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Electron pair localization function: A practical tool to visualize electron
localization in molecules from quantum Monte Carlo data

Anthony Scemama,a) Patrick Chaquin, and Michel Caffarel
Laboratoire de Chimie The´orique, UMR 7616 du CNRS, Universite´ Pierre et Marie Curie Paris VI,
Case 137, 4, place Jussieu 75252 PARIS Cedex 05, France

~Received 16 February 2004; accepted 3 May 2004!

In this work we introduce an electron localization function describing the pairing of electrons in a
molecular system. This function, called ‘‘electron pair localization function,’’ is constructed to be
particularly simple to evaluate within a quantum Monte Carlo framework. Two major advantages of
this function are the following:~i! the simplicity and generality of its definition; and~ii ! the
possibility of calculating it with quantum Monte Carlo at various levels of accuracy~Hartree-Fock,
multiconfigurational wave functions, valence bond, density functional theory, variational Monte
Carlo with explicitly correlated trial wave functions, fixed-node diffusion Monte Carlo, etc!. A
number of applications of the electron pair localization function to simple atomic and molecular
systems are presented and systematic comparisons with the more standard electron localization
function of Becke and Edgecombe are done. Results illustrate that the electron pair localization
function is a simple and practical tool for visualizing electronic localization in molecular systems.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1765098#

I. INTRODUCTION

In recent years quantum Monte Carlo~QMC! ap-
proaches, a set of stochastic methods that solve exactly the
Schrödinger equation, have been found very successful in
calculating ground-state energies of various molecular sys-
tems, e.g., Refs. 1–6. The accuracy achieved is impressive:
It is in general superior to that obtained with the most accu-
rate approaches of standard computational chemistry
@coupled cluster, multiconfigurational self-consisent field
~MCSCF!, etc.#. Furthermore, the number of electrons that
can be treated is rather large. To give an example, let us
mention the recent calculations of Williamsonet al. for hy-
drogenated silicon clusters.7 Using linear-scaling techniques
to reduce the computational cost of QMC algorithms, clus-
ters including up to 984 valence electrons were shown to be
accessible. Quite importantly, there is no practical limitation
preventing such results from being extended to even greater
systems in the near future.

Now, although ground-state energies are of primary in-
terest, it is clear that a chemical understanding of a complex
molecular system requires more than the knowledge of the
sole ground-state energy. In general, chemists are interested
in rationalizing and quantifying the structure and reactivity
of the system in terms of various quantities related to elec-
tron localization. A number of important questions we wish
to answer include, for example, the nature of the bonding
between atoms, the localization of lone pairs, the local con-
centration or depletion of the charge, etc. In standard com-
putational chemistry several approaches have been devel-
oped to analyze and visualize the electronic distribution in
the ordinary three-dimensional~3D! space. Among them we
can cite, e.g., the methods analyzing the deformation densi-

ties~a build-up of charge between two atoms is interpreted as
the existence of a bond!,8 the methods based on the topologi-
cal analysis of the electron density or its Laplacian~see,
Bader9!, the methods studying the topography of the molecu-
lar electrostatic field,10 and, also, approaches using as indi-
cator the electron localization function~ELF! describing the
amount of local Pauli repulsion between electrons.11,12 Of
course, this list cannot be considered as exhaustive since
defining a successful qualitative model for the description of
chemical structure is an everlasting theme in chemistry since
the pioneering electron-pair model of Lewis.

In this work we propose to exploit the accurate data
obtained in quantum Monte Carlo simulations to get some
additional insights into the electron localization properties of
molecules. To do that, we introduce a localization function
describing the pairing of electrons in a molecular system.
This function, called ‘‘electron-pair localization function’’
~EPLF!, is built to be particularly easy to evaluate within a
QMC framework. As illustrated here by several applications
to simple atomic and molecular systems EPLF appears to be
an effortless and practical tool for describing electronic fea-
tures. As we shall see, the 3D-EPLF plots have some simi-
larities with the plots obtained using the ELF of Becke and
Edgecombe.11 However, there are also some important dif-
ferences. These various points will be discussed below.

The organization of the paper is as follows: In Sec. II the
basic features of QMC needed to understand the present
work are briefly presented. In particular, we summarize the
various probability densities produced by QMC. Section III
is devoted to the definition and presentation of our EPLF. A
brief presentation of the more standard ELF to which our
results will be compared is also given. Section IV presents a
number of practical details related to simulations. In Sec. V
our results for several atoms and molecules~Ne, Ar, LiH,
N2 , CH3, and F2) are presented. For the F2 case we give aa!Author to whom correspondence should be addressed.
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detailed comparative study between the ELF and the EPLF
analysis. Finally, in Sec. VI a summary of the main results of
this work is presented.

