different functionals and,
consequently, different optimal anticipatory solutions that induce very different complexities for
computing them.

What are the main mathematical problems dealing with probabilistic consideration of a
problem Π in the sense discussed above? One can identify at least five interesting mathematical
and computational problems dealing with probabilistic combinatorial optimization:

1. write the functional down in an analytical closed form;

2. if such an expression of the functional is possible, prove that its value is polynomially
computable (this amounts to proving that the decision version of the modified problem Π′

belongs to NP);

3. determine the complexity of the computation of the optimal a priori solution, i.e., of the
solution optimizing the functional (in other words, determine the computational complexity
of Π′);

4. if Π′ is NP-hard, study polynomial approximation issues;

5. always, under the hypothesis of the NP-hardness of Π′, determine its complexity in the
special cases where Π is polynomial, and in the case of NP-hardness, study approximation
issues.

Let us note that, although curious, point 2 in the above list is neither trivial nor senseless. Simply
consider that the summation for the functional includes, in a graph of order n, 2n terms (one for

2

each subgraph of G). So, polynomiality of the computation of the functional is, in general, not
immediate.

Several optimization frameworks have been introduced by the operations research community
for handling data uncertainty, the most well developed being Stochastic programming (see [7, 14,
30] for basics) and Robust discrete optimization (see, for example, [22]). The framework of
Probabilistic Combinatorial Optimization where our work is located was introduced by [17, 2].
In [1, 2, 3, 4, 5, 17, 18, 19, 20], restricted versions of routing and network-design probabilistic
minimization problems (in complete graphs) have been studied under the robustness model dealt
here (called a priori optimization). In [6], the analysis of the probabilistic minimum travelling
salesman problem, originally performed in [2, 17], has been revisited and refined. Several other
combinatorial problems have been recently treated in the probabilistic combinatorial optimization
framework, including minimum coloring ([27, 8]), maximum independent set and minimum vertex
cover ([25, 26]), longest path ([24]), Steiner tree problems ([28, 29]). Note also that probabilistic
minimum spanning tree has also studied by [4] but under a very different probabilistic model.

2 Preliminaries

We apply in this paper the probabilistic combinatorial optimization setting just described in the
minimum spanning tree problem. Given an edge-weighted graph G(V,E), with positive edge
weights d : E → Q+, the minimum spanning tree problem (min spanning tree) consists of
determining a minimum total edge-weight tree spanning V . min spanning tree is a celebrated
problem, very frequently modeling several kinds of networks in transports, communications,
energy, logistics, etc.

The most popular algorithm for min spanning tree is the seminal Kruskal’s Algorithm ([23])
which consists of sorting edges in non-decreasing order with respect to their weights, and of
inserting them in the current solution provided that they do not create cycles with those already
inserted. The complexity of this algorithm is O(m log n) where m = |E| and n = |V |. Several
improvements have been performed upon this result, for instance, the O(m log log n) result given
independently by [32] and [11]. More recently, [10] proposes an algorithm for min spanning

tree (the best known until now, to our knowledge) with running time O(mα(m,n)), where α is
the functional inverse of Ackerman’s function defined by [31]. We also quote an implementation
of Prim’s algorithm (this is another famous min spanning tree-algorithm) using Fibonacci
heaps that works in O(max{m,n log n}) ([13]).

min spanning tree has been actively studied under several optimization models like on-
line computation, dynamic optimization, etc. Its study always motivates numerous researchers
in theoretical computer science and in operational research.

The formal definition of probabilistic min spanning tree under modification strategy M

is as follows. Consider a complete weighted graph G(V,E) on n vertices, with edge weights given
by a function d : E → Q+. Set V = {v1, v2, . . . , vn}. Each vertex vi ∈ V , is associated with a
presence probability pi ∈ Q+ measuring, as already mentioned, how likely is that vi will be present
in the instance where probabilistic min spanning tree will really be solved. We assume that
subgraph G′(V ′, E′) of G materializes as the outcome of n independent Bernoulli trials, one per
vertex vi ∈ V : vi ∈ V ′ with probability pi. Then, E′ = {(u, v) ∈ E : u ∈ V ′ and v ∈ V ′}.
Let us note that it seems to be natural that, for a fixed modification strategy M and for some
anticipatory spanning tree T , some basic properties of its structure must be preserved in any
tree T ′ built when M adjusts T to G′(V ′, E′), for any V ′ ⊆ V . Such a basic property is, for
instance, the relation “predecessor-successor” in T . In order that this relation is preserved in
any T ′, we assume that there exists a vertex, denoted by v1 with p1 = 1. The assumption
that the input-graph is complete is made in order to ensure connectivity of the tree T ′ for any

3

subgraph G′ ⊆ G; in any case if the real-world problem at hand implies non-complete graphs,
one can complete them by “appropriately heavy” edges.

Consider an application of probabilistic min spanning tree coming from message broad-
casting in a computer network ([9]). We use there a tree spanning the vertices of this network.
Assuming that the weight of an edge of the network represents the transmission-cost on the
link represented by this edge, we look for a minimum-cost tree spanning all the vertices of the
underlying network. In distributed computation, the structure of a tree allows broadcasting
from the root to the leaves, and vice-versa, as well as resolution of several problems dealing with
synchronization, or mutual exclusion ([9]). Assume that each vertex vi of the network can fail
or be unavailable with some probability pi, except some vertex, denoted by v1, that represents
the central server that “never” fails (or very rarely). In such case, we can consider that the
presence probability of v1 is 1 and of any other vertex vi is 1 − pi. Given some modification
strategy, motivated by the particular application to be handled, the objective is to determine
some spanning tree with minimum expectation. Other applications dealing with probabilistic

min spanning tree can be found in [2].
In what follows, we design two modification strategies for probabilistic min spanning

tree and study the two distinct probabilistic optimization problems derived. In Section 4 we
design strategy CLOSEST_ANCESTOR, and derive an analytic expression of the functional of the
solutions T ∗. We next show that, under this strategy the problem of the a priori optimization,
i.e., the problem of determining an anticipatory solution minimizing the functional, is NP-hard in
general complete graphs (Section 4.1). Subsequently, we study complexity of the probabilistic

min spanning tree problem when dealing with particular cases of vertex-probabilities values
and/or edge weights (Section 4.2.1) and particular cases of anticipatory solutions (Section 4.2.2).
We next derive polynomial-time approximation results for metric graphs (Section 4.3.1) and
for graphs where edge-weights are either 1 or 2 (Section 4.3.2). Next, in Section 5, we devise
another modification strategy for probabilistic min spanning tree, called ROOT, and show
that, under this strategy, probabilistic min spanning tree is polynomial.

Let us note that a complementary framework to the one of the a priori optimization, is the
reoptimization consisting of solving ex nihilo and optimally the portion of the instance presented
for optimization. Reoptimization is introduced in [17]. Let opt(G′) refer to the weight of the
optimum spanning tree on G′ for every subgraph G′(V ′, E′) of G. The expected minimum weight
over the distribution of subgraphs of G, i.e., the functional of reoptimization is:

E∗(G) =
∑

V ′⊆V

Pr
[
V ′

]
opt

(
G′

)
(2)

Obviously, denoting by T ∗
M

the optimal anticipatory solution of probabilistic min spanning

tree, under any modification strategy M, it holds that:

E∗(G) 6 E (G,T ∗
M
, M) (3)

In Section 3, we perform further study of reoptimization and exhibit some relations between it
and (deterministic) min spanning tree.

For simplicity, in Sections 4 and 5 we simplify notations and omit strategies’ names from the
expressions for the functionals. However, we underline once more the fact that the probabilistic
versions of probabilistic min spanning tree studied in these sections are indeed two distinct
optimization problems.

3 Reoptimization and min spanning tree

We study in this section relations between the value of the expectation E∗(G) in the reoptimiza-
tion setting and the optimal value of the (deterministic) min spanning tree. Our goal is to

4

prove the following result.

Proposition 1. Consider a complete edge-weighted graph G defined on a set V of n vertices
V = {v1, . . . , vn} associated with a system of vertex probabilities p1 = 1, pi = p, i = 2, . . . , n.
Denote by opt(G) the value of an optimal solution T ∗ for (deterministic) min spanning tree.
Then, E∗(G) > p opt(G).

