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Electron pair localization function: A practical tool to visualize electron
localization in molecules from quantum Monte Carlo data

Anthony Scemama,® Patrick Chaquin, and Michel Caffarel
Laboratoire de Chimie Thaique, UMR 7616 du CNRS, Universigerre et Marie Curie Paris VI,
Case 137, 4, place Jussieu 75252 PARIS Cedex 05, France

(Received 16 February 2004; accepted 3 May 2004

In this work we introduce an electron localization function describing the pairing of electrons in a
molecular system. This function, called “electron pair localization function,” is constructed to be
particularly simple to evaluate within a quantum Monte Carlo framework. Two major advantages of
this function are the following{i) the simplicity and generality of its definition; an@) the
possibility of calculating it with quantum Monte Carlo at various levels of accufbleytree-Fock,
multiconfigurational wave functions, valence bond, density functional theory, variational Monte
Carlo with explicitly correlated trial wave functions, fixed-node diffusion Monte Carlo). &fc
number of applications of the electron pair localization function to simple atomic and molecular
systems are presented and systematic comparisons with the more standard electron localization
function of Becke and Edgecombe are done. Results illustrate that the electron pair localization
function is a simple and practical tool for visualizing electronic localization in molecular systems.
© 2004 American Institute of Physic§DOI: 10.1063/1.1765098

I. INTRODUCTION ties(a build-up of charge between two atoms is interpreted as
the existence of a bond the methods based on the topologi-
cal analysis of the electron density or its Laplaci@ee,

o . n?adeP), the methods studying the topography of the molecu-
Schralinger equation, have been found very successful Mar electrostatic field® and, also, approaches using as indi-

calculating ground-state energies of various m_olgcular SYSzator the electron localization functid&LF) describing the
tems, e.g., Refs. 1-6. The accuracy achieved is impressiv

&mount of local Pauli repulsion between electrbit€. Of

Itis in general superior to that obtained W'th. the most ac.cu'course, this list cannot be considered as exhaustive since
rate approaches of standard computational chemistr

. : . . . &efining a successful qualitative model for the description of
[coupled cluster, multiconfigurational self-consisent field

chemical structure is an everlasting theme in chemistry since
(MCSCB, etc]. Furthermore, the number of electrons thatthe pioneering electron-pair model of Lewis.

can be treated is rather large. To give an example, let us In this work we propose to exploit the accurate data

dmentlon tth; r_?cent (I‘alc;ulgjons Olf W|II|ams|_enat|. fohr hy- obtained in quantum Monte Carlo simulations to get some
rogenated silicon clustersJsing linear-scaling techniques it insights into the electron localization properties of
to reduce the computational cost of QMC algorithms, clus-

ters includi 0 984 val lect h . bmolecules. To do that, we introduce a localization function
€rs including up to valence electrons were shown to ‘aescribing the pairing of electrons in a molecular system.

accessible. Quite importantly, there is no practical I|m|tat|on.|.hiS function, called “electron-pair localization function”

preventing such results from being extended to even great?EPLF), is built to be particularly easy to evaluate within a

systﬁlms Inlg:e ner:]ar futurg. tat . £ ori . QMC framework. As illustrated here by several applications
ow, alinougn ground-stale energies are ot primary iy, simple atomic and molecular systems EPLF appears to be
terest, it is clear that a chemical understanding of a comple

. An effortless and practical tool for describing electronic fea-
molecular system requires more than the knowledge of the ... A< \ve shall see. the 3D-EPLF plots have some simi-
sole ground-state energy. In general, chemists are interest%{ | f

) - i . o ities with the plots obtained using the ELF of Becke and
in rationalizing and quantifying the structure and reaCt'V'tyEdgecombél However, there are also some important dif-
of the system in terms of various quantities related to elecferences THese variods points will be discussed below
tron localization. A number of important questions we wish : '

i include. f e th i f the bondi The organization of the paper is as follows: In Sec. Il the
0 answer include, for example, the nature of theé bonding,,qje teatyres of QMC needed to understand the present
between atoms, the localization of lone pairs, the local con

trati depleti f the ch . In standard work are briefly presented. In particular, we summarize the
centration or depietion of theé charge, €lc. In standard Comg, ;o probability densities produced by QMC. Section IlI

putational chemistry S?Ver?" approaches h_ave_ b_een_ de\_/q 5 devoted to the definition and presentation of our EPLF. A
oped to analyze and visualize the electronic distribution N rief presentation of the more standard ELF to which our
the ordinary three-dimensionéD) space. Among them we results will be compared is also given. Section IV presents a

can cite, e.g., the methods analyzing the deformation densh’umber of practical details related to simulations. In Sec. V

our results for several atoms and moleculd®, Ar, LiH,
3 Author to whom correspondence should be addressed. N,, CHs, and Fz) are presented_ For thQ [Ease we give a