II. QUANTUM MONTE CARLO

In a quantum Monte Carlo scheme a series of ‘‘states’’ or
‘‘configurations’’ are generated using some elementary sto-
chastic rules. Here, a configuration is defined as the set of the
3N-electronic coordinates~N number of electrons!, the posi-
tions of the nuclei being fixed~Born-Oppenheimer condi-
tion!

RW 5~rW1 ,...,rWN!. ~1!

Stated differently, a configurationRW may be viewed as a
‘‘snapshot’’ of the molecule showing the instantaneous posi-
tions of each electron. Stochastic rules are chosen so that
configurations are generated according to some target prob-
ability density, P(RW ). Note that the probability density is
defined over the complete 3N-dimensional configuration
space and not over the ordinary 3D space. Many variants of
QMC can be found in the literature~referred to with various
acronyms: VMC, DMC, PDMC, GFMC, etc!. They essen-
tially differ by the type of stochastic rules used and/or by the
specific stationary density produced. In practice, the two
most popular QMC approaches used for simulating complex
molecular systems are the so-called variational Monte Carlo
~VMC! and fixed-node diffusion Monte Carlo~FN-DMC!
methods. Both methods will be employed here. Let us briefly
summarize the basic features of these methods useful for the
following ~for a detailed presentation, see, e.g., Ref. 13!.

A. Variational Monte Carlo

In a VMC calculation the probability density generated
is given by

PVMC~RW !5cT
2~RW !, ~2!

wherecT is a high-quality electronic trial wave function. A
commonly used expression forcT consists of a product of
two terms. The first term is standard and is introduced to
describe the one-particle shell-structure of molecules. It is
obtained from a preliminary Hartree-Fock~HF! or density-
functional theory ~DFT! ab initio calculation and is ex-
pressed as one~or a combination of a few! determinant~s! of
single-particle orbitals. The second term is introduced to re-
produce the electron-electron cusp condition of the exact
wave function and, also, to incorporate some explicit cou-
pling between electron-nucleus and electron-electron coordi-
nates~see Ref. 14!. Note that the electron-electron cusp con-
dition is known to be particularly difficult to fulfill in
standardab initio calculations using expansions over one-
electron basis sets~necessity of considering very high values
of the orbital momentum!. The explicitly correlated term is
usually referred to as the Jastrow factor. In a spin-free for-
malism our trial wave function is written as

cT~RW !5D↑~RW !D↓~RW !expF(
a

(
^ i , j &

U~r ia ,r j a ,r i j !G , ~3!

where the sum overa denotes a sum over the nuclei,(^ i , j & a
sum over the pair of electrons, andDs ~s5↑ or ↓! are de-
terminants made of one-particle space orbitals. Different ex-
pressions for the Jastrow part have been presented in the
literature. Here, we have chosen the following form:15

U~r ia ,r j a ,r i j !5s~xi j !1p~a!~xia!1c1xia
2 xj a

2

1c2~xia
2 1xj a

2 !xi j
2 1c3xi j

2 , ~4!

with

xi j 5
r i j

11bsr i j
,

xia5
r ia

11bar ia
,

s~x!5s1x1s2x21s3x31s4x4,

p~a!~x!5p1
~a!x1p2

~a!x21p3
~a!x31p4

~a!x4,

bs can take two different values depending on the spin of the
pairs of electrons considered. In this latter expression the
quantities$bs ,ba ,ci ,si ,pi

(a)% play the role of parameters.
The critical step in a VMC approach is the optimization

of the parameters entering the trial wave function. A standard
method consists in searching for parameters minimizing the
fluctuations in configuration space of the local energy de-
fined as

EL~RW ![HCT /CT . ~5!

This criterion is based on the fact that for the exact wave
function the local energy reduces everywhere to a constant—
the exact energy—and, thus, the fluctuations of the local en-
ergy entirely vanish. Accordingly, small fluctuations are as-
sociated with ‘‘good’’ trial wave functions. A number of
methods have been developed to perform efficiently the op-
timization step within a QMC framework. In this work, we
have used the correlated sampling method of Umrigar
et al.,16 an approach based on the minimization of the
weighted variance of the local energy over a set of fixed
configurations.

Once the optimal parameters have been determined, the
quality of the resulting trial wave function is usually good: A
major part of the dynamical correlation energy~Coulomb
hole! is recovered and thegrossfeatures of the one-particle
background are also correctly described via the determinan-
tal part~nondynamical part!. For most atoms it is possible to
recover up to 80%–90% of the exact correlation energy;14

for molecules the domain of variation lies usually between
30% and 90%~see Table I for our calculations on F2).