Proof. Since vertex v1 (assumed to be the root of every tree solution of min spanning tree

in every subgraph of G) is always present, setting G′ = G[V ′], (2) can be written as:

E∗(G) =
n∑

k=2

pk−1(1− p)n−k ×
∑

V ′⊆V

|V ′|=k

opt
(
G′

)
(4)

Set Dk =
∑

V ′⊆V ,|V ′|=k opt(G
′). Then, (4) becomes:

E∗(G) =
n∑

k=2

pk−1(1− p)n−kDk (5)

We first show that:

Dk >

(
n− 2

k − 2

)

opt(G) (6)

Denote by E[T ∗] the edge-set of the tree T ∗. Then, for every i 6= 1, set Vi = V \ {vi} and denote
by f(i), the father of i in T ∗. Setting Gi = G[Vi], we have for every (vi, vf(i)) ∈ E[T ∗], i 6= 1:

opt (Gi) + di,f(i) > opt(G) (7)

since a minimum spanning tree of Gi plus some edge connecting vi to it is a tree of G. Sum-
ming (7) over i = 2, . . . , n, we get:

n∑

i=2

opt (Gi) +

n∑

i=2

di,f(i) > (n− 1) opt(G) (8)

Moreover, obviously, it holds that

n∑

i=2

di,f(i) = opt(G) (9)

From (8) and (9) the following is deduced:

Dn−1 =
n∑

i=2

opt (Gi) > (n− 2) opt(G) (10)

Let us now consider the t = Ck−1
n−1 subsets of V of size k (recall that v1 is omnipresent),

A1, A2, . . . , At. For any i, set Ai,j = Ai \ {j}. With a reasoning completely similar to the
above, setting Gi,j = G[Ai,j], we can derive:

∑

j∈Ai

opt (Gi,j) > (k − 2) opt (Gi) (11)

t∑

i=1

∑

j∈Ai

opt (Gi,j) > (k − 2)
t∑

i=1

opt (Gi) = (k − 2)Dk (12)

5

where (12) is obtained summing (11) for every i. Since in the lefthand side term each of the Ck−2
n−1

subsets of V (of cardinality k−1) is taken into account n−k+1 times, this term can be written:

t∑

i=1

∑

j∈Ai

opt (Gi,j) = (n− k + 1)Dk−1 (13)

Indeed, w.l.o.g. let us assume that A1 = {v1, v2, . . . , vk−1, vk}, A2 = {v1, v2, . . . , vk−1, vk+1},
A3 = {v1, v2, . . . , vk−1, vk+2}, . . . , An−k+1 = {v1, v2, . . . , vk−1, vn}. Let us consider set A1,k

obtained from A1 by removing vertex vk:

A1,k
︷ ︸︸ ︷
v1, v2, . . . , vk−1, vk
︸ ︷︷ ︸

A1

, . . . , vn

We build in the same way pairs (A2, A2,k+1), (A3, A3,k+2), . . . , (An−k+1, An−k+1,n):

A2,k+1
︷ ︸︸ ︷
v1, v2, . . . , vk−1, vk+1
︸ ︷︷ ︸

A2

, vk, vk+2, . . . , vn

...
An−k+1,n

︷ ︸︸ ︷
v1, v2, . . . , vk−1, vn
︸ ︷︷ ︸

An−k+1

, vk, . . . , vn−1

We can easily see that A1,k = A2,k+1 = A3,k+2 = . . . = An−k+1,n; hence, any of the Ck−2
n−1 distinct

subsets of V of cardinality k−1 can be obtained using n−k+1 different ways, that proves (13).
Combining (12) and (13) we get:

Dk−1 >
k − 2

n− k + 1
Dk (14)

By successively applying (14) and using (10) we derive:

Dk >
k − 1

n− k
Dk+1 >

(k − 1)k

(n− k)(n− (k + 1))
Dk+2

...

>
(k − 1)k . . . (n− 3)

(n− k)(n− (k + 1)) . . . (n− (n − 2))
Dn−1

>
(k − 1)k . . . (n− 3)(n − 2)

(n− k)(n− (k + 1)) . . . (n− (n − 1))
opt(G)

=
(n− 2)!

(k − 2)!(n − k)!
opt(G) =

(
n− 2

k − 2

)

opt(G)

as claimed in (6). Combining it with (5), we get:

E∗(G) >

n∑

k=2

pk−1(1− p)n−k

(
n− 2

k − 2

)

opt(G) = p opt(G)

completing so the proof of the proposition.
Combining (3) and Proposition 1, the following holds, for any modification strategy M:

E (G,T ∗
M
) > p opt(G) (15)

Note that equality in (15) is attained for p = 1.

6

4 probabilistic min spanning tree under CLOSEST_ANCESTOR

Consider a tree T spanning V and number vertices in T in a left-to-right breadth-first-search (bfs)
way. Consider a subgraph G′(V ′, E′) = G[V ′] of G induced by a set V ′ ⊆ V . The modification
strategy (adjusting T to a spanning tree T ′ of G′ and denoted by CLOSEST_ANCESTOR in what
follows) that will be analyzed in this section works as follows:

• remove the vertices of V \ V ′ and the edges of E incident to these vertices; let F (V ′) =
{T1, T2, . . . , Tk} be the so-obtained forest and assume that v1 ∈ V (T1) and that, for i, j =
2 . . . , k, i < j if the index of the root of Ti is smaller than that of the root of Tj ;

• for i = 2, . . . , k add as father of the root of Ti its largest-index ancestor that is still present
in V (T).

Note that, given two vertices vj and vl with j < l (in the bfs numbering of T), if vj is not
an ancestor of vl in T , then edge (vj , vl) will never belong to any T ′ modification of T for any
V ′ ⊆ V . Clearly, the complexity of CLOSEST_ANCESTOR is O(n). Note also that, with respect
to the application sketched in Section 1, this strategy allows to maintain the same order of
broadcasting to the several internal nodes of the anticipatory tree, independently on the sub-
instance that will finally be realized.

1

2

6 7

3

8

14

9

15

17

10

4

11

5

12

16

18 19

13

(a) An initial tree

1

2

7

8

14

15

17

10 4

11

12

18 19

(b) Modification by CLOSEST_AN-

CESTOR

Figure 1: An anticipatory spanning tree T and its adjustment.

Figure 1(b) gives an example of how strategy CLOSEST_ANCESTOR works starting from an
initial tree T shown in Figure 1(a) and assuming that vertices 3, 5, 6, 9, 13 and 16 are absent
from V ′.

Our goal in this section is to study the following problem: find an algorithm for taking
“good” a priori decisions, i.e., that determines a spanning tree T ∗, that optimizes E(G,T) under
modification strategy CLOSEST_ANCESTOR ; this is probabilistic min spanning tree (under
strategy CLOSEST_ANCESTOR). In what follows, we show that this problem is NP-hard in general
complete graphs with p1 = 1. We then study approximation of this problem in metric graphs as
well as in a particular subclass of them where edge-weights are either 1 or 2. The approximation
ratio is defined as E(G,T)/E(G,T ∗).

4.1 The complexity of probabilistic min spanning tree

The following result holds for the functional E(G,T) associated with an anticipatory spanning
tree T and the modification strategy CLOSEST_ANCESTOR.

7

Proposition 2 . Consider a complete graph G(V,E), provided with a vertex-probability sys-
tem (pi)i=1,...,n with p1 = 1, any edge (vi, vj) of which has weight dij and a spanning tree T of G.
Then, the expectation associated with CLOSEST_ANCESTOR can be expressed by:

E(G,T) =
∑

(vi,vj)∈T

pipjdij +
∑

vi∈V

∑

vj∈D(vi)

(vi,vj)/∈T

pipj
∏

vk∈µ[vi,vj]

(1− pk) dij (16)

where D(vi) is the set of successors of vi in T and µ[vi, vj] is the set of vertices in the (unique)
path of T from vi to vj not including neither of them.