In recent years quantum Monte Carl@MC) ap-
proaches, a set of stochastic methods that solve exactly t

0021-9606/2004/121(4)/1725/11/$22.00 1725 © 2004 American Institute of Physics
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detailed comparative study between the ELF and the EPL®here the sum ovex denotes a sum over the nuclgi ;, a

analysis. Finally, in Sec. VI a summary of the main results ofsum over the pair of electrons, af¥ (o=1 or |) are de-

this work is presented. terminants made of one-particle space orbitals. Different ex-
pressions for the Jastrow part have been presented in the
literature. Here, we have chosen the following fofn:

Il. QUANTUM MONTE CARLO UCF gl jaFip) = S0G) PO ) + Cp
In a quantum Monte Carlo scheme a series of “states” or + CZ(Xi2a+Xj2a)Xi2j + Csxﬁ-, (4)

“configurations” are generated using some elementary sto- | h
chastic rules. Here, a configuration is defined as the set of thalt

3N-electronic coordinate@N number of electronsthe posi- Fij

tions of the nuclei being fixedBorn-Oppenheimer condi- Xij:—1+b o

tion) .
- N N lia
R=(r1,....Fn). 1) Xia= 13,1’

Stated differently, a configuratioﬁi may be viewed as a
“snapshot” of the molecule showing the instantaneous posi-
tions of each electron. Stochastic rules are chosen so that @) (y)=p{®x+ pl®x2+ plx3+ p{@x4,

configurations are generated according to some target prob- _ _ )

ability density, TI(R). Note that the probability density is Po can take two different values depending on the spin of the
defined over the complete Nedimensional configuration pairs of electrons consTj()ared. In this latter expression the
space and not over the ordinary 3D space. Many variants dfuantities{b,,b,,c;,s;,pi’} play the role of parameters.
QMC can be found in the literatureeferred to with various The critical step in a VMC approach is the optimization
acronyms: VMC, DMC, PDMC, GFMC, elc They essen- of the parameters entering the trial wave function. A standard
tially differ by the type of stochastic rules used and/or by theMethod consists in searching for parameters minimizing the
specific stationary density produced. In practice, the tWd‘!uctuatlons in configuration space of the local energy de-
most popular QMC approaches used for simulating complefin€d as

molecular systems are the so-called variational Monte Carlo EL(ﬁ)EHWT/WT. (5)
(VMC) and fixed-node diffusion Monte Carl(FN-DMC) S

methods. Both methods will be employed here. Let us briefIyTh'S criterion is based on the fact that for the exact wave
summarize the basic features of these methods useful for tfnction the local energy reduces everywhere to a constant—

following (for a detailed presentation, see, e.g., Ref. 13 the exact energy—and, thus, the fluctuations of the local en-
ergy entirely vanish. Accordingly, small fluctuations are as-

S(X) =$1X+ Syx%+ 53x3+ 5,x%,

A. Variational Monte Carlo sociated with “good” trial wave functions. A number of
In a VMC calculation the probability density generated methods have been developed to perform efficiently the op-

is given by timization step within a QMC framework. In this work, we
- - have used the correlated sampling method of Umrigar
Myuc(R) = ¥5(R), (20 etal,’® an approach based on the minimization of the

where y+ is a high-quality electronic trial wave function. A Weighted variance of the local energy over a set of fixed
commonly used expression fgF; consists of a product of configurations. _

two terms. The first term is standard and is introduced to ~ ©Once the optimal parameters have been determined, the
describe the one-particle shell-structure of molecules. It i§luality of the resulting trial wave function is usually good: A
obtained from a preliminary Hartree-Fo¢kiF) or density- ~ Major part of the dynamical correlation energgzoulom_b
functional theory(DFT) ab initio calculation and is ex- hole) is recovered and thgrossfeaturgs of t_he one—partlclle
pressed as on@r a combination of a fewdeterminarts) of background are al§o correctly described via _the detgrmman—
single-particle orbitals. The second term is introduced to ref@l part(nondynamical payt For most atoms it is possible to
produce the electron-electron cusp condition of the exaciecover up to 80%—90% of the exact correlation enéfgy;
wave function and, also, to incorporate some explicit coufor molecules the domain of variation I|e§ usually between
pling between electron-nucleus and electron-electron coordi30% and 90%see Table | for our calculations o)~
nates(see Ref. 1% Note that the electron-electron cusp con-  1he numerical methodstochastic rulgsemployed to
dition is known to be particularly difficult to fulfill in 9enerate the VMC density, E(R), is standard. Itis based on
standardab initio calculations using expansions over one-the use of a generalized Metropolis algorithm. Since this
electron basis set®ecessity of considering very high values aspect is not _|mportant here we refer the interested reader to
of the orbital momentuin The explicitly correlated term is the relevant literature’

