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Tetraoxygen, Oy, is a molecule of great importance playing a central role in a
variety of chemical and physical processes. Among them we can cite the dynamics
of the atmospheric processes involving ozone, the understanding of the anomalous
magnetism of liquid oxygen, the possible explanation of the structural and optical
properties of the € solid phase of oxygen, and also the possible use of polyoxygen
species as high energy-density (HED) materials. The reaction leading to the forma-
tion of tetraoxygen (with total spin S=0) from the interaction of two two-open shell
(S=1) oxygen molecules requires complex electronic spin-space recouplings that can
only be properly described with multiconfigurational methods. The understanding of
the simultaneous intramolecular bond-breaking and the intermolecular bond-making
processes that occur during this reaction is very difficult to achieve by analyzing the
wavefunction composition along the reaction coordinate or by following the evolution
of the total or orbital electronic density since the active orbitals are delocalized over
the four nuclei. In order to achieve this goal, we study the nature of the electron pair-
ing at the two most important critical points of the singlet potential energy surface
(PES) of the 202 = O4 reaction and, also, its evolution along the reaction coordinate
using the Electron Pair Localization Function (EPLF) [A. Scemama, P. Chaquin and
M. Caffarel, J. Chem. Phys. 121, 1725 (2004)]. To do that, the 3D-topology of the
EPLF calculated with quantum Monte Carlo (at both variational and fixed-node-
diffusion Monte Carlo levels) using Hartree-Fock, multiconfigurational CASSCF, and
explicitly correlated trial wave functions is analyzed. At the O4 equilibrium geom-
etry the EPLF analysis reveals four equivalent covalent bonds and a couple of lone
pairs on each oxygen atom. At the singlet transition state the EPLF reveals a very
intricate electronic structure where the Oy molecules (in Cp symmetry) transform
two m bonds each into lone pairs and, simultaneously, a couple of new intermolecular

o bonds are being created by the coupling of two same-spin electrons provided by



each Oy moiety. Finally, the EPLF allows to visualize the sequence of topological
transformations of the electron pairings along the reaction coordinate from the tran-
sition state to the dissociated fragments. As a general conclusion, we emphasize the
usefulness of the EPLF as a tool to analyze the topological properties of non-trivial

chemical bonding in molecules.

I. INTRODUCTION

The search for a chemically bound form of tetraoxygen has been the subject of numerous
investigations during the last thirty years. Initially, the motivation was given by the analogy
with the stable and well-known cyclic and chain forms of sulphur, the study of its fundamen-
tal properties and its possible use as a high energy-density material.[1],[2] More recently, it
has been proposed as a possible intermediate explaining a variety of experimental findings
and appears to have been detected by neutralization reionization (NR) mass spectrometry.
Given the different experimental conditions for its preparation and identification, it is impor-
tant to point out that several forms of tetraoxygen are most likely involved in the different
experimental setups, which could include a variety of electronic states and isomers covering
a wide range of intermolecular strengths. For example, in the photoionization spectra it has
been shown[3],[4] that the O4 metastable state corresponds to an excited complex between
an O, molecule in its ground state and another in the excited state, 'Y,. Furthermore,
convincing evidence exists that this same species could be involved in the electron transfer
to Of experiments of Helm and Walter[5]. Although these gas phase spectroscopy experi-
ments have suggested the existence of an Oy4 species, it is clear that it is not the chemically
bound form studied here, but rather electronically excited van der Waals complexes|[6],[7],[8].
The same conclusion was drawn in the recent NR mass spectrometric detection of an Oy
species[9].

Most of the complexity found in oxygen-containing species and reactions arises from
the unusual electronic structure of molecular oxygen: it has two spin-unpaired electrons
occupying degenerate 7, orbitals which lead to a ¥, ground state with a total spin of S=1
and two singlet low-lying excited electronic states. It is therefore not surprising that oxygen,
in a variety of forms, exhibits unique properties. For example, while studying the magnetic
properties of liquid oxygen, Lewis[10] proposed the formation of an O, species to explain the
temperature dependence of the magnetic susceptibility emphasizing the failure of Curie’s law
to describe oxygen, even though the law generally holds for other paramagnetic substances.
It is natural to expect the possible formation of an O4 complex given the radical character
of O,. It is also known that the interaction of two oxygen molecules leads to asymptotically
degenerate singlet, triplet and quintet states with stable complexes being bound by weak
van der Waals forces[11],[12], [13],[14].

