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An alternative Monte Carlo estimator for the one-body density p(r) is presented. This estimator has a simple
form and can be readily used in any type of Monte Carlo simulation. Comparisons with the usual regularization
of the delta-function on a grid show that the statistical errors are greatly reduced. Furthermore, our expression
allows accurate calculations of the density at any point in space, even in the regions never visited during the
Monte Carlo simulation. The method is illustrated with the computation of accurate variational Monte Carlo
electronic densities for the Helium atom (one-dimensional curve) and for the water dimer (three-dimensional

grid containing up to 51X 51 X51=132 651 points).
DOI: 10.1103/PhysRevE.75.035701

The Monte Carlo approach is probably one of the most
widely employed numerical approaches in the scientific and
engineering community. In computational physics, it has
been extensively used in the last 50 years for studying a great
variety of many-body systems under many different condi-
tions. To date, the most popular application of the method is
probably the calculation of classical thermodynamical prop-
erties [1]. However, the Monte Carlo approach is also em-
ployed for evaluating quantum properties by using the path-
integral formulation of quantum averages as classical ones
(quantum Monte Carlo or path integral Monte Carlo ap-
proaches [2]). In the recent years, these later approaches
have emerged as a unique and powerful tool for studying
quantitatively the interplay between quantum and thermal
effects in many-body systems (e.g, to understand the very
rich physics of strongly correlated materials).

At the heart of all these applications lies the calculation of
a number of high-dimensional integrals (or sums, for lattice
problems) written under the following general form:

I(F) =Jdl‘1 "'drNH(l‘l, ,l’N)F(r], ,I‘N), (1)

where II is some arbitrary N-body probability distribution
(IT positive and normalized) and F some arbitrary real-
valued function. The integration is performed over all acces-
sible configurations for the N-particle system. The general
idea of Monte Carlo approaches is to evaluate the integral by
sampling the configuration space according to the probability
distribution, II, and by averaging F over the various
configurations generated by the sampling procedure, I(F)
=(F)p;. Here and in what follows, the symbol (- - -)j; indicates
the statistical average over the density II. Various Monte
Carlo algorithms (sampling procedures) can be found in the
literature, the most celebrated one being, of course, the Me-
tropolis algorithm [3]. The efficiency of a Monte Carlo ap-
proach is directly related to the magnitude of the fluctuations
of the integrand in the regions where the probability distri-
bution, II, is large. More precisely, for a given number of
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Monte Carlo steps, the statistical error 6F is proportional to
the square root of the variance of the integrand F defined as
o*(F)=1(F?)-1(F)*. Accordingly, a very attractive way of
enhancing the convergence of a Monte Carlo simulation con-
sists in introducing alternative “improved” estimators de-

fined as new integrands F having the same average as F but
a lower variance

(F)y; = (F)y and ¢*(F) < ¢*(F). ()

In previous works [4,5] it has been shown how improved
estimators can be designed for any type of integrand F and
Monte Carlo algorithm, and some applications to the compu-
tation of forces have been presented [5].

In this Rapid Comnunication we present an efficient im-
proved Monte Carlo estimator for calculating the one-body
(or one-particle) density, p(r),

N
pr)={ > &r;-r) 3)
i=1

T

and, more generally, any one-body average of the form
Jdrp(r)F(r). As we shall see, our estimator allows very im-
portant reductions in variance. In the example of the charge
density of the water dimer presented below, a reduction of up
to two orders of magnitude in CPU time is possible for some
regions of space. In addition, and in sharp constrast with the
usual estimator based on the regularization of the delta-
function on a grid, our expression leads to accurate estimates
of the density at any point in space, even in the regions never
visited during the Monte Carlo simulation (e.g, in the large-
distance regime). This property is particularly interesting
when a global knowledge of the density map is searched for.
For the water dimer case, we were able to accurately com-
pute the charge density for 51X51X51=132651 grid
points. Note that such a calculation is vastly more difficult to
perform when using the standard approach.