The numerical method~stochastic rules! employed to
generate the VMC density, Eq.~2!, is standard. It is based on
the use of a generalized Metropolis algorithm. Since this
aspect is not important here we refer the interested reader to
the relevant literature.13

B. Diffusion Monte Carlo

In a diffusion Monte Carlo scheme the stochastic rules
employed are the same as in the VMC case~Metropolis al-
gorithm! plus a new rule corresponding to a branching~or
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birth-death! process. More precisely, depending on the mag-
nitude of the local energy a given configuration can be de-
stroyed~when the local energy is greater than some estimate
of the exact energy! or duplicated a certain number of times
~local energy lower than the exact energy!. It can be shown
that the stationary density resulting from these rules is now
given by

PDMC~RW !5cT~RW !f0~RW !, ~6!

wheref0(RW ) denotes the ground-state wave function. Actu-
ally, because the densityPDMC is necessarily positive~as any
stationary density resulting from some stochastic rules!, f0

is not exactly the exact ground-state wave function but some
approximate one resulting from the additional constraint that
f0 must have the same sign as the trial wave function~so
that the product in Eq.~6! always remains positive!. Such a
constraint implies that the nodes~points where the wave
function vanishes! are identical forcT andf0 . The resulting
error is called the ‘‘fixed-node’’ error. Generally, this ap-
proximation is very good~see Table I!, the fixed-node error
on total energies represents usually a small fraction of the
total correlation energy~this error depends only on the qual-
ity of the nodes, see, e.g., the discussion in Ref. 17!.

C. ‘‘Exact’’ quantum Monte Carlo

Of course, beyond VMC, Eq.~2!, and fixed-node DMC
densities, Eq.~6! we would be interested in generating the
exact density associated with the unknown ground-state
wave function,f0

Pexact~RW !5f0
2~RW !. ~7!

In principle, obtaining such a density within a quantum
Monte Carlo approach is possible. This can be done by re-
sorting to one of the variants of the so-called ‘‘forward walk-
ing’’ schemes.18–20 Unfortunately, in practice, such schemes
are known to be intrinsically unstable and, therefore, very
time consuming for large systems. For applications on com-
plex systems the possibility of getting a stable density of
configurations is unrealistic.

III. THE ELECTRON PAIR LOCALIZATION FUNCTION

Before presenting the electron pair localization function
let us first present briefly the ELF introduced by Becke and
Edgecombe.11

A. ELF

The ELF is designed to probe the amount of electronic
localization in the usual 3D space. For the sake of simplicity,
ELF is constructed to take its values within the interval@0,1#.
The upper limit, ELF51, corresponds to perfect localization,
the value ELF51/2 corresponds to a level of localization
comparable to that of an uniform electron gas, and small
values of ELF correspond to delocalization. The fundamental
quantity from which ELF is built is the parallel-spin condi-
tional pair probability density,Pcond

ss (rW1 ,rW2), a quantity
which gives the probability of finding as-spin electron at
position rW2 when as-spin electron is located at positionrW1 .
ELF is defined as

ELF~rW !5
1

11xs
2~rW !

, ~8!

with

xs~rW !5
Ds~rW !

Ds
0~rW !

, ~9!

and where the local functionDs(rW) is the leading term of the
Taylor expansion of the spherically averaged conditional pair
probability Pcond

ss (rW1 ,rW2) ~point 1 is considered as the refer-
ence pointrW and the conditional pair probability is integrated
with respect torW2 over the sphere of radiuss and centered at
rW5rW1):

Pcond
ss ~rW,s!5 1

3Ds~rW !s21... . ~10!

In Eq. ~9! the functionDs
0 is introduced as a reference quan-

tity: It corresponds to the value of the functionDs for the
uniform electron gas at the same densityrs .

For an independent-particle model,Ds(rW) can be easily
computed from the set of occupied orbitalsc i as follows:

Ds~rW !5(
i

s

u¹W c i u22
1

4

u¹W rsu2

rs
, ~11!

and the reference quantityDs
0 is usually taken as that of the

uniform noninteractingelectron gas with densityrs as done
in the original work of Becke and Edgecombe:

Ds
0~rW !5 3

5~6p2!2/3rs~rW !5/3. ~12!

Beyond independent-particle models described by a
single determinant wave function the situation regarding
ELF is somewhat confusing. In that case, several proposals
for both the definition of ELF and/or its interpretation have
been presented in the literature~however, all these interpre-
tations become equivalent for independent particle systems!.
Here, it is not necessary to enter into such details~for that,
see, e.g., Refs. 21 and 22!. However, it is important to em-
phasize that there is no consensus on what definition and
interpretation should be used for a general correlated many-
body wave function.

TABLE I. Comparison of energies obtained for F2 at different levels of
computation in atomic units. The interatomic distance is the experimental
equilibrium distance,R52.668. Statistical uncertainty on the last digit given
in parenthesis.

Method Energy Correlation energy~%!