In the solid state, oxygen is the only antiferromagnetic insulating phase among the el-



emental solids and it is the first light element for which metallization was confirmed ex-
perimentally. Several solid phases exist at room temperature and high pressures which
exhibit a dramatic change of color as the pressure is increased due to changes in the nature
of the intermolecular forces, the detailed explanation still being an area of active research
[15],[16],[17]. One of the most interesting open problems is the determination and explana-
tion of the structural and optical properties of the € phase which is stable in a broad range
of temperatures and high pressures. Some years ago Bini and coworkers[15] measured the
infrared spectrum as a function of pressure and noticed the appearance of a new absorption
band in the 300-600 cm~! region, in addition to the expected molecular absorption at ~
1500 em~!. The new absorption peak was explained through the formation of dimer com-
plexes, Oy4, with Dy, symmetry analogous to the gas phase van der Waals complex, but
the much shorter (30%) intermolecular distances were taken as evidence of a new form of
bonding. An alternative theoretical explanation was given by Neaton and Ashcroft[16] who
proposed, on the basis of density functional theory, a structure based on linear herringbone-
type chains of O, molecules consistent with the observed infrared spectra. However, very
recently a crystal structure determination has been performed[17] which suggests that the
basic unit is composed of 4 molecules, Og, which interestingly, can be reconciled with the
previously proposed structures and explain the optical experiments. In all of the above
examples a common theme is the nature of the intermolecular forces binding the molecular
oxygen units. A radically different O, species has been proposed to exist on the basis of ab
initio calculations[2],[18] but its experimental detection and characterization is still lacking.
The so-called chemically bound O, molecule has Dsy; symmetry with four equivalent single
bonds in a cyclic non-planar structure. The bond lengths are similar to those of other oxygen
single bonds.

Although it would be natural, given its small number of electrons, to expect that state-of-
the-art computational methodologies of quantum chemistry should lead to a full knowledge
of the electronic properties of O4 and its dissociation reaction path to molecular oxygen,
this is not the case; a detailed understanding of the chemically bound O, molecule still
remains a significant quantum theoretical challenge[2],[3], [18],[19],[20], although some im-
portant progress has been done very recently[21]. The quantum theoretical difficulties are
important and can be briefly stated as follows: the singlet O, equilibrium structure has a
relatively strong monoreference character, thus it can in principle be calculated by stan-
dard and accurate Coupled Cluster (CC) methods. However, describing the transition state
of C5 symmetry leading to dissociation into two triplet oxygen molecules is much more
difficult. The open-shell nature of the two diatomic molecules, the description of bond
breaking/making processes, and the complicated spin recouplings necessary to describe the
transition from four open-shells to a closed shell species can only be properly reproduced
with large multiconfigurational wavefunctions. In practice, all along the reaction coordinate
the smallest complete active space SCF (CASSCF) wavefunctions have to be built with the
three 2p shells and the four valence electrons of each atom. This leads to consider 16 elec-



trons within 12 active orbitals [a CASSCF(16,12) calculation], that is to say large CASSCF
expansions of 17865 and 70785 configuration state functions (CSF) at the equilibrium and
transition state geometries, respectively. On top of that, it is also essential to describe in a
balanced way the subtle electron-electron interactions, i.e. the dynamic correlation effects,
arising at the various geometries corresponding to the Oy reactant, the transition state, and
the Oy (X 32;)+02(X 32;) products, all of them lying on the lowest singlet potential energy
surface.

It is most important to emphasize that obtaining an accurate estimate of the barrier
to dissociation is crucial since it determines the stability of the species and, therefore, its
relevance for a variety of processes in various phases. Among them, we point out its poten-
tial role in atmospheric processes involving ozone and highly vibrationally excited oxygen
molecules[22],[23],[24],[25]. The need of an accurate estimation of the heat of formation of
this species has already been noted [18], [20]. In a benchmark study using the CCSD(T) and
CASSCF(16,12)+ACPF methods with the large aug-cc-pVQZ basis set, it has been found
that the heat of formation is significantly smaller and the barrier to dissociation larger
(> 9.3kcal/mol) than previously assumed. The same study revealed that the previous theo-
retical estimate for the heat of formation of tetraoxygen was in error by a significant amount
(18-24%) owing to lack of accuracy of the methods then employed for evaluating the correla-
tion energy. Therefore, in a very recent work[21], we have shown that accurate thermochem-
ical values regarding the stability of the O4 species can be obtained from a totally different
but powerful electronic ab initio method, namely the quantum Monte Carlo (QMC) ap-
proach. MultiReference Fixed-node Diffusion Monte Carlo (MR-FNDMC) calculations were
performed to obtain the most accurate dissociation barrier and heat of formation with respect
to dissociation into molecular oxygen for the chemically bound tetraoxygen molecule. Mul-
tireference trial wavefunctions were used and built from truncated CASSCF(16,12) through
a weight-consistent scheme allowing to control the fixed-node error. A favorable comparison
with the previous ab initio benchmark CASSCF+ACPF/AVQZ results was possible. The
MR-FNDMC barrier to dissociation and heat of formation obtained are 11.6+1.6 kcal/mol
and 98.5+1.9 kcal/mol, respectively. Given the basis-set independence and the excitation-
degree free nature of the MR-FNDMC method, these new thermochemical energies should
be taken as the theoretical references when discussing the relevance of tetraoxygen in a va-
riety of experiments including the important atmospheric chemical processes where oxygen
species play a fundamental role.