Proof. Following CLOSEST_ANCESTOR, if (vi, vj) ∈ T , then this edge will be in T ′ iff vi, vj ∈ V ′;
on the other hand, if (vi, vj) /∈ T , then edge (vi, vj) will be added in T ′ iff vi, vj ∈ V ′ and
vj ∈ D(vi) and every vertex in µ[vi, vj] is not in V ′. From these observations we derive using (1):

E(G,T) =
∑

V ′⊆V

Pr
[
V ′

]
m

(
G′, T ′

)
=

∑

V ′⊆V

Pr
[
V ′

] ∑

(vi,vj)∈T ′

dij

=
∑

V ′⊆V

Pr
[
V ′

] ∑

(vi,vj)∈T ′∩T

dij +
∑

V ′⊆V

Pr
[
V ′

] ∑

(vi,vj)∈T ′∩(E\T)

dij

=
∑

(vi,vj)∈T

∑

V ′⊆V

Pr
[
V ′

]
1{(vi,vj)∈T ′}dij +

∑

(vi,vj)∈(E\T)

∑

V ′⊆V

Pr
[
V ′

]
1{(vi,vj)∈T ′}dij

=
∑

(vi,vj)∈T

pipjdij +
∑

vi∈V

∑

vj∈D(vi)

(vi,vj)/∈T

pipj
∏

vk∈µ[vi,vj]

(1− pk) dij

as claimed.
Clearly, (16) can be computed in polynomial time. So, the following corollary holds.

Corollary 1. probabilistic min spanning tree ∈ NPO.

As already mentioned, probabilistic min spanning tree consists of determining an anticipa-
tory spanning tree T ∗ of G minimizing E(G,T). Unfortunately, Proposition 2 does not derive a
compact combinatorial characterization for the optimal anticipatory solution of probabilistic

min spanning tree. In particular, the form of the functional does not imply solution, for in-
stance, of some well-defined weighted version of the (deterministic) min spanning tree. This is
due to the second term of the expression for E(G,T) in (16). There, the “costs” assigned to the
edges depend on the structure of the anticipatory solution chosen and of the present subgraph
of G.

The decision version of probabilistic min spanning tree under CLOSEST_ANCESTOR, de-
noted by probabilistic min spanning tree(K) can be stated as follows: “given an edge-
weighted complete graph G(V,E), provided with a vertex-probability system (pi)i=1,...,n with
p1 = 1 and a constant K, does there exist a tree T such that E(G,T) 6 K?”, where E(G,T) is
given by (16).

Proposition 3. probabilistic min spanning tree(K) is NP-complete.

Proof. It is easy to see that probabilistic min spanning tree ∈ NP (Corollary 1). In order
to show completeness, we reduce 3 exact cover to probabilistic min spanning tree. 3

exact cover is defined as follows: given a ground set X of size 3q and a collection E of 3q
subsets of X each of size 3, does there exist a sub-collection E ′ = {S1, . . . , Sq} of E such that
⋃q

i=1 Si = X?” (obviously, E ′ is a partition of X).
Consider an arbitrary instance I(X, E) of 3 exact cover; we construct the following in-

stance for probabilistic min spanning tree:

8

• the vertex-set V is a set of 6q+2 vertices built by associating a vertex xi with an element
xi ∈ X, a vertex yj with a set Sj ∈ E and by adding a vertex r (playing the role of
the omnipresent root) and a vertex s (representing the solution); for some positive fixed
constant p < 1/2, vertices xi are provided with probability p, vertices yj with probability
1− p and vertices r and s with probability 1;

• edge-weights are defined as follows:

– for every Sj = {xi1 , xi2 , xi3}, j = 1, . . . , 3q, di1j = di2j = di3j = 1;

– edges linking s to vertices yj have weight M > 3p2/2(1 − p) and those linking s to
vertices of xi have weight M/p + 2;

– edges linking r to vertices yj as well as edge (r, s) have all weight 0, while edges
linking r to vertices xi have weight M/p2 + 1;

– all the other edges have arbitrarily large weight B ≫ M/p2 + 1;

• K = q(M(1 + 2p) + 3p(p + 1)).

It is easy to see that this reduction is polynomial. It is illustrated in Figure 2 where, for
readability, some edges, in particular those of weight B are omitted.

x1 x2 x3 xi1 xi2 xi3 xl1 xl2 xl3
x3q−2 x3q−1 x3q

y1 y2 yj yk y3q

s

r

0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M M M M M M M M M

0 0 0

M
p

+ 2

M
p2 + 1

Figure 2: An example for the reduction from 3 exact cover to probabilistic min spanning

tree.

We now prove that if 3 exact cover admits a solution E∗, then G has a minimum spanning
tree T ∗ the shape of which is as in Figure 3 and whose value is:

E (G,T ∗) = 0 + 2q × 0 + q

[

(1− p)M + 3p(1− p)× 1 + 3p(1− (1− p))×

(
M

p
+ 2

)]

= q
[
M − pM + 3p − 3p2 + 3pM + 6p2

]

= q [M(1 + 2p) + 3p(p + 1)] = K

In other words, we are going to show that there exists a tree spanning V with expectation at
most K, iff X admits a partition among the sets of E .

The ⇒ part of the proof is easy. Given a solution E∗ for 3 exact cover in I(X, E), a
solution T ∗ for probabilistic min spanning tree is immediately built in G as shown in
Figure 3.

9

x1 x2 x3 xi1 xi2 xi3 xl1 xl2 xl3
x3q−2 x3q−1 x3q

y1 y2 yj yk y3q

S

R

∗

Figure 3: The shape of T ∗.

We prove the ⇐ part by inspection of all the possible trees spanning V . Let us do two easy
preliminary remarks:

• any tree using an edge of weight B has expectation greater than K;

• any tree where absent edges are replaced (following strategy CLOSEST_ANCESTOR) by edges
of weight B also has expectation greater than K.

As a consequence, the trees that are to be inspected are those that any reconnection will not use
edges of weight B, i.e., those that span the subgraph shown in Figure 4. There exist 16 such
trees illustrated in Figures 5 to 8. For reasons of economy, in all these figures, only one out of the
three children of each yi is displayed. Note that tree T1 in Figure 5 corresponds to the optimal
solution, whose full shape is shown in Figure 3.

xi

yj

S

R

0

M

1

M
p

+ 2

M
p2 + 1

0

Figure 4: The “interesting” subgraph of G.

10

xi

yj

S

R

0

M

1

T1

xi

yj

S

R

0

0

M

p2
+ 1

T2

xi

yj

S

R

0

0

1

T3

xi

yj

S

R

0

0

M

p
+ 2

T4

xi

yj

S

R

0

M
M

p2
+ 1

T5

Figure 5: 5 out of 16 trees spanning component of Figure 4 . . .

xi

yj

S

R

0

M

M

p
+ 2

T6

xi

yj

S

R

M

1

M

p2
+ 1

T7

xi

yj

S

R

M

0

1

T8

xi

yj

S

R

1

M

p2
+ 1

M

p
+ 2

T9

xi

yj

S

R

1

M

p
+ 2

0

T10

Figure 6: . . . other 5 out of 16 trees spanning component of Figure 4 . . .

In all, trees in Figures 5 to 8 have the following functionals (computed over their full shapes,
i.e., considering all the three children of each yi):

E (G,T1) = 1× 1× 0 + 1× (1− p)×M + 3× (1− p)× p× 1

+ 3× p× (1− (1− p))×

(
M

p
+ 2

)

= M(1− p) + 3p(1− p) + 3pM + 6p2 = M(1 + 2p) + 3p(p + 1)

E (G,T2) = 3p

(
M

p2
+ 1

)

=
3

p
×M + 3p

E (G,T3) = 3(1− p)p+ 3p2
(
M

p2
+ 1

)

= 3M + 3p

E (G,T4) = 3p

(
M

p
+ 2

)

= 3M + 6p

E (G,T5) = (1− p)M + 3p

(
M

p2
+ 1

)

= M

(

1− p+
3

p

)

+ 3p

E (G,T6) = (1− p)M + 3p

(
M

p
+ 2

)

= M(4− p) + 6p

E (G,T7) = (1− p)M + (1− p)p+ 3p

(
M

p2
+ 1

)

+ p2
(
M

p
+ 2

)

= M

(
3

p
+ 1

)

+ 4p+ p2

11

xi

yj

S

R

M

p2
+ 1 M

M

p
+ 2

T11

xi

yj

S

R

M

0

M

p
+ 2

T12

xi

yj

S

R

1

0

M

p
+ 2

T13

xi

yj

S

R

1

M

p2
+ 1

0

T14

Figure 7: . . . other 4 out of 16 trees spanning component of Figure 4.

xi

yj

S

R

M

0

M

p2
+ 1

T15

xi

yj

S

R

M

p2
+ 1

0

M
p

+ 2

T16

Figure 8: . . . and the last 2 out of 16 trees spanning component of Figure 4.