HF/cc-pVTZ 2198.752055
HF exact 2198.7741a 0%
CISD/cc-pVTZ 2199.263205 65%
CCSD~T!/cc-pVTZ 2199.320514 72%
VMC 2199.163~3! 51~0.4!%
DMC 2199.439~9! 88~1.2!%
Expt. 2199.530b 100%

aReference 31.
bEstimate of the exact nonrelativistic energy. Obtained by correcting the
experimental value of the JANAF tables~Ref. 32! with the ZPE and spin-
orbit contributions~Ref. 33!.
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B. EPLF

In this section we present the EPLF. The choice of its
particular form is guided by the following remarks. First, we
have chosen to adopt some important characteristics of the
ELF approach: The EPLF is chosen to be local, bounded
above and below and easy to calculate. Second, we have
chosen to focus explicitly on the localization ofpairs of
electrons. Clearly, it is a most valuable point since pairs of
electrons play a central role in our everyday interpretation of
chemical structure and reactivity~Lewis model, VSEPR!.
The framework proposed to calculate such a localization
function is that of quantum Monte Carlo approaches. As em-
phasized in the introduction, QMC are techniques of a great
versatility and, therefore, the definition of the EPLF pro-
posed below will be of practical use for any type of wave
functions~HF, post-HF, valence bond, etc! and any level of
computation~VMC, FN-DMC, ‘‘exact’’ !. Many different lo-
calization functions could be chosen, we have found that the
following form is particularly simple and efficient.

First, we introduce the two local quantitiesdss(rW) and
dss̄(rW) defined as follows:

dss~rW ![(
i 51

N

^̂ d~rW2rW i ! min
j ;s j 5s i

urW i2rW j u&&,

~13!

dss̄~rW ![(
i 51

N

^̂ d~rW2rW i ! min
j ;s jÞs i

urW i2rW j u&&,

where $rWk%k51,N are the positions of theN electrons for a
given configurationRW , s i is the spin of theith electron (s i

5↑,↓), and ^̂ ...&& the stochastic average over the Monte
Carlo configurations. As seen from these definitionsdss(rW)
@respectively,dss̄(rW)] is the average distance between an
electron located atrW and the closest spinlike~respectively,
spin-unlike! electron of the molecule.

Now, we propose to define the EPLF as follows:

EPLF~rW !5
dss~rW !2dss̄~rW !

dss~rW !1dss̄~rW !
. ~14!

Figure 1 gives a simple pictorial representation of the con-

struction of the EPLF in the case of only one configuration
and four electrons in 2D.

By definition the EPLF takes its values within the inter-
val @21,1#. It gives a local indicator of pairing as follows. In
regions of space where electrons are unpaired the average
distances between spinlike and spin-unlike electrons are
similar, dss̄'dss , and EPLF goes to zero. When spin-
unlike electrons are paired we havedss̄!dss and EPLF
goes to 1. Finally, when spinlike electrons are paired,dss̄

@dss and, thus, EPLF goes to21. Remark that to be de-
fined the EPLF requires at least one pair of spinlike and one
pair of spin-unlike electrons in the system. Note also that the
definition of EPLF is particularly well suited to QMC; for-
mula ~13! can indeed be easily computed with any QMC
scheme.

IV. COMPUTATIONAL DETAILS

Trial wave functions. For all systems presented below,
the Hartree-Fock wave functions have been computed at the
B3LYP equilibrium geometry~except for F2 for which we
have used the experimental distance! using theGAMESS~Ref.
23! program with Dunning’s correlation consistent double-z
basis set.24 These wave functions are used to represent the
determinantal part of the trial functions used in the quantum
Monte Carlo computations. To remove the large statistical
fluctuations associated with the wrong description of the
wave function at the nuclei~the exact electron-nucleus cusp
cannot be reproduced with finite Gaussian basis sets!, the
Gaussian-type core molecular orbitals have been replaced by
the Slater-type atomic core orbitals given by Kogaet al.25

QMC data. The densities relative to HF wave functions,
Eq. ~2!, have been sampled by VMC and are labeled HF-
VMC. For several systems, the trial wave function has been
improved by introducing an explicitly correlated Jastrow fac-
tor as described above, Eq.~4!. The density corresponding to
this wave function has been sampled by VMC, labeled Jast-
VMC, and also by fixed-node diffusion Monte Carlo, labeled
FN-DMC. For each molecule considered, a typical simula-
tion includes a set of 800 independent walkers and a number
of Monte Carlo steps per walker ranging from 10 thousands
to 100 thousands. During each simulation we also take ad-
vantage of the symmetry of the molecules by applying sym-
metry operations on configurations~e.g., for a homonuclear
diatomic molecule symmetrizing the configurations with re-
spect to thex, y, andz planes increase the number of con-
figurations by a factor eight!.