usually referred to as the Jastrow factor. In a spin-free for-

malism our trial wave function is written as B. Diffusion Monte Carlo

- - - In a diffusion Monte Carlo scheme the stochastic rules
lﬂT(R):DT(R)DL(R)GX[{E > U(fig fiarip)|, 3  employed are the same as in the VMC céiietropolis al-
« (LD gorithm) plus a new rule corresponding to a branchijog
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TABLE |. Comparison of energies obtained fop Bt different levels of I1l. THE ELECTRON PAIR LOCALIZATION FUNCTION
computation in atomic units. The interatomic distance is the experimental
equilibrium distanceR=2.668. Statistical uncertainty on the last digit given Before presenting the electron pair localization function
In parenthesis. let us first present briefly the ELF introduced by Becke and
1
Method Energy Correlation energb) Edgecombé’
HF/cc-pVTZ —198.752055 A. ELF
HF exact —198.7741 0% . . .
CISDIcc-pVTZ 199 263205 65% The ELF is designed to probe the amount of electronic
CCSDT)/cc-pVTZ ~199.320514 72% localization in the usual 3D space. For the sake of simplicity,
VMC —199.1633) 51(0.9% ELF is constructed to take its values within the intef\lL].
bMmC —199-4329) 88(012)% The upper limit, ELF=1, corresponds to perfect localization,
Expt. —199.53 100% the value ELF1/2 corresponds to a level of localization
aReference 31. comparable to that of an uniform electron gas, and small

PEstimate of the exact nonrelativistic energy. Obtained by correcting theyalues of ELF correspond to delocalization. The fundamental

experimental value of the JANAF tabléRef. 32 with the ZPE and spin- gy antity from which ELF is built is the parallel-spin condi-

orbit contributions(Ref. 33. k . - . vo s> = .
tional pair probability density,PZ{r1,r2), a quantity
which gives the probability of finding a-spin electron at
positionr, when acs-spin electron is located at positioq.

birth-death process. More precisely, depending on the magELF is defined as

nitude of the local energy a given configuration can be de-

stroyed(when the local energy is greater than some estimate ELF(f)= 1 , ®)

of the exact energyor duplicated a certain number of times 1+X§( r)

(local energy lower than the exact enexgly can be shown .

that the stationary density resulting from these rules is nowWIth

given by . DD

- - - Xo(l)=—=,
pmc(R) = ¢1(R) ¢o(R), (6) D,(r)

wherefﬁo(ﬁ) denotes the ground-state wave function. Actu-and where the' local functioDU(F) is the leading terr.n'of the '
ally, because the densifypyc is necessarily positivéas any Taylor vlagpansmnaof»the spherlca}lly averaged conditional pair
stationary density resulting from some stochastic julgg ~ Probability Pco{ry,r2) (point 1 is considered as the refer-
is not exactly the exact ground-state wave function but som&nce point and the conditional pair probability is integrated
approximate one resulting from the additional constraint thatVith respect ta; over the sphere of radiusand centered at
b, must have the same sign as the trial wave functam '='1):

that the product in Eq(6) always remains positiyeSuch a PI7 (F,5)= 1D, (F)s?+.... (10)
constraint implies that the noddgoints where the wave

function vanishesare identical fory and . The resuling N Ed. (9) the functionD is introduced as a reference quan-
error is called the “fixed-node” error. Generally, this ap- tity: It corresponds to the value of the functi@n, for the
proximation is very goodsee Table), the fixed-node error uniform electron gas at the same dengity.

on total energies represents usually a small fraction of the For an independent-particle model,(r) can be easily
total correlation energythis error depends only on the qual- computed from the set of occupied orbitatsas follows:

(€)

ity of the nodes, see, e.g., the discussion in Ref. 17 o =0
Sy = 2 1 |Vpa'|
D, (1) =2 [V~ 7 — (11
I pa’
C. “Exact” quantum Monte Carlo and the reference quanti[y?, is usually taken as that of the

uniform noninteractingelectron gas with density,, as done

Of course, beyond VMC, Eq2), and fixed-node DMC i, the original work of Becke and Edgecombe:

densities, Eq(6) we would be interested in generating the o - R
exact density associated with the unknown ground-state D(r)=&(67%)%3p (15", (12

wave function,g, Beyond independent-particle models described by a

Il R)= #2(R). 7 single determinant wave function the situation regarding
exac{ R) = ¢5(R) (7) : .