E (G,T8) = (1− p)M + 3p(1− p) + 3p2
(
M

p2
+ 1

)

= M(4− p) + 3p

E (G,T9) = 3p

(
M

p2
+ 1

)

+ p

(
M

p
+ 2

)

+ p(1− p) = M

(

1 +
3

p

)

+ 6p − p2

E (G,T10) = p

(
M

p
+ 2

)

+ 3p(1− p) + 3p2
(
M

p2
+ 1

)

+ (1− p)2M = M
(
5− 2p+ p2

)
+ 5p

E (G,T11) = (1− p)M + p

(
M

p
+ 2

)

+ 3p

(
M

p2
+ 1

)

= M

(

2− p+
3

p

)

+ 5p

E (G,T12) = (1− p)M + 3p

(
M

p
+ 2

)

= M(4− p) + 6p

E (G,T13) = p(1− p) + 3p

(
M

p
+ 2

)

+ (1− p)2M = M
(
3 + (1− p)2

)
+ 7p− p2

E (G,T14) = p(1− p) + 3p

(
M

p2
+ 1

)

= M
3

p
+ 4p − p2

E (G,T15) = (1− p)M + 3p

(
M

p2
+ 1

)

= M

(
3

p
+ 1− p

)

+ 3p

E (G,T16) = 3p

(
M

p2
+ 1

)

+ p

(
M

p
+ 2

)

= M

(
3

p
+ 1

)

+ 5p

12

Trees T2, T3, T4, T9, T10, T13 and T14 correspond to the case where yj, that is, the set Sj of E
is not part of a 3 exact cover-solution (in other words, the element xi of the ground set X is
not covered by Sj). In this case, the best one can do for the corresponding spanning tree is to
take edges (r, s) and (r, yj). The rest of the trees sketched in Figures 5 to 8 correspond to the
case where Sj covers xi in some 3 exact cover-solution.

In all, E(G,T1) is minimum over every other E(G,Ti), i = 2, . . . , 16 it is the only that is
smaller than K. Tree T1 corresponds to q subtrees as the first one in Figure 5 but having three
leaves plus 2q subtrees that are simple edges of the form (r, yj). Obviously, given T1 a solution for
3 exact cover is immediately computed by considering the q sets corresponding to y-vertices
of T1 that are not leaves.

4.2 Stability of the solutions

We address in this section the question of “stability of the solutions” that can be stated as follows:
“under which conditions and for what kinds of instances and/or particular structures of anticipa-
tory solutions, an optimal solution for min spanning tree remains optimal for probabilistic

min spanning tree?”. We study in this section some particular but natural cases carrying over
assumptions either on the values of vertex-probabilities and/or edge-weights, or on the form of
the anticipatory solution.

4.2.1 Dealing with vertex-probabilities and edge-weights

Revisit functional’s expression (16). For a vertex vi, denote by f(vi) its father in T , by pf(i)
the presence probability of f(vi) and by A(vi) the set of its ancestors in T . Then, (16) can be
rewritten as:

E(G,T) =
∑

vi∈V \{v1}

pipf(i)dif(vi) +
∑

vi∈V \{v1}

∑

vj∈A(vi)\{f(vi)}

pipj
∏

vk∈µ[vi,vj]

(1− pk) dij

=
∑

vi∈V \{v1}

Ci (17)

where:
Ci = pipf(i)dif(vi) +

∑

vj∈A(vi)\{f(vi)}

pipj
∏

vk∈µ[vi,vj]

(1− pk) dij (18)

and can be seen as the contribution of vertex vi in E(G,T).
We assume now that edge-weights in G are identical. We can show that, if dij = d, (vi, vj) ∈

E, then Ci = d × pi, vi ∈ V . In order to give some intuition about it let us consider the
anticipatory tree of Figure 9, assume that edge weights in the input-graph are identical and
equal to d and take, say, vertex 7. The contribution of it in (16) is:

C7 = d× p7 [p5 + p4 (1− p5) + p2 (1− p5) (1− p4) + (1− p5) (1− p4) (1− p2)] = d× p7 (19)

The same holds for the contribution of any other vertex in the tree.
Indeed, consider some vertex vi ∈ V and assume, for simplicity, that vertices in the path of T

from v1 to vi are numbered from 1 to i. By writing down Ci and by some algebra as previously
in (19) we derive Ci = d× pi. Hence, (17) becomes:

E(G,T) = d×

n∑

i=2

pi

13

1

2 8

3 4

5

6 7

Figure 9: About a reinterpretation of functional’s expression (16).

Proposition 4. If edge-weights are all identical, E(G,T) = d ×
∑n

i=2 pi. In this case all the
anticipatory solutions have the same value.

Corollary 2. If p1 = 1, pi = p, i = 2, . . . , n and dij = d, (vi, vj) ∈ E, i 6= j, then, for any
tree T spanning V , E(G,T) = dp(n− 1).

Discussion above can be directly generalized for deriving a general upper bound for E(G,T)
and for every anticipatory solution T . Set D = max{dij : (vi, vj) ∈ E}. Then, (20) leads to
Ci 6 D × pi and (17) to E(G,T) 6 D ×

∑n
i=2 pi and the following corollary that will be used

later holds.

Corollary 3. If D = max{dij : (vi, vj) ∈ E} then, for any anticipatory solution T of proba-

bilistic min spanning tree, E(G,T) 6 D ×
∑n

i=2 pi.

4.2.2 Particular cases of anticipatory solutions: stars and paths

In what follows we deal with two particular structures of trees, the star (rooted at v1) and the
path. We first consider the star rooted at (the omnipresent) vertex v1. The following result
holds.

Proposition 5. Let T be a star rooted at v1. If T is an optimal solution for min spanning

tree, then it is also an optimal anticipatory solution for probabilistic min spanning tree.

Proof. Recall that by (17), E(G,T) =
∑

vi∈V \{v1}
Ci where Ci is given by (18). Observe now

that, if the vertices of T are numbered in a dfs order (starting from the root) and if the set A(vi)
of the ancestors of a vertex vi in T is exactly the set A(vi) = {v1, v2, . . . , vi−1}, then Ci can be
written as:

Ci =

i−1∑

j=1

pipjdij

i−1∏

l=j+1

(1− pl) (20)

Since the star T is a minimum spanning tree, it holds that, for any vertex i, d1i 6 dij, for every
j 6= 1, i. Hence, Ci > pi × d1i ×

∑i−1
j=1 pj

∏i−1
l=j+1(1− pl).

If we denote by CT
i the contribution of vertex vi in the functional E(G,T) of the star T ,

then, for every i, CT
i = pi × d1i. So, in order to complete the proof of the proposition, we have

14

to show that, for any vi ∈ V , CT
i 6 Ci, where Ci refers to every other spanning tree of G. For

this, it suffices to prove that:
i−1∑

j=1

pj

i−1∏

l=j+1

(1− pl) > 1 (21)

We show (21) by induction on i. For i = 2, the lefthand side of (21) is equal to p1 = 1, so the
inequality claimed is true. Suppose it true for i = n, i.e.:

n−1∑

j=1

pj

n−1∏

l=j+1

(1− pl) > 1 (22)

Then, at range n+ 1 it holds:

n∑

j=1

pj

n∏

l=j+1

(1− pl) =

n−1∑

j=1

pj

n∏

l=j+1

(1− pl) + pn =

n−1∑

j=1

pj

n−1∏

l=j+1

(1− pl)× (1− pn) + pn

= (1− pn)×

n−1∑

j=1

pj

n−1∏

l=j+1

(1− pl) + pn
(22)

> (1− pn) + pn = 1

The proof of the proposition is now completed.
Unfortunately, in the case where optimal solution for min spanning tree is a path, optimal-

ity of such a solution for probabilistic min spanning tree cannot be derived as previously
in the case of stars.

v1 v2 v3 · · · vn−2 vn−1 vn

v1 0 1 2 · · · 2 2 2
v2 1 0 1 · · · 2 2 2
v3 2 1 0 · · · 2 2 2
...