Given that for the Oy SO04(X°%E,)+0,(X?%,) reaction the main problem found with
standard ab initio methods for the accurate evaluation of the reaction barrier is the need
to accurately deal with the dynamic correlation effects (on top of the strongly multiconfig-
urational wavefunction) at the transition state geometry, it would seem that the electronic
distributions of the bonds around the four oxygen nuclei strongly depend on the method
used to describe it. We note that, even at the equilibrium geometry of the O, molecule,
the CASSCF wavefunction contains 24 determinants with a coefficient larger than 0.05 (see,



Table I).

Although ground-state energies are of primary interest, it is clear that a chemical un-
derstanding of a complex molecular system requires more than the knowledge of the sole
ground-state energy. In general, chemists are interested in rationalizing and quantifying the
structure and reactivity of the system in terms of various quantities related to electron local-
ization. A number of important questions we wish to answer here include, for example, the
nature of the bonding between atoms, the localization of lone pairs, and the local concentra-
tion or depletion of charge at the two important critical points of the PES of the O4 <= 20,
reaction. In standard computational chemistry several approaches have been developed to
analyze and visualize the electronic distribution in the ordinary 3D-space. Among them
we can cite, e.g., the methods analyzing the deformation of densities (a build-up of charge
between two atoms is interpreted as the existence of a bond)[26], the methods based on the
topological analysis of the electron density or its Laplacian (see, for instance, Bader [27]),
the methods studying the topography of the molecular electrostatic field[28] and, also, ap-
proaches using as indicator the electron localization function (ELF) describing the amount
of local Pauli repulsion between electrons|29],[30]. Of course, this list cannot be considered
as exhaustive since defining a successful and general qualitative model for the description
of chemical structure is an everlasting theme in chemistry since the pioneering electron-pair
model of Lewis.

In this work we propose to exploit the accurate data obtained from quantum Monte
Carlo simulations on the Oy < 20, reaction to get important insights into the electron
localization properties of the tetraoxygen molecule at its equilibirum geometry and at the
transition state leading to two ground state oxygen molecules. To do that we shall use
the function, introduced by some of us recently [31], describing the pairing of electrons in a
molecular system. This function, called Electron Pair Localization Function (EPLF), is built
to reveal the differences in the average distances between spin-like and spin-unlike electrons.
In regions where localized pairs of electrons are present (lone pairs, atomic pairs, bonds)
the EPLF takes large values and displays maxima. In contrast, in regions where electrons
behave essentially as an homogeneous fluid (spin-like and spin-unlike electrons being mixed
together), the EPLF takes much smaller values. The form of the EPLF is simple (see
next section) and has been chosen to be easily computable using quantum Monte Carlo
(QMC) calculations. A major advantage of QMC is the possibility of evaluating the EPLF
at various levels of accuracy (Hartree-Fock, Multiconfigurational SCF, Valence Bond, DFT,
Variational Monte Carlo with explicitly correlated trial wave functions, fixed-node Diffusion
MC, etc....).

Originally applied to several simple atomic and molecular systems[31], the EPLF ap-
pears to be a practical tool for describing electronic features in more complex molecular
systems[32]. We shall apply it here to a much more challenging chemical problem, the
O4 S02(X?%])+05(X?%;) reaction. The organization of the paper is as follows: in Sec.
IT the basic features of QMC needed to understand the present work are briefly presented.



In particular, we summarize the various probability densities produced by QMC. Section III
is a very brief review of the electron pair localization function (EPLF). Section IV presents
the results and analysis of the EPLF using various types of electronic structure methods at
different geometries (equilibrium, transition state, and along the reaction coordinate con-
necting the transition state and the two dissociated molecules). Finally, in Section V a
summary of the main results is presented.