ELF is somewhat confusing. In that case, several proposals
In principle, obtaining such a density within a quantumfor both the definition of ELF and/or its interpretation have
Monte Carlo approach is possible. This can be done by rebeen presented in the literatuflgowever, all these interpre-
sorting to one of the variants of the so-called “forward walk- tations become equivalent for independent particle systems
ing” schemes®~2° Unfortunately, in practice, such schemes Here, it is not necessary to enter into such detdds that,
are known to be intrinsically unstable and, therefore, verysee, e.g., Refs. 21 and 2However, it is important to em-
time consuming for large systems. For applications on comphasize that there is no consensus on what definition and
plex systems the possibility of getting a stable density ofinterpretation should be used for a general correlated many-
configurations is unrealistic. body wave function.
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struction of the EPLF in the case of only one configuration
and four electrons in 2D.

By definition the EPLF takes its values within the inter-
val[—1,1]. It gives a local indicator of pairing as follows. In
regions of space where electrons are unpaired the average
distances between spinlike and spin-unlike electrons are
similar, d,;~d,,, and EPLF goes to zero. When spin-

@) unlike electrons are paired we hade;<d,, and EPLF
10.8 1\ 42 : - .
\. goes to 1. Finally, when spinlike electrons are paireég;
‘9 3 >d,, and, thus, EPLF goes te 1. Remark that to be de-
EPLF=0.52 (Electron 1) EPLF=—0.02 (Electron 2) fined the EPLF requires at least one pair of spinlike and one
pair of spin-unlike electrons in the system. Note also that the
FIG. 1. lllustration of the EPLF for one configuration. On the left, the EPLF definition of EPLF is particu]aﬂy well suited to QMC; for-

is computed for the elementary volume containing electtond,(r) ; : :
=13.45,d, (r))=4.24, EPLF (,)=(13.45-4.24)/(13.45-4.24)=0.52. mula (13) can indeed be eaS|Iy CompUted with any QMC

On the right, the EPLF is computed for the elementary volume containingSCheme-
electron 2. d;(rp)=13.45, d,; (r,)=14.03, EPLF (;)=(14.03
—13.45)/(14.03 13.45)=—0.02. IV. COMPUTATIONAL DETAILS

1835

Trial wave functions For all systems presented below,
the Hartree-Fock wave functions have been computed at the
B3LYP equilibrium geometryexcept for K for which we

In this section we present the EPLF. The choice of itshave used the experimental distanesing theGAMESS (Ref.
particular form is guided by the following remarks. First, we 23) program with Dunning’s correlation consistent double-
have chosen to adopt some important characteristics of tHeasis set* These wave functions are used to represent the
ELF approach: The EPLF is chosen to be local, boundedeterminantal part of the trial functions used in the quantum
above and below and easy to calculate. Second, we hawdonte Carlo computations. To remove the large statistical
chosen to focus explicitly on the localization phirs of  fluctuations associated with the wrong description of the
electrons. Clearly, it is a most valuable point since pairs ofwvave function at the nucléthe exact electron-nucleus cusp
electrons play a central role in our everyday interpretation otannot be reproduced with finite Gaussian basis) séte
chemical structure and reactivitiewis model, VSEPR  Gaussian-type core molecular orbitals have been replaced by
The framework proposed to calculate such a localizatiorthe Slater-type atomic core orbitals given by Kagfaal 2
function is that of quantum Monte Carlo approaches. As em- QMC data The densities relative to HF wave functions,
phasized in the introduction, QMC are techniques of a greaEqg. (2), have been sampled by VMC and are labeled HF-
versatility and, therefore, the definition of the EPLF pro-VMC. For several systems, the trial wave function has been
posed below will be of practical use for any type of waveimproved by introducing an explicitly correlated Jastrow fac-
functions (HF, post-HF, valence bond, ¢tand any level of tor as described above, Eg). The density corresponding to
computation(VMC, FN-DMC, “exact”). Many different lo-  this wave function has been sampled by VMC, labeled Jast-
calization functions could be chosen, we have found that th&/MC, and also by fixed-node diffusion Monte Carlo, labeled