...
...

... · · ·
...

...
...

vn−2 2 2 2 · · · 0 1 K
vn−1 2 2 2 · · · 1 0 1
vn 2 2 2 · · · K 1 0

Table 1: The adjacency matrix of a graph G where optimal solutions for min spanning tree

and probabilistic min spanning tree do not coincide.

Indeed consider a complete graph G, the adjacency matrix of which is given in Table 1 and
its vertex-probability system is (1, p . . . , p), with p < (K − 2)/(K − 1) and K > n. Optimal min

spanning tree-solution in G is unique and is the path P = (1, 2, . . . , n − 1) with value n − 1.
The functional E(G,P) of path P is E(G,P) = (2n−3)p+(K −n)p2− (K−2)p3. On the other
hand, the unique optimal anticipatory solution for probabilistic min spanning tree is the
tree T ∗ of Figure 10 with functional’s value E(G,T ∗) = (2n − 3)p + (2 − n)p2 + p3 < E(G,P),
when p < (K − 2)/(K − 1).

4.3 probabilistic metric min spanning tree

In this section, we study probabilistic metric min spanning tree problem, that is prob-

abilistic min spanning tree in metric complete graphs, i.e., in complete graphs whose edge-
weights satisfy the triangular property that can be expressed as follows: if (vi, vj , vk) is a K3

in G, then dab 6 dac + dbc, for any permutation (a, b, c) of {i, j, k}.

15

1 2 b b b
n − 3 n − 1

n − 2

n

Figure 10: The optimal solution of the graph of Table 1.

Note that, as it can be seen from the proof of Proposition 3, it does not apply in the case of
metric graphs. Indeed, the complexity status of probabilistic metric min spanning tree

remains open, even if we feel that this variant is also NP-complete. In what follows we give
approximation results for the general case of probabilistic metric min spanning tree as
well as for a natural subcase, namely probabilistic min spanning tree 1,2, where edge
weights are either 1, or 2.

We denote by T̂ and T ∗ a tree computed by Kruskal’s algorithm (i.e., a minimum spanning
tree of G) and an optimal anticipatory solution for probabilistic metric min spanning

tree (under CLOSEST_ANCESTOR), respectively, and we assume that they are represented as sets
of edges. Observe also that, by the metric property the weight of any edge of G is smaller than the
weight of any spanning tree of G and a fortiori than the weight m(G, T̂ , CLOSEST_ANCESTOR) =
opt(G) of T̂ . Indeed, let (vi, vj) be any edge of G, T be some spanning tree of G and P (vi, vj)
be the unique path from vi to vj in T . According to the metric hypothesis, dij 6 w(P (vi, vj)) 6
m(G,T), where w(P (vi, vj)) is the weight of the path P (vi, vj). In what follows, given a set Q
of (weighted) edges, we denote by w(Q) its total weight.

4.3.1 General metric case

4.3.1.1 The average approximation ratio of a minimum spanning tree

For any Vi ⊆ V , we set Gi(Vi, Ei) = G[Vi]. Let T ∗
i and T̂i be the spanning trees on Gi re-

sulting from the application of strategy CLOSEST_ANCESTOR on T ∗ and T̂ , respectively. Set
r(Gi) = m(Gi, T̂i)/m(Gi, T

∗
i) and E(r) =

∑

Vi⊆V Pr[Vi]r(Gi). Quantity E(r) is indeed the aver-
age approximation ratio of a minimum spanning tree for probabilistic metric min spanning

tree.

Proposition 6. E(r) 6 (n+ 2)/4.

Proof. Fix an induced subgraph Gi of G and let T̂ ∩ T̂i = S. Edges of S are part of an optimal
spanning tree on G and thus, they are also part of an optimal spanning tree of Gi. Indeed,
revisiting the proof of optimality of Kruskal’s Algorithm, one can see that a tree T is a minimum
spanning tree on G, iff all the edges of T are of minimum weight in at least one cut of G. Applying
this to probabilistic min spanning tree, any edge e belonging to S is of minimum weight in
at least one cut of G; thus, e is also of minimum weight in one cut in any subgraph Gi (provided
that e appears in Gi) and, therefore, it belongs to a minimum spanning tree in all the subgraphs
of G where it is present.

Discussion just above leads to:

w(S) 6 m (Gi, T
∗
i) (23)

The edge-set T̂i \ S is the set of the edges used by CLOSEST_ANCESTOR to reconnect the S. As
observed in the beginning of Section 4.3, the weight of each edge of T̂i \ S is smaller than, or

16

equal to, m(Gi, T
∗
i), so:

w
(

T̂i \ S
)

6

∣
∣
∣T̂i \ S

∣
∣
∣m (Gi, T

∗
i) (24)

Combining (23) and (24), we get:

ri =
m

(

Gi, T̂i

)

m (Gi, T
∗
i)

6 1 +
∣
∣
∣T̂i \ S

∣
∣
∣ (25)

The quantity |T̂i \S| is, as mentioned above, the number of edges inserted by CLOSEST_ANCESTOR

to reconnect S, but it also represents the number of vertices present in Gi, but whose fathers
in T̂ (assumed rooted at v1) are absent from Gi. For each vertex of T̂ except for those directly
connected to the root v1, the probability to be present in Gi but not its father is p(1 − p).
Obviously, for the vertices directly connected to the root, this probability is 0. In order to count
the number of edges in T̂i \ S, one can consider a set of n − 1 −X Bernoulli trials (where X is
the number of vertices directly connected to v1 in T̂), with a probability of success p(1−p), each
success adding an edge to T̂i \ S. In this way, |T̂i \ S| is a random variable following a binomial
law, so one can directly compute its expectation:

∣
∣
∣T̂i \ S

∣
∣
∣ ∼ B (n− 1−X, p(1 − p))

E
(∣
∣
∣T̂i \ S

∣
∣
∣

)

= (n− 1−X)p(1 − p) (26)

Summing (25) for each Gi, we derive: E(r) 6 1+E(|T̂i \S|) and combining it with (26), we can
easily get:

E(r) 6 1 + (n− 1−X)p(1− p)
X>1
6

n

4
+

1

2
=

n+ 2

4

as claimed.

4.3.1.2 The approximation of probabilistic metric min spanning tree

Revisit for a while the proof of Proposition 6 in Section 4.3.1.1. Notice that w(S) 6 opt(G) and
that the weight of the edge-set T̂i \ S satisfies w(T̂i \ S) 6 |T̂i \ S| opt(G). So, performing the
same analysis and replacing T ∗

i with T ∗, we finally get:

E
(

G, T̂
)

opt(G)
6 1 + (n− 2)p(1 − p) (27)

Combination of (27) and (15) immediately leads to:

E
(

G, T̂
)

E (G,T ∗)
6 1 + (n− 2)(1 − p) (28)

In the same spirit of the analysis of Christofides’ algorithm ([12]), consider now a left-to-right dfs
ordering of the vertices of T̂ , the non-elementary path produced by this dfs traversal of T̂ and
observe that in this traversal any edge is encountered at most twice. This path can be transformed
into an elementary Hamiltonian path T ′ by using suitable shortcuts as shown in Figure 11(b)
where these shortcuts are the boldfaced lines (edges) (5, 6), (8, 9), (9, 10), (10, 11), (12, 13) and
the whole path T ′ is simply the path (i, i + 1), i = 1, . . . , 12 (vertices of T̂ in Figure 11(a) are
numbered in a left-to-right dfs order). By the metric property and the dfs numbering of the
vertices of the tree, the weight of a shortcut (i, j), i < j, is bounded above by the total weight

17

of the path of T̂ that starting from i “climbs” the tree up to the lowest common ancestor k of i
and j and then goes down to j. With respect to this shortcut, edges of the path from k to i will
count at most twice in T ′ (either as real edges of T ′, or for shortcut’s bound). Furthermore, they
will not further be encountered in any other shortcut. In Figure 11(b), the small lines crossing
an edge of T̂ indicate the number of times this edge encounters in T ′. So, since T ′ is also a
spanning tree for G:

m
(
G,T ′

)
6 2 opt(G) (29)

1

2

3

4

5

6

7

8
9

10
11

12
13

(a) T̂

1

2

3

4

5

6

7

8
9

10
11

12
13

(b) T
′

Figure 11: A tree T̂ and the Hamiltonian path T ′ produced from it.