II. QUANTUM MONTE CARLO

In a quantum Monte Carlo scheme a series of "states” or ”configurations” are generated
using some elementary stochastic rules. Here, a configuration is defined as the set of the
3N-electronic coordinates (N number of electrons), the positions of the nuclei being fixed
(Born-Oppenheimer condition)

R=(r,...,17%). (1)
Stated differently, a configuration R may be viewed as a ”"snapshot” of the molecule showing
the instantaneous positions of each electron. Stochastic rules are chosen so that config-
urations are generated according to some target probability density, H(ﬁ) Note that the
probability density is defined over the complete 3 N-dimensional configuration space and not
over the ordinary 3D-space. Many variants of QMC can be found in the literature (referred
to with various acronyms: VMC, DMC, PDMC, GFMC, etc...). They essentially differ by
the type of stochastic rules used and/or by the specific stationary density produced. In
practice, the two most popular QMC approaches used for simulating complex molecular
systems are the so-called Variational Monte Carlo (VMC) and fixed-node Diffusion Monte
Carlo (FN-DMC) methods. Both methods will be employed here. Let us briefly summarize
the basic features of these methods useful for the following (for a detailed presentation, see,

e.g., [33]).

A. Variational Monte Carlo (VMC)

In a VMC calculation the probability density generated is given by
My pe(R) = dr*(R) (2)

where 17 is a high-quality electronic trial wave function. A commonly used expression for ¢
consists of a product of two terms. The first term is standard and is introduced to describe
the one-particle shell-structure of molecules. It is obtained from a preliminary HF or DFT
ab initio calculation and is expressed as one (or a combination of a few) determinant(s) of
single-particle spatial orbitals. The second term is introduced to reproduce the electron-
electron cusp condition of the exact wave function and, also, to incorporate some explicit
coupling between electron-nucleus and electron-electron coordinates (see, [34]). Note that



the electron-electron cusp condition is known to be particularly difficult to fulfill in standard
ab initio calculations using expansions over one-electron basis sets (necessity of considering
very high values of the orbital momentum). The explicitly correlated term is usually referred
to as the Jastrow factor. In a spin-free formalism our trial wave function is written as

Yr(R) = D'(R)DHR) exp > Y Ulria, ja:7ij)] (3)

o (i,j)

where the sum over o denotes a sum over the nuclei, » (i,j) @& sum over the pair of electrons,
and D?(oc =7 or |) are determinants made of one-particle space-orbitals. Different expres-
sions for the Jastrow part have been presented in the literature. Here, we have chosen the
following form[35]

U(Tio” Tjas Tij) =

s(x5) + p'(ia) + clatfa:)sga + cp(a2, + xfa)atf] + 03:):?]- (4)
with
_ Ty
Y= 1+ by1ij
. Tia
ia = 14 baTia

s(z) = 512 + s90% + s32° + 542!

P (a) = iV + g 4 pia 4 plat,

b, can take two different values depending on the spin of the pairs of electrons considered.
In this latter expression the quantities {b,, by, ¢, Si, pga)} play the role of parameters.

The critical step in a VMC approach is the optimization of the parameters entering the
trial wave function. A standard method consists in searching for parameters minimizing the
fluctuations in configuration space of the local energy defined as

This criterion is based on the fact that for the exact wave function the local energy reduces
everywhere to a constant -the exact energy- and, thus, the fluctuations of the local energy
entirely vanish. Accordingly, small fluctuations are associated with ”good” trial wave func-
tions. A number of methods have been developed to perform efficiently the optimization
step within a QMC framework. In this work, we have used the correlated sampling method
of Umrigar et al.[36], an approach based on the minimization of the weighted variance of
the local energy over a set of fixed configurations.

Once the optimal parameters have been determined, the quality of the resulting trial
wave function is usually good. A major part of the dynamical correlation energy (Coulomb
hole) is recovered and the gross features of the one-particle background are also correctly
described via the determinantal part (i.e. the non-dynamical correlation). For most atoms



it is possible to recover up to 80% — 90% of the exact correlation energy[34]; for molecules
the domain of variation lies usually between 30 and 90%.

The numerical method (stochastic rules) employed to generate the VMC density, Eq.(2),
is standard. It is based on the use of an improved Metropolis algorithm[37].

B. Diffusion Monte Carlo (DMC)

In a diffusion Monte Carlo scheme the stochastic rules employed are the same as in the
VMC case (Metropolis algorithm) plus a new rule corresponding to a branching (or birth-
death) process. More precisely, depending on the magnitude of the local energy a given
configuration is destroyed (when the local energy is greater than some estimate of the exact
energy) or duplicated a certain number of times (local energy lower than the exact energy).
It can be shown that the stationary density resulting from these rules is now given by

Mpue(R) = IPT(J%)%(E) (6)

—

where ¢o(R) denotes the ground-state wave function.

Fized-node error. Actually, because the density IIpyc is necessarily positive, as any
stationary density resulting from some stochastic rules, ¢, is not the exact ground-state
wave function, but some approximate one resulting from the additional constraint that ¢,
must have the same sign as the trial wave function so that the product in Eq.(6) is always
positive. In other words, the mathematical eigenproblem solved is not the exact one but,
rather, some modified one which can be written as

Hog™(R) = BN od™ (R) (7)

where ¢I'N(R) = 0 whenever ¢p(R) = 0.