Let us recall that accurate one-particle properties are of
central interest for the understanding of the physics of many
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complex many-body systems. Such systems include all those
which are not translationally invariant (typically, all finite
systems: atoms, molecules, clusters, nuclei, etc.) and all
those whose translational symmetry has been explicitly bro-
ken, e.g., by the application of an inhomogeneous external
field. In addition to this, many physical modelizations and/or
effective theories rely explicitly on the knowledge of the
one-body density. Many examples could be cited but let us
mention, for example, the various modelings of the electro-
static field of molecules from the one-electron density [6],
the studies of the structure and reactivity of molecular sys-
tems based on the topological analysis of the electron density
and/or its Laplacian [7], and, also, the very important case of
density functional theories (DFT) which could greatly benefit
from the possibility of computing accurate three-dimensional
(3D) charge/spin density maps for large molecular systems
(e.g., via accurate fits of the exchange-correlation Kohn-
Sham potential, see [8]).

Finally, let us note that the use of alternative forms for
evaluating the density is not new. For example, in the works
of Hiller et al. [9], Sucher and Drachman [10], Hariman [11],
and Rassolov and Chipman [12] new classes of global op-
erators built for computing the density have been introduced.
However, in these works, the general idea is to design opera-
tors whose expectation values give an accurate estimate of
the unknown exact one-body density and not the exact one-
body density associated with a known N-body density. Actu-
ally, our strategy is more closely related to what has been
presented by Vrbik et al. [13], Langfelder et al. [14], and
Alexander and Coldwell [15]. In these works, alternative
Monte Carlo estimators with lower variances are also intro-
duced. However, the emphasis is only put on the case of
evaluating the charge and/or spin density at the nuclei. Here,
such ideas are extended to any point in space and a general
formula allowing one to control all possible sources of sta-
tistical fluctuations in all possible regimes is presented.

General improved density estimator. Due to the presence
of Dirac functions in the Monte Carlo estimator of the den-
sity, Eq. (3), some sort of regularization has to be introduced.
It is usually done by partitioning the physically relevant part
of the one-particle space (usually, the 3D ordinary space)
into small domains of finite volume and by evaluating the
corresponding locally averaged densities. In practice, such a
procedure is particularly simple to implement by counting
the number of particles present in each elementary domain at
each step of the simulation. However, the statistical fluctua-
tions can be rather large. This is particularly true for the
low-density regions which are rarely visited by the particles.
Even worse, there is no way of evaluating the density in
regions which are never visited during the finite Monte Carlo
simulation. One way to escape from these difficulties is to
introduce some global estimators defined in the whole space.
To do that, we regularize the § Dirac-function by using the
following equality:

- flr;r 1
ot -1 = L @)
41
where f(r;;r) is a smooth function of r; verifying

f(r;=r;r)=1. Here, V7 denotes the Laplacian acting on the r;
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variable and r the fixed position where the density is com-
puted. Note that this formula is just a slightly generalized
form of the well-known equality corresponding to f=1. Now,
injecting this expression into Eq. (3) and integrating by parts,
the density can be rewritten as

p(r) [ L% < 1 Viz[f(ri;r)n(rl’ . ) ’rN)]> ) (5)
i N. IT

4w \|r; -] I(ry,....r

Next, we introduce some additional function g(r) (indepen-
dent on the particle coordinates) and write p(r) as

"4w§<[rl—r|

BAATICR ,rN>]>
II(ry,...,ry) i

- g(r)}

(6)

. . < Vi(/1D) >
the last step being allowed since \——/ ;=

Expression (6) is our general form for the improved esti-
mator of the one-body density. The two functions f(r;;r) and
g(r) play the role of auxiliary quantities. They are introduced
to decrease the variance of the density estimator. As with any
optimization problem, there is no universal strategy for
choosing f and g. However, the guiding principle is to iden-
tify the leading sources of fluctuations and, then, to adjust
the auxiliary functions to remove most of them.