EPLF data. The continuous 3D space is represented us-
ing a 80380380 three-dimensional grid. The EPLF is cal-
culated as follows: For each Monte Carlo configuration gen-
erated the positions of the electrons are scanned, the
elementary cubic volume of the 3D grid occupied by each
electron is determined and the minimum distances appearing
in the definition of EPLF are calculated. The noise in the
localization function due to the statistical character of QMC
simulations has been reduced by using a median blur filter
which operates as follows: Each value of the unregularized
function EPLF0(rW) is considered as being at the center of a
0.430.430.4 Å larger box~containing several elementary
volumes of the 3D grid!. The list of values of the EPLF

FIG. 1. Illustration of the EPLF for one configuration. On the left, the EPLF
is computed for the elementary volume containing electron1: d↑↑(r1)
513.45, d↑↓(r1)54.24, EPLF (r1)5(13.4524.24)/(13.4514.24)50.52.
On the right, the EPLF is computed for the elementary volume containing
electron 2: d↑↑(r2)513.45, d↑↓(r2)514.03, EPLF (r2)5(14.03
213.45)/(14.03113.45)520.02.
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within this box are sorted, and the middle value of the list is
affected to EPLF(rW). This filter is commonly used in image
manipulation applications when the noise is mostly impul-
sional. Compared to the more standard Gaussian blur filter
~use of Gaussian functions instead of localizedd functions!,
the median blur filter reduces less the noise, but it modifies
less the regions where the gradient is large. This latter point
is particularly important here since we are interested in alter-
ing the contours of the localization function as less as pos-
sible.

ELF data. To compare the results of our pair localization
function with Becke and Edgecombe’s ELF, we have per-
formed a number of Hartree-Fock and B3LYP calculations.
The program used isGAUSSIAN 98 ~Ref. 26! and the basis set
employed is the Dunning’s correlation-consistent polarized
valence double-zeta basis set~cc-pVDZ! basis set. All calcu-
lations have been done at the molecular geometry used in
QMC simulations. From these wave functions, the ELF has
been computed with the TopMod series of programs.27

V. EXAMPLES

The following examples have been chosen to illustrate
EPLF in various elementary situations. Systematic compari-
sons with ELF are given. First, we present two examples of
rare gas atoms to illustrate how the atomic shell structure is
recovered with EPLF. Then, several diatomic molecules are
treated: The LiH molecule is chosen as an example of mol-
ecule having a large ionic character, the N2 molecule illus-
trates a strongly covalent triple bond with lone pairs, and the
CH3 radical a case where an unpaired electron is present.
Finally, we present a more detailed analysis of the molecule
F2 , a system for which the predictions of ELF and EPLF are
qualitatively different.

A. Shell structure of atoms

In Figs. 2 and 3 we present a number of 1D plots for the
Ne and Ar atoms, respectively. In the upper part the standard
radial density distributionsr 2r(r ) are shown. For neon, the
density is computed with VMC using either a Hartree-Fock
wave function~solid line! or a correlated wave function~bro-
ken line!. In the latter case the amount of correlation energy
recovered is about 85%. As seen on Fig. 2 the difference in
radial density resulting from the explicitly correlated part is
small and does not change the overall shape of the curve.
The shell structure of Ne~two shells corresponding to the
principal quantum numbersn51 andn52) is clearly seen.
The location of the minimum between the two shells is about
r;0.3 a.u. while the two maxima are located atr
;0.12 a.u. (n51) and r;0.6 a.u. (n52). For argon, we
also get the usual shell structure consisting of three shells
(n51, 2, 3!. The maxima are located atr;0.05 a.u. (n
51), r;0.31 a.u. (n52), and r;1.2 a.u. (n53), the two
minima being atr;0.12 a.u. (n51 – 2) andr;0.80 a.u. (n
52 – 3).

In the lower part of Figs. 2 and 3 the ELF and EPLF are
presented. As already known11 the atomic shell structure is
correctly reproduced with ELF. For the neon atom the two
shells are centered atr 50 (n51) and r;0.8 a.u. (n52),
while the minimum between shells is atr;0.3 a.u. (n

51 – 2). These values are rather close to those obtained for
the radial density. For the argon atom, the corresponding
values are r 50 (n51), r;0.35 a.u. (n52), and r
;1.45 a.u. (n53) for the maxima, andr;0.15 a.u. (n
51 – 2) and r;0.75 a.u. (n52 – 3) for the minima. Here
also, the values of the minima and maxima given by ELF are
close to the those obtained from the radial density. Note also
that the values of the maxima of ELF corresponding to each
shell are not very different and all close to one~1 and 0.86
for neon; 1, 0.87, and 0.88 for argon!. According to ELF, this
result is interpreted as the fact that the degree of electronic
localization in the various regions of important charge den-
sity is similar.