Since T ′ is a Hamiltonian path having the omnipresent vertex v1 as one of its endpoints, any
modification of it by the modification strategy CLOSEST_ANCESTOR due to the absence of any
subset Vi ⊆ V , will produce a path T ′

i that always remains Hamiltonian for the graph G′
i =

G[V \ Vi]. By the metric hypothesis, for any Vi ⊆ V :

m
(
G′

i, T
′
i

)
6 m

(
G,T ′

)
(30)

Then, the functional associated with T ′ can be written as:

E
(
G,T ′

)
=

∑

Vi⊆V

Pr [V \ Vi]m
(
G′

i, T
′
i

) (30)

6 m
(
G,T ′

)
×

∑

Vi⊆V

Pr [V \ Vi] (31)

= m
(
G,T ′

) (29)

6 2 opt(G)
(15)

6
2

p
× E (G,T ∗) (32)

So, T ′ is a (2/p)-approximation for probabilistic metric min spanning tree and taking
the best (with respect to the functional) among T̂ and T ′, the following result holds (according
to (28) and (31) and concludes this subsection.

Proposition 7. probabilistic metric min spanning tree is approximable in polynomial
time within ratio bounded above by min{1 + (n− 2)(1 − p), 2/p}.

18

4.3.2 probabilistic min spanning tree 1,2

We now focus on a particular but natural and well-studied class of metric complete graphs where
edge weights are either 1 or 2. It is easy to see that any such graph is metric.

We first prove the following easy approximation result for probabilistic min spanning

tree 1,2 that will be subsequently improved.

Proposition 8. A minimum spanning tree of G is a (2− p)-approximation for probabilistic

min spanning tree 1,2.

Proof. Consider a minimum spanning tree T̂ of G computed, for instance, by Kruskal’s algo-
rithm. Then, the following fact holds.

Fact 1. If T̂ has k edges of weight 2, then in E(G,T ∗), (i.e., the optimal value for proba-

bilistic min spanning tree 1,2 under CLOSEST_ANCESTOR) there exist at least k vertices with
contribution 2p (recall that by (17), the functional can be defined as the sum of the contributions
of the vertices, each such contribution expressed by (20)).

Indeed, if T̂ has k edges of weight 2, then, by construction of T̂ , there exist k + 1 distinct
connected components Vi in the graph G′(V,E′) (that contains only the edges of G of weight 1);
edges between any two vertices of any two of these components have weight 2 (suppose, w.l.o.g.,
that the omnipresent vertex v1 belongs to V1). So, the following holds:

∀i ∈ {1, . . . , k + 1}, ∀vj ∈ Vi, vk /∈ Vi, djk = 2 (33)

Assume now a bfs on T̂ , starting from v1 and denote by ui the first-visited vertex of Vi (obviously,
u1 = v1). For every i > 1, all the vertices visited before ui (a fortiori those on the path from v1
to ui), do not belong to Vi; hence, by (33), every edge linking ui to any of these vertices has
weight 2. So, for i = 2, . . . , k + 1, the contribution C(ui) of ui to E(G, T̂) is 2p.

Discussion above holds for any spanning tree of G and a fortiori for T ∗; hence, truth of Fact 1
is immediately derived.

As a consequence of the discussion above, T ∗ has at least k vertices with contribution 2p to
the functional; observe furthermore that the contribution of any of the other n− k − 1 vertices
(recall that vertex v1 has null contribution) is at least p. So:

E (G,T ∗) > 2p× k + (n− k − 1)× p = p× (n− 1 + k) (34)

Revisit now T̂ and consider that a vertex is “covered” by the edge of T̂ entering it in the bfs
visiting. Based upon the discussion above, there are k vertices covered by edges of weight 2 and
n − k − 1 vertices covered by edges of weight 1. Consider a vertex w covered by an edge of
weight 1. It is easy to see from (20) that its contribution C(w) is at most p(2− p) (considering
that all the other edges incident to it in G have weight at most 2). So:

E
(

G, T̂
)

6 p× (2− p)× (n− 1− k) + 2pk = p(n− 1)× (2− p) + p2 × k (35)

Combining (34) and (35) we get after some easy algebra: E(G, T̂)/E(G,T ∗) 6 2−p as claimed.
In what follows we refine the result above. For this we consider an execution of Kruskal’s

algorithm that starts by introducing in the tree all the edges of weight 1 incident to the vertex v1.
Let us denote by T̃ the spanning tree so constructed; notice that T̃ is a minimum spanning tree
for G.

Proposition 9. The tree T̃ approximates T ∗ within ratio:

1 + (2− p)(n− 2)

n− 1 + (1−p)2−(1−p)n

p

19

Proof. Recall that, by Proposition 8, if the value of a minimum spanning tree T̃ is equal to n+k
then, for every spanning tree T there exist at least k (exactly k for T̃) vertices each contributing
with 2p to the functional associated with T . For simplicity, assume that this number is exactly k
for T also (if not, i.e., if we have more than k such vertices, the bounds derived below are even
better). Among the remaining (less than) n− 1− k vertices of T let us denote by n1 the number
of those that in G are connected to v1 by edges of weight 1 and by U2 the set of those that in G
are connected to v1 by edges of weight 2; set finally n2 = |U2|. Obviously, n− 1 = n1 + n2 + k.

Consider a vertex vi ∈ U2, suppose that its height is i and recall that, by definition, di1 = 2.
Then, the contribution Ci of vi (see also (20)) in E(G,T) is at least:

Ci > p
(
1 + (1− p)i−1

)
(36)

where in (36) it has been assumed that only edge (v1, vi) has weight 2, while every other edge
on the path from v1 to vi in T has weight 1.

Number the vertices of T as they appear in a bfs ordering of T and let ℓ1, ℓ2, . . . , ℓn2 be the
bfs numbers of the vertices of U2. Fix a vertex vi ∈ U2 with bfs number, say, ℓi and notice that
the n2 − i vertices of U2 numbered ℓi+1, . . . , ℓn2 have all height at least equal to the height of vi.
The height of vi is at most n− 1− (n2 − i) = n− 1− n2 + i; hence, (36) becomes:

Ci > p
(
1 + (1− p)n−n2+i−2

)
(37)

Using (37) and denoting by C(U2) the total contribution of the vertices of U2 in E(G,T), we
get:

C (U2) >

n−1∑

i=n−n2

p×
(
1 + (1− p)i−1

)
= pn2 + p×

n−1∑

i=n−n2

(1− p)i

= p×

(

n2 +
(1− p)n−n2 − (1− p)n

p

)

(38)

What it has been discussed until now holds for any spanning tree T , a fortiori for the optimal
anticipatory tree T ∗. So, using (38), the functional E(G,T ∗) becomes:

E (G,T ∗) > p× n1 + p×

(

n2 +
(1− p)n−n2 − (1− p)n

p

)

+ 2p× k (39)

On the other hand, consider the tree T̃ and recall that, by its construction, n1 of its vertices
are directly linked to v1. Then, their contribution to E(G, T̃) is equal to pn1. According to the
proof of Proposition 8, the contribution of any of the n2 vertices linked in G to v1 by edges of
weight 2 but covered in T̃ by edges of weight 1 is at most p(2 − p) and the contribution of any
of the remaining k vertices (covered in T̃ by edges of weight 2) is 2p. Putting all this together,
we derive:

E
(

G, T̃
)

6 p× n1 + p(2− p)× n2 + 2p × k (40)

Combining (39) and (40) we get:

E
(

G, T̃
)

E (G,T ∗)
6

p× n1 + p(2− p)× n2 + 2p × k

p× n1 + p×
(

n2 +
(1−p)n−n2−(1−p)n

p

)

+ 2p × k
(41)

6
n1 + (2− p)× n2

n1 + n2 +
(1−p)n−n2−(1−p)n

p

(42)

6
n1 + (2− p) (n− 1− n1)

n− 1 + (1−p)n1−1−(1−p)n

p

6
1 + (2− p)(n− 2)

n− 1 + (1−p)2−(1−p)n

p

(43)

20

where the rightmost expression of (42) is due to the fact that ratio’s expression is decreasing
with k > 0, the first expression of (43) is due to the fact that since k is set to 0, n− 1 = n1 + n2

and the second expression of (43) is due to the fact that the first expression is decreasing with n1

but k and n1 cannot be simultaneously equal to 0 (if n1 = 0, then no vertex of G is linked to v1
with an edge of weight 1, so k > 1), hence, n1 > 1. This proves the ratio claimed.

v3 v4 v5 vn−2 vn−1 vn

v2

v1

2 2 2 2 2 2

Figure 12: A graph where the ratio claimed in Proposition 9 is tight.

v3 v4 v5 v
n−2 v

n−1 vn

v2

v1

b b b

(a) T̃

v3 v4 v5 v
n−2 v

n−1 vn

v2

v1

(b) T
∗

Figure 13: The trees T̃ and T ∗ from the graph of Figure 12.