The fact that the nodes (points in 3N-dimensional space where the wave function van-
ishes) of ¢ and ¢f™ are identical leads to a so-called ”fixed-node” error. However, as far as
total energies are concerned, this approximation is in general very good and the fixed-node
error on total energies represents usually a small fraction of the total correlation energy.
Let us emphasize that this error depends only on the quality of the nodes; see, e.g., the
discussion in [38]).

C. Multireference Fixed-Node Diffusion Monte Carlo (MR-FN-DMC)

We have recently shown that for the problem we are interested in here, the thermochem-
ical quantities obtained with FN-DMC (reaction barrier and dissociation energy) are very
badly reproduced when the single-reference Hartee-Fock nodes are used, both for the equi-
librium and for the transition-state geometries.[21] Since the most critical quantity relevant
for the determination of the feasibility of the experimental detection of gas-phase Oy, is the



reaction barrier, we focused our attention on these two critical points of the Oy4 singlet PES.
To get a coherent description of the nodal patterns at both geometries we proposed a scheme
based on the study of the fixed-node error evolution for both structures, as a function of
the size of a truncated expansion of the large CASSCF(16,12) wavefunction used as DMC
trial wavefunction. Note that the basis set employed here is the large aug-cc-pVTZ basis set.
The truncation is simply done by choosing the configurations within the CASSCF expansion
that have a coefficient larger than a given threshold €, thus defining a set MR(e) at each
geometry

Uyn(R) = Y colR) 0

i€MR(e)

The full trial wavefunction is thus written as

Ur(R) = Uarr(R)exp > Y U(rias rja, 7)) (9)
(i)

In this work, we consider that the Fixed-Node DMC energy difference obtained is mean-
ingful only when the two following conditions are fulfilled. First, the energy difference as a
function of decreasing values of € must be found almost constant within statistical fluctua-
tions. Second, the nodal error must display some "robustness” with respect to dynamical
correlation effects. By this, it is meant that the nodal patterns must not change significantly
under re-optimization (energy minimization) of the coefficients of the truncated expansion
¢; in the presence of the Jastrow factor.

JFrom a theoretical point of view, this procedure is based on the assumption that the
nodal pattern of the exact wavefunction can be correctly described by considering separetely
the non-dynamical correlation effects (CASSCF part) and the dynamical ones (Jastrow
part). Clearly, this ”first-order” approximation is natural but is not expected to be valid for
all molecular systems.

III. THE ELECTRON PAIR LOCALIZATION FUNCTION (EPLF)

Let us briefly present the electron pair localization function (EPLF). The EPLF is a local
scalar function defined in the ordinary 3D-space, bounded above and below, which focuses
essentially on the localization of electron pairs. It is a good descriptive tool for chemical
bonds, since pairs of electrons play a central role in our everyday interpretation of chemical
structure and reactivity (Lewis model, VSEPR). The framework proposed to calculate such
a localization function is that of quantum Monte Carlo approaches. As emphasized in the
introduction, QMC are techniques of a great versatility and, therefore, the definition of the
EPLF proposed below will be of practical use for any type of wavefunctions (HF, post-HF,
Valence Bond, etc...) and for any level of computation (VMC, FN-DMC, “exact”).
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First, we need to introduce the two local quantities d,,(7) and d,5(7) defined as follows

doo(7) = S_((3(F =) _min |7 = 75)
doo(7) = > (07 =7 min (73— 7)) (10)

i=1
where {7} }r—1 n are the positions of the N electrons for a given configuration ﬁ, o; is the
spin of the i’ electron (o; =1, ), and ({...)) the stochastic average over the Monte Carlo
configurations. As seen from these definitions d,,(7) [resp., d,5(7)] is the average distance
between an electron located at 7 and the closest spin-like (resp., spin-unlike) electron of the
molecule.

The electron pair localization function (EPLF) is defined as

_ oo (F) — dos(7)
EPLF(7) = (P T da(® (11)

Figure 1 of [31] gives a simple pictorial representation of the construction of the EPLF in

the case of only one configuration and four electrons in 2D.