Improved electronic density estimator for molecules. In
what follows, we consider the one-electron density of mo-
lecular systems obtained from the N-body quantum probabil-
ity distribution written as

w%'(rl» ’rN)
f dry - dryi(ry, ... .ry)

where i is some electronic trial wave function.

1. Short electron-nucleus distance regime. For a system of
electrons in Coulombic interaction with a set of fixed nuclei
the exact wave function is known to obey the following
electron-nuclear cusp condition:

Y~r r,1 ~Zslr;—R (8)

where R, denotes the position of a given nucleus A of charge
Z 4. Most of the accurate trial wave functions employed in the
literature fulfill this important condition. Now, as a conse-
quence of the cusp condition we have

Vil 47,

I(r,,...,ry) = , (7)

)

In the neigbhorhood of nucleus A, this term is an important
source of fluctuations. This is easily seen by noting that,
in the regime r~R,, the estimator of p(r), Eq. (6),
behaves as i{ 5, a quantity which has an infinite variance
[ f S r2dr= +oc

we adjust the function f so that —f exactly cancels the diver-

. To remove this source of wild fluctuations

gence of —H . A simple suitable form for f obeying such a
condition plus the constraint, f(r;=r;r)=1, is given by
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flrir) =1+ 2ZA(|ri - RA| - |1- - RA|), (10) simple improved estimator corresponding to Eq. (6) with

2. Large-distance regime. In the large-distance regime,
|r|— +o0, the exact one-electron density is known to decay
exponentially. In contrast, our basic estimator decays alge-
braically as a function of r. Here, we propose to force the
latter estimator to decay also exponentially. In practice, a
simple choice for the function f is

flriix) = (1+Nr; = r[)exp[— Ar; - r

1, (11)

where A\ is some real parameter. Note that the coefficients of
the linear and exponential terms have been taken identical
(=N) to avoid the divergence of the Laplacian of f at
r;=r. The parameter A can be adjusted either by minimizing
the fluctuations of the average density or fixed at some
value close to the theoretical value of \,,=2\-2I (I first
ionization potential, the exact density is known to decay as
p~exp(=\,,r) see, e.g., Ref. [16]).

Another useful remark is that, in the regime |r| — +, the
electrons of the molecule are, in first approximation, at the
same distance from the point where p is evaluated.
As a consequence, during the simulation the quantity
1/|r;—r| fluctuates very little around the approximate aver-
age 1/|(r;)—r|. Therefore to reduce the fluctuations it is valu-
able to remove a quantity close to the latter average from the

former one. Here, this idea is implemented by introducing
the following function g:

1 M

e =~ —

m— (12)
MiZ R, —r|

In our first application we consider the He atom described
by a simple trial wave function written as ;= @(r;) H(r,)
with ¢=exp(—7yr), and y=1.6875 (Slater value). For this
problem, the exact density is known and is given by
p(r)=29/ 1 exp(=2yr). Figure 1 shows the results obtained
for p(r) for a relatively short Monte Carlo run. The main
curve displays the results obtained with (i) the usual estima-
tor based on the delta representation, Eq. (3), and (ii) the