B. EPLF

following form is particularly simple and efficient. FN-DMC. For each molecule considered, a typical simula-
First, we introduce the two local quantitiels,,(r) and  tion includes a set of 800 independent walkers and a number
d,5(r) defined as follows: of Monte Carlo steps per walker ranging from 10 thousands
N to 100 thousands. During each simulation we also take ad-
oo(N)=", (S(F—F}) min [F;—7;]), vantage of the symmetry of the molecules by applying sym-
i=1 jioj=0, metry operations on configuratioiis.g., for a homonuclear

(13 diatomic molecule symmetrizing the configurations with re-
spect to thex, y, andz planes increase the number of con-
figurations by a factor eight

. EPLF data The continuous 3D space is represented us-

where {ry}x—1n are_the positions of th&l electrons for a jng a 80x80%80 three-dimensional grid. The EPLF is cal-

given configuratiorR, o is the spin of theth electron ¢;  culated as follows: For each Monte Carlo configuration gen-
=1.,1), and (..)) the stochastic average over the Monteerated the positions of the electrons are scanned, the

Carlo configurations. As seen from these definitidgg(r)  elementary cubic volume of the 3D grid occupied by each

[respectively,d,(r)] is the average distance between anelectron is determined and the minimum distances appearing

electron located at and the closest spinlikéespectively, in the definition of EPLF are calculated. The noise in the

d,o(1)=2 (8(F—r) min |fi—r;]),

i=1 j;(rj#:(ri

spin-unlike electron of the molecule. localization function due to the statistical character of QMC
Now, we propose to define the EPLF as follows: simulations has been reduced by using a median blur filter
_dy () —dy=(F) Which operates as foIIow§: Each value of the unregularized
EPLKFr)= EINGET (i (14)  function EPLR(r) is considered as being at the center of a
oo oo

0.4x0.4x0.4 A larger box(containing several elementary
Figure 1 gives a simple pictorial representation of the convolumes of the 3D grid The list of values of the EPLF
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within this box are sorted, and the middle value of the listis 0.8
affected to EPLF(). This filter is commonly used in image
manipulation applications when the noise is mostly impul-
sional. Compared to the more standard Gaussian blur filter 0.6
(use of Gaussian functions instead of localizefilinctions,
the median blur filter reduces less the noise, but it modifies 0.
less the regions where the gradient is large. This latter point ¢ 4
is particularly important here since we are interested in alter-
ing the contours of the localization function as less as pos- 93
sible. 0.2
ELF data To compare the results of our pair localization
function with Becke and Edgecombe’s ELF, we have per- 0.1}
formed a number of Hartree-Fock and B3LYP calculations.

Radial density (HF-VMC) —
Radial density (Jast-VMC) - .

5L

The program used isAUSSIAN 98 (Ref. 26 and the basis set 00 05 1.0 15 20 25 30 35
employed is the Dunning’s correlation-consistent polarized 1.0 e . . . . . . ]
valence double-zeta basis $et-pVDZ2) basis set. All calcu- T EPLF (HF-VMC) —
lations have been done at the molecular geometry used in b EPLF (Jast-VMC) -

' ELF (HF) - |

QMC simulations. From these wave functions, the ELF has 0.8}
been computed with the TopMod series of prografms. ’
06}

V. EXAMPLES

The following examples have been chosen to illustrate
EPLF in various elementary situations. Systematic compari-
sons with ELF are given. First, we present two examples of
rare gas atoms to illustrate how the atomic shell structure is 0.2
recovered with EPLF. Then, several diatomic molecules are
treated: The LiH molecule is chosen as an example of mol-
ecule having a large ionic character, the iolecule illus-
trates a strongly covalent triple bond with lone pairs, and the FIG. 2. ELF and EPLF for Ne.
CHg; radical a case where an unpaired electron is present.
Finally, we present a more detailed analysis of the molecule=1-2). These values are rather close to those obtained for
F,, a system for which the predictions of ELF and EPLF arethe radial density. For the argon atom, the corresponding
qualitatively different. values are r=0(n=1), r~0.35au.0=2), and r
~1.45a.u.6=3) for the maxima, andr~0.15a.u.f
=1-2) andr~0.75a.u.(=2-3) for the minima. Here