Let us now turn our attention to the EPLF data. Similarly
to the ELF or the radial density, we see that the EPLF reveals
the atomic shell structure: The two and three maxima of neon
and argon are recovered. In addition to this we also have a
similar structure for the inner doubly occupied 1s shell. It is
described by a rather high and narrow peak located at the
origin. Note that the domain covered by this peak is similar
to what we get with ELF or the radial density. A large value
for the EPLF can be easily interpreted as follows. Close to
the nucleus there are two spin-unlike electrons occupying the
n51 shell and, for each of these electrons, the closest spin-
like electron necessarily occupies then52 shell. Accord-
ingly, we havedss@dss̄ and, therefore, a large value of
EPLF. Using this argument we can compute an estimate of
the EPLF value. Takingdss equal to the maximum distance
between two electrons sitting on two spheres corresponding

FIG. 2. ELF and EPLF for Ne.
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to the n51 and n52 shells ~electrons are repulsing each
other and are supposed to minimize their repulsion! anddss̄

the maximum distance between two electrons sitting on the
same sphere corresponding to then51 shell, we get
EPLF;0.5 for neon and argon. This value is in good agree-
ment with the EPLF values at the origin~0.54 for neon and
0.45 for argon!. The shape of the outer shells (n52,3) is
quite different from what we get with ELF or the radial dis-
tribution. In the valence domain the EPLF has the shape of a
very broad and flat peak. The maximum value is quite small
and is close to the value corresponding to the limit of infinite
distances. For then51 maximum, the ratio of the EPLF
values at the maximum and atr;` is about 13 for neon and
9 for argon. Forn52 this ratio falls down to about 2 for both
neon and argon. Finally, in the case of then53 shell of
argon, the ratio is only 1.7. Such results are interesting since
small values of EPLF are directly associated with similar
average distances between spinlike and spin-unlike electrons.
As a consequence, it seems not appropriate to visualize elec-
trons in the various atomic shells as a set of tightly bounded
pairs but better as a rather uniform fluid of electrons with
comparable interelectronic distances.

B. Ionic molecule: LiH

The ELF and EPLF plots are displayed in Fig. 4. Both
functions present two maxima localized at the nuclei. This
result is expected since the LiH molecule having a strong

ionic character it is usually described as consisting of two
pairs of electrons, one centered on the Li nucleus (Li1 con-
tribution! and the other one centered on the hydrogen (H2

part!. To better visualize these two maxima we also present
the one-dimensional cut of both functions along the internu-
clear axis, Fig. 5. In our plots the lithium atom is located at
the origin~left part of both figures! while the hydrogen atom
is on the right hand side. As seen, the extent of ELF and
EPLF are rather similar. However, the shapes of the func-
tions are different. In contrast with ELF, the EPLF illustrates
the difference of pairing associated with each pair. The aver-
age distance between the two electrons of the Li1 1s pair is
small ~large value of EPLF! while the electron pair around
the hydrogen nucleus is much less confined~the EPLF peak
is smaller and broader!.

C. Triple bond and lone pairs: N 2

The ELF and EPLF plots are displayed in Fig. 6. Both
functions present two maxima localized at the atomic cores
and two maxima localized on the lone pairs. The ELF pre-
sents a single maximum in the region where a triple bond is

FIG. 3. ELF and EPLF for Ar.

FIG. 4. ~Color! ELF and EPLF for LiH in a molecular plane. Li atom on the
left side, H on the right side. The contour maps were created using the
MOLEKEL program.34 Low values appear in red and high values appear in
blue.
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expected~Lewis representation!. In contrast, the EPLF pre-
sents an infinity of degenerate maxima placed on a torus in
the sh plane of symmetry.

D. Radical: CH 3

The ELF and EPLF plots are displayed in Fig. 7. As
expected both functions present a maximum localized at the
carbon core and three maxima localized on the hydrogen
atoms. In contrast, ELF and EPLF give a different picture of
the presence of a localized single electron. According to the
very definition of ELF, the localized electron leads to the
existence of a maximum. With EPLF, the situation is rather
different: A single electron implies no pairing at all and,
therefore, a small value of the function is obtained. Remark
that the possibility of differentiating localized pairs and
single electrons in such a way is an attractive feature of
EPLF with respect to ELF. In Fig. 8 it is shown how the
nonbonding unpaired electron can be localized by plotting an
isosurface for a very small value of the EPLF.

FIG. 5. ELF and EPLF for LiH along the Li-H axis. Li on the left, H
on the right.

FIG. 6. ~Color! ELF and EPLF for N2 in a molecular plane. Low values
appear in red and high values appear in blue.

FIG. 7. ~Color! ELF and EPLF for CH3 in a plane containing the carbon
atom~central atom! and one hydrogen atom. The two other hydrogen atoms
are symmetrically located with respect to the plane~back and front!. Low
values appear in red and high values appear in blue.
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E. Covalent versus ionic bonding: F 2