f=1 and g=0, and our best improved estimator defined via
Eqgs. (6) and (10)—(12). In the latter case, the densities corre-
sponding to each of the two possible choices for f [Egs. (10)
or (11)] have been computed for each distance, the final
value corresponding to the value having the smallest statis-
tical error. The usual estimator, Eq. (3), has been regularized
by introducing small elementary cubes of length a=0.2. For
all distances the statistical error associated with the usual
estimator is very large with respect to improved estimators.
At intermediate distances, at least one order of magnitude in
accuracy is lost. For example, at r=0.6 the statistical error is
about ten times larger than for the simple estimator case and
a factor of about 20 is found with respect to the best im-
proved estimator. At large distances, a region rarely visited
by the electrons, the standard estimator is so noisy that it is
useless in practice. Now, regarding improved estimators it is
clear that the auxiliary functions f and g have a great impact
on reducing the errors. At very small distances (first inset) a
gain of about 5 in statistical error is obtained with the best
improved estimator. At r=0, the gain is even larger since the
simple estimator has an infinite variance. At large distances
where both improved estimators have a finite variance, it is
seen that introducing some exponential decay into the esti-
mator plus a proper shift (g-contribution) improves consid-
erably the convergence. In the range 2.5-3, the gain in error
increases from 15 at r=2.5 to 40 at r=3.
In our second application we consider the water dimer in
a nonsymmetric nuclear geometry (structure #2 of Ref. [17])
described by an electronic wave function consisting of a
Hartree-Fock part (cc-pVTZ basis set) plus a standard explic-
itly correlated Jastrow term. Figure 2 shows the density plots
obtained with our best improved estimator for a number of
points equal to 51X 51X 51 (=132 651). As seen in the fig-
ure the density obtained displays a very smooth aspect. A
closer look shows that this regularity is present at a rather
small scale. In Fig. 3 we present a more quantitative com-
parison of the data along the O-O axis. The figure clearly
shows that the best estimator outperforms the usual one.
First, the curve corresponding to the new estimator (solid
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FIG. 2. (Color online) One-electron density of the H,O dimer
with the best improved estimator.

line connecting the points) is very smooth, although it has
been obtained by simple linear extrapolation of the data. In
sharp contrast, this is absolutely not true for the usual esti-
mator curve whose overall behavior is particularly chaotic.
Second, the statistical error has been greatly reduced using
the new estimator. Depending on the distance, a gain in ac-
curacy ranging roughly from 5 to 10 (i.e., up to two orders of
magnitude in CPU time) has been obtained. An interesting
point to mention is the presence of some very wild fluctua-
tions in the neighborhood of r5.g~ 1.5 for the standard esti-
mator. These fluctuations are due to the presence of a hydro-
gen atom close to the O-O axis. We can verify that, in sharp
contrast, our estimator, which has been built to correctly take
into account the nuclear cusp, Eq. (10), performs well in that
region. Remark that in the large-r regime (data not shown
here) where the standard estimator is strictly zero (no sam-
pling of this region), the improved estimator still continues
to give accurate values of the very small density.

Finally, let us make some comments about the additional
computational cost associated with the use of our improved
estimator instead of the very simple standard one, Eq. (3).
Remark first that the calculation of IT and its first and second
derivatives is done only once at each Monte Carlo step for all
of the grid. The cost for evaluating these quantities scales as
~an where n,,,, is the number of particles and vy is typi-
cally 2 for bosons (two-body interaction) and 3 for fermions
(the computation of determinants is the dominant part). Note
that this scaling is not problematic since it is the scaling of
the Metropolis step itself. On the other hand, the evaluation
of the r-dependent quantities is much more simple [see, ex-
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FIG. 3. (Color online) Cut of the one-electron density along the
0-O axis of the H,O dimer. Data for the best and usual estimators.
Solid lines are simple linear extrapolations of the data.

pressions of f, Egs. (10) and (11)], and the corresponding
CPU cost scales as ~7ng,g ., This cost is negligible for a
large number of particles (n;';rlt>ng”-d regime) but not for
small and intermediate systems (such as the water dimer). In
these latter cases, different ways are at our disposal to reduce
the CPU cost. We shall not enter into the details here, let us
just mention the use of grids adapted to the density profile
(less points are needed), the possibility of avoiding the com-
putation of the improved estimator at each Monte Carlo step
(Monte Carlo configurations are highly correlated) and, also,
exploiting the fact that the contribution to the density of a
given particle is exponentially small for large grid point-
particle distances, a property which can be useful for limiting
the amount of calculations. In conclusion, the additional
computational cost associated with our proposed estimator
can be easily kept under control and, thus, is not a limitation
of the approach. In the water dimer case presented above, a
naive Cartesian grid of 132 651 points has been used and the
improved estimator has been computed for each 15 Monte
Carlo steps. We found a CPU-time increase with respect to
the usual estimator of about 6.
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