For tightness, consider the graph of Figure 12. There, ∀i ∈ {3, . . . , n}, d1i = 2; every
other edge has weight 1. So, any tree where v1 is linked to v2 is a tree T̃ , potentially built
by an execution of Kruskal’s algorithm as that considered in the proposition. For instance,
such a tree can be the tree of Figure 13(a). It is easy to see that the value of the functional
of this tree is equal to p(1 + (2 − p)(n − 2)). On the other hand, the optimal anticipatory
solution T ∗ is shown in Figure 13(b); the value of the functional associated with T ∗ is equal to
p(n− 1) + p

∑n−2
i=1 (1− p)i = p(n− 1) + ((1− p)− (1− p)n−1).

One can see that when p is fixed (i.e., independent on n), the approximation ratio achieved is
strictly better than 2. On the other hand, when p ∼ 1/n, then since limn→+∞(1− p)n/p = n/e,
the ratio claimed in Proposition 9 tends to 1.225, for large values of n. If p ∼ 1/nk, k > 1, then
for large values of n, this ratio tends to 1. Finally, if p ∼ 1/nk, k < 1, then (always for large
values of n) the ratio is asymptotically equal to 2.

5 probabilistic min spanning tree under modification strategy ROOT

We will now analyze probabilistic min spanning tree under another modification strategy.
In this strategy, denoted by ROOT, present vertices whose fathers are absent are connected to the
omnipresent root (see Figure 14 for an example). Clearly, its complexity is O(n). ROOT is very

21

natural in terms of network design where, for instance, in case of failure of intermediate servers,
surviving servers are connected to the central one in order to ensure total global connectivity of
the remaining network.

1

2 4 5

6 7

3

8 9 10 11

12

(a) An initial tree T . . .

1

4 5

6 7

3

10

12

(b) . . . and its modification by ROOT

Figure 14: An anticipatory spanning tree T and its adjustment.

5.1 The complexity of probabilistic min spanning tree

With respect to ROOT, the contribution Ci of a vertex vi can be written as follows:

Ci = C (vi, T) = pi
(
pf(i)di,f(i) +

(
1− pf(i)

)
di,1

)

where vf(i) is the father of vi in T . As previously, summing the Ci’s, for each vertex of the graph,
leads to the functional associated with the strategy ROOT:

E(G,T) =
∑

vi∈V

(
pi
(
pf(i)di,f(i) +

(
1− pf(i)

)
di,1

))
(44)

The value of E(G,T) can be computed in polynomial time. We will now show that probabilis-

tic min spanning tree under ROOT belongs to P, by specifying a polynomial algorithm that
solves this problem optimally.

Proposition 10. probabilistic min spanning tree under ROOT can be optimally solved in
polynomial time.

Proof. Transform the initial graph G(V,E) into a directed one Gd(V,A) having the same vertex-
set as follows: for each edge (vi, vj) of E (i, j 6= 1), add two arcs (vi, vj) and (vj , vi) in Gd with
weights:

d′i,j = pi (pjdi,j + (1− pj) di,1)

d′j,i = pj (pidj,i + (1− pi) dj,1)

and for each edge (v1, vi) of E, add one arc (v1, vi) in Gd with the same weight. Note that the
number of arcs in Gd is at most 2|E|.

Run in Gd Edmonds’ polynomial algorithm for the arborescence problem ([15, 16, 21];
this problem consists of finding a minimum-weight spanning tree in a directed graph), taking v1
as root. It returns a rooted tree of minimum total edge-weight spanning all the vertices of Gd.
This algorithm consists of determining the minimum weight arc entering each vertex (except for
the root), and adding this edge to the solution. At this point, the solution has n−1 arcs, but may

22

contain loops. If the solution does not contain loops, then it is an optimal arborescence, otherwise
loops are successively broken in an optimal way. Retain this tree as anticipatory solution for G
(simply delete orientations of arcs and unify the so obtained duplicate edges). Given the edge-
weight function defined in Gd, this tree also minimizes the functional E(G,T, ROOT), i.e., it is
optimal for probabilistic min spanning tree.

5.2 Stability of the solutions

5.2.1 Same probabilities for all vertices

We first focus on the case where all vertices have the same presence-probability, p (except for v1
which still has probability 1). We show that in such graphs, the deterministic and probabilistic
solutions coincide, which is not true anymore when probabilities are distinct.

Proposition 11. Let G be an instance of probabilistic min spanning tree problem under
strategy ROOT, where all vertices, except for the root, have the same probability p. On such an
instance, the optimal tree T̂ and optimal a priori tree T ∗ coincide.

Proof. In an instance where all vertices are equiprobable, the general functional formula given
in (44) can be reformulated as follows:

E(G,T) =
∑

vi∈V

(
p
(
pdi,f(i) + (1− p) di,1

))
(45)

In this case, notice that the second member of the sum does not depend on the structure of the
tree. Thus, one can rewrite the functional as:

E(G,T) = p




∑

(vi,vj)∈T

pdi,j +
∑

vj∈V

(1− p) d1,j



 (46)

The first term in the parentheses of (46) is p times the value of the spanning tree T , while the
second term is the weight of the star rooted at v1 (that is constant for a given graph), i.e.:

E(G,T) = p (pd (T) + (1− p) d (S)) (47)

So, in order to minimize E(G,T) in (47), it suffices to minimize d(T).

5.2.2 Star as deterministic solution

Let us now consider the particular case where the anticipatory solution is a star rooted at v1.
Then, the following result holds.

Proposition 12. Let T be a star rooted at v1. If T is an optimal solution for min spanning

tree then it is also an optimal anticipatory solution for probabilistic min spanning tree

under ROOT.

Proof. Consider Gd as it has been built in the proof of Proposition 10. If the optimal solution
for min spanning tree in G is a star, then:

∀i, j 6= 1, d1,j 6 di,j (48)

According to the definition of the edge-weight function d′ in Gd, it can be easily seen that the
property expressed by (48) extends also to Gd: ∀i, j 6= 1, d′1,j 6 d′i,j .

Since edges of G incident to v1 are not duplicated when they become arcs in Gd, in the case
of stars rooted at v1 the minimum-weight arc for each vertex vi will be the arc (v1, vi) and no
loop will appear. Thus, in this case, the probabilistic optimum is the same star.

23

2

2

3

6

7

8

9

1

1

1

v1

v2

v3

v4

v5

Figure 15: A graph G with n = 5.

5.3 ROOT vs. CLOSEST_ANCESTOR

It has been shown that ROOT leads to a probabilistic model much easier to analyze and optimize
than that induced by CLOSEST_ANCESTOR. But the optimum returned by the former might not be
as good in terms of expected value as that returned by CLOSEST_ANCESTOR. Naturally, the choice
between ROOT and CLOSEST_ANCESTOR will depend on the real world application so-modeled. But
still, even if probabilistic min spanning tree under ROOT is polynomial, comparing these
two strategies in terms of quality of their respective returned solutions seems to be interesting
and adds some further insight to the apprehension of the multiple difficulties occurring when
handling probabilistic problems.

Proposition 13. Let E(G,T ∗
R
) and E(G,T ∗

CA
) be the expected values of optimal anticipatory

optima associated with ROOT and CLOSEST_ANCESTOR, respectively. Even in metric graphs, the
approximation ratio between these two values is unbounded.