By definition the EPLF takes its values within the interval [-1,1]. It gives a local indicator
of electron pairing as follows. In regions of space where electrons are unpaired the average
distances between spin-like and spin-unlike electrons are similar, d,s ~ d,,, and the EPLF
goes to zero. When spin-unlike electrons are paired we have d,; < d,, and EPLF goes to
1. Finally, when spin-like electrons are paired, d,; > d,, and, thus, EPLF goes to -1. The
EPLF main feature is to reveal the differences in the average distances between spin-like and
spin-unlike electrons. In regions where localized pairs of electrons are present (lone pairs,
atomic pairs, bonds) the EPLF takes larger values and displays maxima. In contrast, in
regions where electrons behave essentially as an homogeneous fluid (spin-like and spin-unlike
electrons being mixed together), the EPLF takes much smaller values. In particular note
that for molecules with one or more open shells as is the case with molecular oxygen here, in
regions where there is a larger amount spin-up (or spin-down) density, by construction the
EPLF takes on minima values. Note that the definition of EPLF is particularly well suited
to QMC; the formula (10) can indeed be easily computed with any QMC scheme.

IV. COMPUTATIONAL DETAILS

Trial wave functions. The oxygen basis set used is the fully decontracted Dunning aug-
ce-pVTZ basis set[39] and the optimized geometries chosen for the O reactant and the
transition state are those previously determined at the multireference Rayleigh-Schrodinger
perturbed Second-Order (CASSCF-RS2) level, which are the most accurate ones to date.
The determination of the critical points of the singlet potential energy surface was done
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through benchmark-type CASSCF-RS2 calculations with a very large monoelectronic basis
of 320 molecular orbitals and taking into account up to 5.1 x 10" CSF [20]. The trial
wavefunctions used here consist of the truncated CASSCF(16,12) determinantal expansion
discussed above multiplied by a standard Jastrow prefactor taking into account the explicit
electron-electron and electron-electron-nucleus interactions (see, e.g. [40],[41]). Note that
for a system consisting of light atoms such as O, some care has to be taken for properly
reproducing the electron-nucleus cusp both for the core and valence electrons. Regarding
the core region, we have replaced the four 1s atomic orbitals expanded over the gaussian
basis set by the 1s Slater-type orbital given in the Clementi and Roetti’s Tables [42]. On
the other hand, the valence molecular orbitals are also modified at short nuclear distances
to impose the nuclear cusp; we do that using a short-r representation of the radial part of
orbitals under the form ¢; exp(—yi7) + car?exp(—ysr), in the same spirit as Ref.[43]. The
present FN-DMC calculations are all-electron calculations done with a very small time-step,
7 = 0.00015, to insure a proper treatment of the nodal hypersurfaces and to reduce time-
step errors. For each trial wave function, the calculations are not extensive and represent
only about 10" Monte Carlo steps distributed over 20 processors. Since the EPLF gives
only qualitative information, the number of steps needed to obtain relevant results is much
smaller than the number of steps needed to get an acceptable error bar for the energy.
Moreover, it should be stressed that, in sharp contrast with the energy, the quality of the
trial wave function has little impact on the magnitude of the statistical error on the EPLF
results, since the quantities which are averaged during the Monte Carlo simulation, Eq.(10),
are not a function of the trial wavefunction.

In the case of the multireference trial wavefunctions, we have used the same wavefunctions
as the largest reported in [21] with a cutoff CI coefficient of 0.05 in the CASSCF expansions
at both (the TS and product) geometries, leading to 24 and 14 CSF for the equilibrium
product and TS geometries, respectively. These wavefunctions are used to represent the
determinantal part of the trial functions used in the quantum Monte Carlo computations.

QMC data. The densities relative to HF wave functions, Eq.(2), have been sampled by
Variational Monte Carlo simulations (VMC) and are labeled HF-VMC. The densities relative
to the truncated CASSCF wave functions which have been sampled by Variational Monte
Carlo simulations (VMC) and are labeled MR-VMC. The densities relative to truncated
CASSCF wave functions which have been sampled by multireference fixed-node diffusion
Monte Carlo simulations are labeled MR-FNDMC.

The trial wave functions have also been improved by introducing an explicitly correlated
Jastrow factor as described above, Eq.(4). The density corresponding to these wavefunctions
have been sampled by VMC, labeled Jast-VMC.

For each geometry considered, a typical simulation includes a set of 800 independent
walkers and a number of Monte Carlo steps per walker of about 100000.

EPLF data. The continuous 3D-space is represented using a 80 x 80 x 80 three-dimensional
grid. The EPLF is calculated as follows: for each Monte Carlo configuration generated the
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positions of the electrons are scanned. The elementary volume of the 3D-grid occupied by
each electron is determined and the minimum distances appearing in the definition of EPLF
are calculated. The noise in the localization function due to the statistical character of QMC
simulations has been reduced by using a median blur filter as detailed in Ref.[31]. This filter
is particular well adapted here since it is known to modify very little the regions where the
gradient is large. This latter point is particularly important here since we are interested in
altering as little as possible the contours of the pair localization function.