1. ELF analysis

Figure 9 presents the ELF plots obtained for the F2 mol-
ecule at the Hartree-Fock~upper part! and B3LYP ~lower
part! levels. The interatomic distance chosen is the experi-
mental value,R52.668 a.u. In both plots similar features are
observed: Presence of maxima associated with core electron
pairs and presence of degenerate maxima corresponding to
lone pairs on a torus around each nucleus. However, there is
one striking difference within the bonding region. At the
Hartree-Fock level, ELF displays a maximum at the middle
of the F-F bond. In contrast, at the B3LYP level, the same
region displays two maxima on the F-F axis slightly shifted
away symmetrically from the center towards the nuclei and a
minimum along the axis at the symmetry center~a saddle
point in the full space!. To shed some light on the origin of
this intriguing change of topology, we have recomputed ELF
for different basis sets and methods~Hartree-Fock in small
and very large basis sets, DFT at various levels: LDA, BP86,
BLYP, GGA,...!. Results show that the single maximum ob-
served at the Hartree-Fock level turns out to result from the
merging of two close peaks. Depending on conditions, these
two peaks can appear either as two well-separated peaks
~two maxima and a minimum in between along the internu-
clear axis! or one single peak~a maximum!. Note that the
possibility of the existence of such a structural instability of
the critical points with respect to basis sets and correlation
effects has already been emphasized in previous works~e.g.,
Refs. 21 and 28!. It is thus not correct to attribute to much
significance to the change of topology observed from HF to
B3LYP and a more detailed analysis of ELF is called for.
Fortunately, such an analysis has recently been presented by
Llusar and collaborators28 for a number of systems including
F2 . In their study the authors have followed the evolution
under electron correlation of the ‘‘valence basin’’ populations

~lone pair and ‘‘covalent’’ valence basins! associated with the
attractors of ELF~such a study is based on a proposal of
Silvi and Savin12!. From their data they conclude that the
topology of the ELF gradient dynamical system of F2 around
the equilibrium distance is indeed structurally unstable and
that the role of electron correlation consists essentially in
decreasing the population of the valence basin responsible
for bonding toward the atomic lone pairs. Furthermore, in
contrast with most covalent bonds where this scenario occurs
at large internuclear distances, for F2 it occurs at a rather
short distance close to the equilibrium geometry and, thus,
leads to some peculiar features. However, the amount of
electron localization between the atoms remaining not negli-
gible both at the HF and DFT levels~sufficiently large basis
sets are to be used!, it seems justified to conclude that the
covalent character of F2 is not negligible.

2. EPLF analysis

The EPLF has been computed at the HF-VMC, Jast-
VMC and fixed-node DMC levels. To give an idea of the
accuracy achieved we present in Table I the total energies
corresponding to different levels of calculations. As seen in

FIG. 8. ~Color! Isosurface EPLF50.04 for CH3 .

FIG. 9. ~Color! ELF for F2 in a molecular plane, computed from a Hartree-
Fock wave function~up! and from a B3LYP calculation~down!. Low values
appear in red and high values appear in blue.
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the table the Jastrow wave function is rather accurate since
5160.4% of the correlation energy is recovered. At the DMC
level we recover up to 8861.2%. The EPLF plots obtained
from VMC and fixed-node DMC calculations have been
found to be very similar. Therefore, to avoid to duplicate
data, we only present the Jast-VMC results. EPLF plots com-
puted from the HF-VMC and Jast-VMC densities are pre-
sented in Fig. 10. In contrast with ELF we do not observe a
change of topology when passing from the Hartree-Fock to
the ~highly! correlated levels. In both cases, we get the same
set of critical points: A maximum in each core regions, an
infinity of degenerate maxima corresponding to the lone
pairs on a torus around each nucleus and, most importantly, a
maximum at the symmetry center of the molecule.

To validate the presence of a maximum at the middle of
the bond we have computed the EPLF for three hypothetical
models consisting ofnoninteractingfluorine atoms~or ions!,
the interatomic distance being fixed at the equilibrium dis-
tance of the true interacting F2 molecule. The first model
consists of the neutral system F↑1F↓ , the second one de-

scribes the pure ionic system F↑↓
2 F1 and, the third one, the

resonant structure expressed as F↑↓
2 F1↔F1 F↑↓

2 .
EPLF for F↑1F↓ . The wave function used for each atom

is a standard Hartree-Fock determinant with apz singly oc-
cupied orbital ~z being the internuclear axis!. One of the
atoms is chosen with aa unpaired electron, the second one
with a b unpaired electron. To compute the EPLF for this
noninteracting molecule, we have sampled the density of one
single fluorine atom located at the position of the first atom
of the hypothetical molecule~simulation1!. Next, we have
moved the atom to the position of the second atom, flipped
the spin of the single electron, and, then, sampled the second
density ~simulation2!. Both runs were made with identical
random numbers, time steps, numbers of walkers, and total
number of steps. The configurations saved during the two
runs were merged: Each configuration of the noninteracting
system is the combination of two configurations, one from
simulation1 and the other one from simulation2. The im-
portant result is that we did not observe any maximum be-
tween the two fluorine atoms of this fictitious system, but
instead a minimum. Now, because the probability of finding
a pz electron of one atom in a given region is independent on
the position of the electrons of the other atom, we are in a
case where the twopz electrons of opposite spin are un-
paired. Accordingly, the presence of a minimum in the non-
interacting system confirms that EPLF measures directly the
electron pairing and that there is no influence of the one-
electron probability density. We conclude that the maximum
observed for the interacting system is not an artifact resulting
from the overlap of the electronic clouds of the two neutral
atoms.