In Figs. 2 and 3 we present a number of 1D plots for thealso, the values of the minima and maxima given by ELF are
Ne and Ar atoms, respectively. In the upper part the standardlose to the those obtained from the radial density. Note also
radial density distributions?p(r) are shown. For neon, the that the values of the maxima of ELF corresponding to each
density is computed with VMC using either a Hartree-Fockshell are not very different and all close to offeand 0.86
wave function(solid line) or a correlated wave functiaibro-  for neon; 1, 0.87, and 0.88 for argo#ccording to ELF, this
ken ling. In the latter case the amount of correlation energyresult is interpreted as the fact that the degree of electronic
recovered is about 85%. As seen on Fig. 2 the difference iftocalization in the various regions of important charge den-
radial density resulting from the explicitly correlated part is sity is similar.
small and does not change the overall shape of the curve. Letus now turn our attention to the EPLF data. Similarly
The shell structure of Nétwo shells corresponding to the to the ELF or the radial density, we see that the EPLF reveals
principal quantum numbens=1 andn=2) is clearly seen. the atomic shell structure: The two and three maxima of neon
The location of the minimum between the two shells is aboutind argon are recovered. In addition to this we also have a
r~0.3a.u. while the two maxima are located at similar structure for the inner doubly occupied g&hell. It is
~0.12a.u.6=1) andr~0.6a.u.6=2). For argon, we described by a rather high and narrow peak located at the
also get the usual shell structure consisting of three shellerigin. Note that the domain covered by this peak is similar
(n=1, 2, 3. The maxima are located at~0.05a.u.( to what we get with ELF or the radial density. A large value
=1), r~0.31a.u.0=2), andr~1.2a.u. =3), the two for the EPLF can be easily interpreted as follows. Close to
minima being atr~0.12a.u.=1-2) andr~0.80a.u.f the nucleus there are two spin-unlike electrons occupying the
=2-3). n=1 shell and, for each of these electrons, the closest spin-

In the lower part of Figs. 2 and 3 the ELF and EPLF arelike electron necessarily occupies the=2 shell. Accord-
presented. As already knowrthe atomic shell structure is ingly, we haved,,>d,; and, therefore, a large value of
correctly reproduced with ELF. For the neon atom the twoEPLF. Using this argument we can compute an estimate of
shells are centered at=0(n=1) andr~0.8a.u. 6=2), the EPLF value. Taking,, equal to the maximum distance
while the minimum between shells is at~0.3a.u.f between two electrons sitting on two spheres corresponding

04+

0.0

A. Shell structure of atoms
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FIG. 3. ELF and EPLF for Ar.

to then=1 andn=2 shells(electrons are repulsing each

other and are supposed to minimize their repulseomdd,,,;  FIG. 4. (Color) ELF and EPLF for LiH in a molecular plane. Li atom on the

the maximum distance between two electrons sitting on théeft side, H on the right side. The contour maps were created using Fhe
) MOLEKEL program>* Low values appear in red and high values appear in

same sphere corresponding to tme=1 shell, we get =

EPLF~-0.5 for neon and argon. This value is in good agree-

ment with the EPLF values at the origif.54 for neon and

0.45 for argon The shape of the outer shelle<£2,3) is  jonic character it is usually described as consisting of two

quite different from what we get with ELF or the radial dis- pairs of electrons, one centered on the Li nucleus (¢én-

tribution. In the valence domain the EPLF has the shape of &ibution) and the other one centered on the hydrogen (H

very broad and flat peak. The maximum value is quite smalparf). To better visualize these two maxima we also present

and is close to the value corresponding to the limit of infinitethe one-dimensional cut of both functions along the internu-

distances. For the@=1 maximum, the ratio of the EPLF clear axis, Fig. 5. In our plots the lithium atom is located at

values at the maximum and it is about 13 for neon and the origin(left part of both figureswhile the hydrogen atom

9 for argon. Fon=2 this ratio falls down to about 2 for both is on the right hand side. As seen, the extent of ELF and

neon and argon. Finally, in the case of the3 shell of  EPLF are rather similar. However, the shapes of the func-

argon, the ratio is only 1.7. Such results are interesting sincgons are different. In contrast with ELF, the EPLF illustrates

small values of EPLF are directly associated with similarthe difference of pairing associated with each pair. The aver-

average distances between spinlike and spin-unlike electrongge distance between the two electrons of thels pair is

As a consequence, it seems not appropriate to visualize elegmall (large value of EPLFwhile the electron pair around

trons in the various atomic shells as a set of tightly boundedhe hydrogen nucleus is much less confitigs EPLF peak

pairs but better as a rather uniform fluid of electrons with js smaller and broadgr

comparable interelectronic distances.

C. Triple bond and lone pairs: N

The ELF and EPLF plots are displayed in Fig. 6. Both
The ELF and EPLF plots are displayed in Fig. 4. Bothfunctions present two maxima localized at the atomic cores

functions present two maxima localized at the nuclei. Thisand two maxima localized on the lone pairs. The ELF pre-

result is expected since the LiH molecule having a strongents a single maximum in the region where a triple bond is

B. lonic molecule: LiH
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FIG. 5. ELF and EPLF for LiH along the Li-H axis. Li on the left, H
on the right.