V. RESULTS: THE EPLF

As we shall see below, the topology of the EPLF for the various systems and geome-
tries presented here are found to be sensitive to non-dynamical correlation (introduced via
CASSCF expansions) but much less to dynamical correlation (via explicitly correlated Jas-
trow factors and/or DMC simulations). Accordingly, to keep the number of figures shown
reasonable, only the EPLF figures obtained from calculations done at the Hartree-Fock and
truncated CASSCF(16,12) levels are presented.

A. The O4 equilibrium geometry

In Figs. 1 and 2 we present the 3D-plots for the EPLF at a given isosurface value ob-
tained with the Hartree-Fock (EPLF=0.10) and the truncated CASSCF(16,12) wave func-
tions (EPLF=0.11), respectively. The EPLF topology in both cases is very similar and lead
to a clear chemical picture. As seen from these figures, the EPLF reveals the atomic shell
structure: one small spherical domain around each oxygen nucleus corresponding to the 1s
electron pairs and two separate domains on each oxygen corresponding to the lone pairs.
Regarding the bonding pattern, four disk-shaped domains corresponding to four equivalent
o bonds are observed, these domains being exactly located at the midpoints of the four in-
ternuclear oxygen-oxygen axes. Also clearly visible is the local tetrahedral structure around
each oxygen atom between its two lone pairs and the two covalent bonds formed with the two
closest neighbors (sp® hybridization). Note that the optimized interoxygen distances in this
molecule are very close to other oxygen-oxygen distances corresponding to single bonds[20].

B. The ground state triplet oxygen molecule

For the triplet oxygen molecule the ROHF and the CASSCF valence wavefunctions are
almost identical and can be well described (in second-quantized notation) as a single |222-++)
determinant, where the last two are degenerate m molecular orbitals. One can relate the
electronic structure of the O, triplet ground state with that of the singlet ground state of
N5 by noting that the orbital occupation ordering of the former can be obtained by putting



13

the couple of extra electrons in triplet coupling (i.e. unpaired spins), one in each of the
degenerate m orbitals, which are virtual orbitals in the latter case. Therefore, using the
same second-quantized notation for the HF or CASSCF valence wavefunction of the singlet
ground state of Ny can be written as as a single |222) determinant. Given that for large
values the EPLF shows electron pairings and that, for low values, the EPLF shows regions
where spin-unpaired electrons are found, it is natural to ask if the EPLF of the Oy molecule
in its triplet ground state resembles that of N;. To test this idea we have calculated the
EPLF for the ground states of Oy and N, using their HF /6-311G* wavefunctions. To show
regions where electrons are paired we plot the surfaces where the EPLF has values larger
than 4+0.1 ( vrfier Anthony) [44], in Figure 3 for Ny and in Figure 4 for Os. According
to the above mentioned wavefunction composition, there are two maxima for the regions of
the doubly occupied p orbital and an infinite number of minima on a torus, see Figure 4.
Note that the central ”pancake-like” domain found at the midpoint along the internuclear
axis corresponds to a an axial ¢ bond superimposed on the two orthogonal 7 bonds which
lead to maxima on a torus surrounding the axial bond. The outer lone pair domains appear
in axial configuration for both molecules. Clearly, the EPLF isosurfaces for large values
are qualitatively identical in both molecules. Conversely, to show regions where electrons
are unpaired we show the volumes where the absolute value of the EPLF is larger than
0.03 ( vrfier Anthony) in Figure 5 for N, and in Figure 6 for Oy. In this case the volume
contained by the toroidal isosurface for Ny has no electrons and it contains roughly 2 same-
spin electrons in the Oy case. With the understanding of the topology of the EPLF for
the separate O, fragments, we can now proceed to the analysis of the bond-breaking and
bond-making process along the reaction coordinate.

C. The Transition State system

The analysis of the EPLF at the transition state (TS) turns out to be a much more
challenging task. The EPLF at the TS is given in Figure 7?7 at the HF level and in Figure
7?7 at the CASSCF level using a truncation threshold of ¢; > 0.05. One could naively think
that the identification of the bond-forming and bond-breaking processes of this reaction
is a straightforward matter which could be simply done by analyzing the evolution of the
wavefunction along the reaction coordinate. For the HF case it could theoretically be done
in terms of the HF canonical orbitals, while for the truncated CASSCF case this could be
achieved in terms of the natural orbitals and the configuration state functions (CSF). How-
ever, the presence of a large number of configurations, both at the O4 equilibrium geometry
and at the transition state, casts serious doubts on the validity of the HF description of this
complex reaction. In practice, the identification of the bond-forming and bond-breaking
processes is quite a tough and tedious task. In particular, an important necessary step is to
localize the molecular orbitals, a task for which there does not exist a general criterium-free
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scheme and for which some fragment reference is needed. Given the equivalence of the four
oxygen atoms along the reaction coordinate close to the TS, there is a practical problem to
define coherently the reference fragments on both the negative (towards O,) and the pos-
itive (towards two Oy molecules) reaction coordinate. We highlight that for the truncated
CASSCEF the situation is even more difficult than in the HF case, because of the strongly
multiconfigurational character of the wavefunction; this point is clearly illustrated in table
IT where the coefficients of the CSF whose magnitude is greater than 0.05 are presented.