EPLF for F↑↓
2 F1. Using the same strategy we have com-

puted the EPLF in the case of the noninteracting system
F21F1. The EPLF of the F2 anion has one maximum at the
position of the nucleus, and an infinity of maxima on a
sphere corresponding to the valence shell. For the F1 cation
~with a vacantpz orbital!, an infinity of degenerate maxima
on a torus in the (x,y) plane are obtained. When the two
noninteracting ions are fixed at the equilibrium distance of
F2 , we observe a saddle point between the two ions. This
critical point, which results essentially from the interaction
between the maxima associated with thepx andpy lone pairs
of F1 and the maxima of the F2 valence shell, is found to be
closer to F2 than F1.

EPLF for F↑↓
2 F1↔F1 F↑↓

2 . The computation of the
EPLF has been done by applying to the configurations ob-
tained in the previous case the mirror symmetry with respect
to the plane perpendicular to the F1-F2 axis and located at
the middle of the bond. Configurations resulting from this
operation are interpreted as describing the resonance be-
tween the two ionic structures: F1-F2↔F2-F1. Here also,
we observe a saddle point at the symmetry center of the
molecule.

It is important to emphasize that none of the three ficti-
tious systems just presented exhibits a maximum of the
EPLF at bond midpoint. Accordingly, it seems reasonable to
conclude that the maximum observed in the true F2 molecule
is not an artifact and is really due to the covalent contribution
of the F2 bond. The computation of electron correlation ef-

FIG. 10. ~Color! EPLF for F2 along the F-F axis, computed from the HF-
VMC density ~up! and from the Jast-VMC density~down!. Low values
appear in red and high values appear in blue.
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fects, even at the highest level of correlation~fixed-node
DMC! does not eliminate this maximum, so the covalent
character of F2 is truly important~as opposed, for example,
to LiH!. Note that such a result is in agreement with previous
works based on high-quality valence bond calculations~see,
e.g., Hiberty and collaborators,29,30!.

Finally, let us mention that the present analysis based on
all-electron calculations and similar analysis for other sys-
tems are not expected to change when pseudopotentials are
used to describe cores. In the case of F2 , we have indeed
verified that identical EPLF features in the valence region are
obtained with and without pseudopotentials. The only differ-
ence found between both calculations is the existence of a
minimum at the position of the nuclei when pseudopotentials
are used.

VI. SUMMARY

In this paper we have introduced an EPLF whose main
feature is to reveal the differences in the average distances
between spinlike and spin-unlike electrons. In regions where
localized pairs of electrons are present~lone pairs, atomic
pairs, bonds! the EPLF takes large values and displays
maxima. In contrast, in regions where electrons behave es-
sentially as an homogeneous fluid~spinlike and spin-unlike
electrons being mixed together!, the EPLF takes much
smaller values. The form of the EPLF is simple, Eqs.~13!
and~14!, and has been chosen to be easily computable using
quantum Monte Carlo. A major advantage of QMC is the
possibility of evaluating the EPLF at various levels of accu-
racy ~Hartree-Fock, MCSCF, valence band, DFT, variational
Monte Carlo with explicitly correlated trial wave functions,
fixed-node DMC, etc!. Such a possibility is particularly in-
teresting to get new insights into the nature of the pairing and
localization of electrons at these various levels of description
and, particularly, to understand more deeply the role of the
dynamical ~Coulomb hole! and nondynamical ~near-
degeneracy! correlation effects. A number of applications of
the EPLF to simple atomic and molecular systems have been
presented and systematic comparisons with ELF have been
done. The results presented illustrate that for these systems
EPLF is a simple and practical tool for visualizing electronic
localization. In addition, it has been shown that the EPLF
and the ELF exhibit similargross features~atomic shell
structure, lone pairs, bonding regions!. However, there may
also be some qualitative differences, particularly in the topol-
ogy of the localization function.~For N2 , an infinity of
maxima on a torus in the region of the triple bond with
EPLF, a single maximum with ELF; for the unpaired electron
of the radical CH3, a minimum for EPLF, a maximum for
ELF; for F2 different stability properties between the ELF
and EPLF critical points, etc.!. All the results presented here
have been obtained from all-electron QMC calculations, we
have checked for F2 that using pseudo-potentials does not
change the basic features of the EPLF in the valence region.
This result is expected to be general.

Finally, let us emphasize that, although EPLF appears to
have some attractive features, only the analysis of many
other examples covering a much wider variety of chemical

situations will allow us to assess the true ability of EPLF to
be used as a general tool to investigate electron localization
in molecular systems.
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