FIG. 6. (Color) ELF and EPLF for N in a molecular plane. Low values
appear in red and high values appear in blue.
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FIG. 7. (Color) ELF and EPLF for CH in a plane containing the carbon
atom(central atomand one hydrogen atom. The two other hydrogen atoms
are symmetrically located with respect to the pldback and front Low
values appear in red and high values appear in blue.

expected(Lewis representation In contrast, the EPLF pre-
sents an infinity of degenerate maxima placed on a torus in
the o, plane of symmetry.

D. Radical: CH 4

The ELF and EPLF plots are displayed in Fig. 7. As
expected both functions present a maximum localized at the
carbon core and three maxima localized on the hydrogen
atoms. In contrast, ELF and EPLF give a different picture of
the presence of a localized single electron. According to the
very definition of ELF, the localized electron leads to the
existence of a maximum. With EPLF, the situation is rather
different: A single electron implies no pairing at all and,
therefore, a small value of the function is obtained. Remark
that the possibility of differentiating localized pairs and
single electrons in such a way is an attractive feature of
EPLF with respect to ELF. In Fig. 8 it is shown how the
nonbonding unpaired electron can be localized by plotting an
isosurface for a very small value of the EPLF.
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FIG. 8. (Color) Isosurface EPLE0.04 for CH;.

E. Covalent versus ionic bonding: F  »

1. ELF analysis

Figure 9 presents the ELF plots obtained for thentol-
ecule at the Hartree-Foctupper part and B3LYP (lower
pard levels. The interatomic distance chosen is the experi-
mental valueR=2.668 a.u. In both plots similar features are
observed: Presence of maxima associated with core electro
pairs and presence of degenerate maxima corresponding
lone pairs on a torus around each nucleus. However, there BG. 9. (Colon ELF for F, in a molecular plane, computed from a Hartree-
one striking difference within the bonding region. At the Fock wave functior(qp) and from aB3LYP calculatiofdown). Low values
Hartree-Fock level, ELF displays a maximum at the middle?PPea" in red and high values appear in blue.

of the F-F bond. In contrast, at the B3LYP level, the same

region dlsplays_, two maxima on the F-F axis slightly S,h'fted(lone pair and “covalent” valence basinassociated with the
away symmetrically fror_n the center towards the nuclei and & .- +ors of ELF(such a study is based on a proposal of
minimum along the axis at the symmetry centarsaddle g\ ang savid?d). From their data they conclude that the
pc_)ln_t n th? full spack To shed some light on the origin of topology of the ELF gradient dynamical system gfdfound
';hlsdn.‘grlgmn%ch.ange of tOSOIOgﬁ’ we have :Scokm_puted ﬁLFthe equilibrium distance is indeed structurally unstable and
or g ! erelnt ats)|s sets and met oﬂﬁgrtre:e- OIC_ In sma ggthat the role of electron correlation consists essentially in
and very jarge basis slets,hDFT gt var:|ou_s elve S: L_DA’ pr decreasing the population of the valence basin responsible
BLYP’dGG'?]’")' Results s kO\INt Iatt e single maX||m;Jm 0 k;for bonding toward the atomic lone pairs. Furthermore, in
serve at the Hartree-Fock leve turn's out to res'u.t rom e, ntrast with most covalent bonds where this scenario occurs
merging of two close peak_s. Depending on conditions, thesgt large internuclear distances, foy E occurs at a rather
two peak's can ;ppea}r.elther_ ag two Welll-separ:atgd pealé?\ort distance close to the equilibrium geometry and, thus,
(tIWO maxima an a'mllnlmum In etvyeen aNong t he 'ntﬁmu'leads to some peculiar features. However, the amount of
clear e}).('s or one single peaka maximum. ote that the  ¢6ctr0n localization between the atoms remaining not negli-
possibility of the existence of such a structural instability of ible both at the HF and DFT levelsufficiently large basis

tr}? C”t'ﬁal p?'msd wgh respec’;] to_bagu_s sets and correlatiodeg are 1o be uskdit seems justified to conclude that the
effects has already been emphasized in previous werks, . ajent character of fis not negligible.
Refs. 21 and 2B It is thus not correct to attribute to much

significance to the change of topology observed from HF to .