Proof. Let us consider a graph G of order n, some ordering on its vertices and assume that the
optimal solution for min spanning tree is a path. In this graph, vertices are equiprobable and
weights are as follows:

d1,i = n+ i− 1 ∀i 6= 1
di,j = j − i ∀i, j 1 < i < j 6 n

(49)

It can be easily seen that such graph is metric and that the path P = (v1, v2, . . . , vn) is a
minimum spanning tree (see Figure 15 for an example with n = 5).

From Proposition 11, P is also the optimal anticipatory solution for probabilistic min

spanning tree under ROOT, since vertices are equiprobable. The weight of P is 2n − 1. So,
revisiting (47), its expected value is:

E (G,T ∗
R
) = p



p(2n − 1) + (1− p)
∑

(vj)∈V

(n+ j − 1)





= p

(

p(2n− 1) + (1− p)

(

n− 1 +
n(n− 1)

2

))

(50)

Consider now P as the anticipatory solution for CLOSEST_ANCESTOR. Recall that this strategy
reconnects each vertex to its closest present ancestor, so that, in G, any adjusted tree will be a
path, with weight at most d(P) = 2n − 1. Figure 16 illustrates this assumption and depicts all
the paths generated by CLOSEST_ANCESTOR, each of which has weight at most 2n− 1 = 7.

24

6

7
2

5

1

1

PSfrag

v1

v2

v3

v4

d(P)=7

(a) A graph G with
n = 4, the path P

d(P1)=7 d(P2)=7 d(P3)=6

d(P4)=7 d(P5)=5 d(P6)=6

d(P7)=0

(b) Modification by CLOSEST_ANCESTOR

for each possible subgraph

Figure 16: An anticipatory solution P and all its possible adjustments.

Thus, a loose (but sufficient) lower bound for E(G,T ∗
CA
) is:

E (G,T ∗
CA
) 6 2n− 1 (51)

Combining (50) and (51), we finally get for the ratio between the expected values associated
with these two strategies:

E (G,T ∗
R
)

E (G,T ∗
CA
)
> p2 +

p(1− p)(n− 1)
(
1 + n

2

)

2n− 1
(52)

that is O(n) for large values of n when p is constant.
In other words, there exist graphs where the expected value of the optimum with respect to

ROOT is much larger than the expectation for CLOSEST_ANCESTOR when applied to this solution.

6 Conclusion

In this paper we have handled the probabilistic min spanning tree problem in the frame-
work of probabilistic combinatorial optimization. We have proposed two fast modification strate-
gies (CLOSEST_ANCESTOR and ROOT) for reconstructing a second-stage tree and we have studied
particular cases of anticipatory solutions. We have shown that the problem of optimizing the
expectation of the second-stage cost by selecting an appropriate first-stage (anticipatory) so-
lution is NP-hard under strategy CLOSEST_ANCESTOR while it is polynomial under ROOT. Un-
der CLOSEST_ANCESTOR strategy we have given several approximation results for probabilistic

metric min spanning tree and probabilistic min spanning tree 1,2.
There are several open questions subject for further research. To our opinion, the major

among them are the complexities of probabilistic metric min spanning tree and proba-

bilistic min spanning tree 1,2 (under CLOSEST_ANCESTOR; we conjecture that they are both
NP-hard) and the improvement of their approximation ratios.

References

[1] I. Averbakh, O. Berman, and D. Simchi-Levi. Probabilistic a priori routing-location prob-
lems. Naval Res. Logistics, 41:973–989, 1994.

25

[2] D. J. Bertsimas. Probabilistic combinatorial optimization problems. Phd thesis, Operations
Research Center, MIT, Cambridge Mass., USA, 1988.

[3] D. J. Bertsimas. On probabilistic traveling salesman facility location problems. Transporta-
tion Sci., 3:184–191, 1989.

[4] D. J. Bertsimas. The probabilistic minimum spanning tree problem. Networks, 20:245–275,
1990.

[5] D. J. Bertsimas, P. Jaillet, and A. Odoni. A priori optimization. Oper. Res., 38(6):1019–
1033, 1990.

[6] L. Bianchi, J. Knowles, and N. Bowler. Local search for the probabilistic traveling sales-
man problem: correlation to the 2-p-opt and 1-shift algorithms. European J. Oper. Res.,
161(1):206–219, 2005.

[7] J. Birge and F. Louveaux. Introduction to stochastic programming. Springer, Berlin, 1997.

[8] N. Bourgeois, F. Della Croce, B. Escoffier, C. Murat, and V. Th. Paschos. Probabilistic
coloring of bipartite and split graphs. J. Comb. Optimization, 17(3):274–311, 2009.

[9] F. Butelle. Contribution à l’algorithmique distribuée de contrôle : arbres couvrants avec et
sans contraintes. PhD thesis, Université Paris VIII, 1994.

[10] B. Chazelle. A minimum spanning tree algorithm with inverse-ackerman type complexity.
J. Assoc. Comput. Mach., 47(6):1028–1047, 2000.

[11] D. Cheriton and R. E. Tarjan. Finding minimum spanning trees. SIAM J. Comput., 5:724–
742, 1976.

[12] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman problem.
Technical Report 388, Grad. School of Industrial Administration, CMU, 1976.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
McGraw-Hill, 2nd edition, 2001.

[14] G. W. Dantzig. Linear programming under uncertainty. Management Sci., 1:197–206, 1951.

[15] J. Edmonds. Optimum branchings. J. Res. Natl. Bureau Standards, 71B:233Ű–240, 1967.

[16] L. Georgiadis. Arborescence optimization problems solvable by edmonds’ algorithm. Theo-
ret. Comput. Sci., 301:427–437, 2003.

[17] P. Jaillet. Probabilistic traveling salesman problem. Technical Report 185, Operations
Research Center, MIT, Cambridge Mass., USA, 1985.

[18] P. Jaillet. A priori solution of a traveling salesman problem in which a random subset of
the customers are visited. Oper. Res., 36(6):929–936, 1988.

[19] P. Jaillet. Shortest path problems with node failures. Networks, 22:589–605, 1992.

[20] P. Jaillet and A. Odoni. The probabilistic vehicle routing problem. In B. L. Golden and
A. A. Assad, editors, Vehicle routing: methods and studies. North Holland, Amsterdam,
1988.

26

[21] B. Korte. Combinatorial optimization: theory and algorithms, volume 21 of Algorithms and
combinatorics. Springer, 3rd edition, 2006.

[22] P. Kouvelis and G. Yu. Robust discrete optimization and its applications. Kluwer Academic
Publishers, Boston, 1997.

[23] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proc. Amer. Math. Soc., 7(1):48–50, 1956.

[24] C. Murat and V. Th. Paschos. The probabilistic longest path problem. Networks, 33:207–
219, 1999.

[25] C. Murat and V. Th. Paschos. A priori optimization for the probabilistic maximum indepen-
dent set problem. Theoret. Comput. Sci., 270:561–590, 2002. Preliminary version available
at http://www.lamsade.dauphine.fr/~paschos/documents/c166.pdf.

[26] C. Murat and V. Th. Paschos. The probabilistic minimum vertex-covering problem. Int.
Trans. Opl Res., 9(1):19–32, 2002. Preliminary version available at http://www.lamsade.

dauphine.fr/~paschos/documents/c170.pdf.

[27] C. Murat and V. Th. Paschos. On the probabilistic minimum coloring and minimum k-
coloring. Discrete Appl. Math., 154:564–586, 2006.

[28] V. Th. Paschos, O. A. Telelis, and V. Zissimopoulos. Steiner forests on stochastic metric
graphs. In A. Dress, Y. Xu, and B. Zhu, editors, Proc. Conference on Combinatorial Opti-
mization and Applications, COCOA’07, volume 4616 of Lecture Notes in Computer Science,
pages 112–123. Springer-Verlag, 2007.

[29] V. Th. Paschos, O. A. Telelis, and V. Zissimopoulos. Probabilistic models for the steiner

tree problem. Networks, 56(1):39–49, 2010.

[30] A. Prekopa. Stochastic programming. Kluwer Academic Publishers, The Netherlands, 1995.

[31] R. E. Tarjan. Efficience of a good but not linear set-union algorithm. J. Assoc. Comput.
Mach., 22:215–225, 1975.

[32] A. Yao. An O(|E| log log |V |) algorithm for finding minimum spanning trees. Inform. Pro-
cess. Lett., 4:21–23, 1975.

27