B3LYP and a more detailed analysis of ELF is called for.2- EPLF analysis

Fortunately, such an analysis has recently been presented by The EPLF has been computed at the HF-VMC, Jast-
Llusar and collaboratof&for a number of systems including VMC and fixed-node DMC levels. To give an idea of the
F,. In their study the authors have followed the evolutionaccuracy achieved we present in Table | the total energies
under electron correlation of the “valence basin” populationscorresponding to different levels of calculations. As seen in
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scribes the pure ionic syster’r}‘lH:* and, the third one, the
resonant structure expressed asf —F" F .

EPLF for F, +F, . The wave function used for each atom
is a standard Hartree-Fock determinant with,asingly oc-
cupied orbital(z being the internuclear ajisOne of the
atoms is chosen with & unpaired electron, the second one
with a B unpaired electron. To compute the EPLF for this
noninteracting molecule, we have sampled the density of one
single fluorine atom located at the position of the first atom
of the hypothetical moleculésimulation1). Next, we have
moved the atom to the position of the second atom, flipped
the spin of the single electron, and, then, sampled the second
density (simulation2). Both runs were made with identical
random numbers, time steps, numbers of walkers, and total
number of steps. The configurations saved during the two
runs were merged: Each configuration of the noninteracting
system is the combination of two configurations, one from
simulation1 and the other one from simulatich The im-
portant result is that we did not observe any maximum be-
tween the two fluorine atoms of this fictitious system, but
instead a minimum. Now, because the probability of finding
ap, electron of one atom in a given region is independent on
the position of the electrons of the other atom, we are in a
case where the tw@, electrons of opposite spin are un-
paired. Accordingly, the presence of a minimum in the non-
interacting system confirms that EPLF measures directly the
electron pairing and that there is no influence of the one-
electron probability density. We conclude that the maximum
observed for the interacting system is not an artifact resulting
from the overlap of the electronic clouds of the two neutral
atoms.

EPLF for F; F*. Using the same strategy we have com-
puted the EPLF in the case of the noninteracting system
F~+F". The EPLF of the F anion has one maximum at the
position of the nucleus, and an infinity of maxima on a
FIG. 10. (Color) EPLF for F, along the F-F axis, computed from the HF- sphere corresponding to the valence shell. For thedtion
VMC density (up) and from the Jast-VMC densitidown. Low values yith a vacantp, orbital), an infinity of degenerate maxima
appear in red and high values appear in blue. oz .

on a torus in the X,y) plane are obtained. When the two

noninteracting ions are fixed at the equilibrium distance of
the table the Jastrow wave function is rather accurate since,, we observe a saddle point between the two ions. This
51+0.4% of the correlation energy is recovered. At the DMCcritical point, which results essentially from the interaction
level we recover up to 881.2%. The EPLF plots obtained between the maxima associated with fheandp, lone pairs
from VMC and fixed-node DMC calculations have beenof F* and the maxima of the Fvalence shell, is found to be
found to be very similar. Therefore, to avoid to duplicatecloser to F than F .
data, we only present the Jast-VMC results. EPLF plots com- EPLF for F FfeF* F; . The computation of the
puted from the HF-VMC and Jast-VMC densities are pre-EPLF has been done by applying to the configurations ob-
sented in Fig. 10. In contrast with ELF we do not observe dained in the previous case the mirror symmetry with respect
change of topology when passing from the Hartree-Fock tdo the plane perpendicular to thé F~ axis and located at
the (highly) correlated levels. In both cases, we get the saméhe middle of the bond. Configurations resulting from this
set of critical points: A maximum in each core regions, anoperation are interpreted as describing the resonance be-
infinity of degenerate maxima corresponding to the lonetween the two ionic structures:'FF~ «F -F". Here also,
pairs on a torus around each nucleus and, most importantly,ae observe a saddle point at the symmetry center of the
maximum at the symmetry center of the molecule. molecule.

To validate the presence of a maximum at the middle of It is important to emphasize that none of the three ficti-
the bond we have computed the EPLF for three hypotheticdious systems just presented exhibits a maximum of the
models consisting afioninteractingfluorine atomgor ions, EPLF at bond midpoint. Accordingly, it seems reasonable to
the interatomic distance being fixed at the equilibrium dis-conclude that the maximum observed in the tryerolecule
tance of the true interacting,Fmolecule. The first model is not an artifact and is really due to the covalent contribution
consists of the neutral system +F, the second one de- of the F, bond. The computation of electron correlation ef-
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fects, even at the highest level of correlatifixed-node situations will allow us to assess the true ability of EPLF to

DMC) does not eliminate this maximum, so the covalentbe used as a general tool to investigate electron localization

character of kis truly important(as opposed, for example, in molecular systems.

to LiH). Note that such a result is in agreement with previous

works based on high-quality valence bond calculati@es,
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