D. Bond-forming/Bond-breaking

To understand bond-forming and bond-breaking processes from the TS towards the iso-
lated oxygen molecules, we have performed CASSCF calculations at several (equally spaced)
geometries following the positive reaction coordinate as given in figure 4a of [18] up to 6
units; see that reference for a precise definition of this reaction distance. In Figure 77 the
EPLF isosurfaces are plotted for every geometry used along the dissociation path for a value
of 0.10. This series of snapshots show the strikingly complex synchronous intermolecular
bond-breaking and intramolecular bond-making processes that lead to bimolecular disso-
ciation. Although difficult to perceive with a single planar perspective, we note that the
topology of the EPLF at the TS geometry is perfectly symmetrical as seen from any of the
four equivalent oxygen-oxygen midpoints; thus, to facilitate the analysis, in this figure we
have highlighted in red the O-O internuclear axes of the final Oy fragments. In particular,
we note three sequential outstanding facts: a) the narrow bridges connecting the (different
fragments) lone pair domains in the TS are the first to be broken (the upper three snap-
shots); b) then the domains that connect the two dissociating O, moieties are broken one
after the other (rightmost upper to middle central snapshots); c) finally, the couple of sep-
arate lone pair domains around each oxygen atom get thinner and fuse to form the single
axial domain (two at both ends of each Oy molecule) of the dissociated fragments. Thus
the EPLF analysis has allowed us to find the sequence of topological transformations of the
electron pairings are at the root of an overall decrease of more than 90kcal/mol from the TS
singlet configuration to the separate couple of Oy triplet fragments [18].

Although not shown here, we have obtained the EPLF surfaces following the same positive
reaction coordinate using as wavefunction a single HF determinant. An important and
somewhat unexpected result is that the qualitative bond-forming and bond-breaking picture
is the same as that obtained using the CASSCF wavefunction. Thus for this interpretation,
unlike what was found for the energy barrier, the zeroth-order description provided by the
HF approximation seems to be enough.

Clearly, this interpretation could not have been extracted just by looking at the CSF
composition of the truncated CASSCF wavefunction of the transition state as given in table
IT and its evolution along the reaction coordinate. Finally, we stress that the introduction
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of the explicit interelectronic Jastrow prefactor has been found here of little importance to
address the evolution of electron pairing along the reaction coordinate. This is actually not
surprising since the very strong multiconfigurational nature of the wavefunction is clearly
the dominant feature. To introduce or not the Jastrow term can a priori be expected to
be less important than the use of a zeroth-order MCSCF description. At this point it is
interesting to note that the total energy calculated with the Jastrow term is slightly lower
than the truncated CASSCF(16,12) one. The short-range Jastrow factor allows the electrons
to better avoid each other locally, thus significantly diminishing the single-reference energy;
however, the truncated CASSCF(16,12) description, which is diabatically correlated with
the bimolecular dissociation fragments (ground state molecular oxygen), is more physical as
shown by recent extensive MR-FNDMC calculations|21].

VI. SUMMARY

In this paper we have used the electron pair localization function (EPLF) to study the
electronic pairing distribution at two particularly important critical points of the potential
energy surface of the Oy = 205 reaction. At the equilibrium geometry of O4 the EPLF
reveals four equivalent covalent bonds and a couple of lone pairs surrounding each oxygen
atom. This is true for all levels of theory. At the transition state geometry the EPLF
allowed us to obtain a detailed understanding of the electronic structure at different levels
of theory; in particular at the truncated CASSCF level, which provides the correct zeroth-
order electronic description, the EPLF revealed the superposition of triplet oxygen atom
on top of the EPLF of the isolated O3 entity. This picture is consistent with two unpaired
electrons (a,a or (3,3) on the oxygen atom and two unpaired electrons (3,5 or a,«) on the
O3 fragment.

JFrom a more general perspective, we would like to emphasize the usefulness of EPLF
which is both simple and easily computable using quantum Monte Carlo. A major advantage
of QMC is the possibility of evaluating the EPLF at various levels of accuracy (Hartree-
Fock, MCSCF, VB, DFT, Variational Monte Carlo with explicitly correlated trial wave
functions, fixed-node DMC, etc...). Such a possibility is particularly interesting to get new
insights into the nature of the pairing and localization of electrons at these various levels of
description and, particularly, to understand more deeply the role of the dynamical (Coulomb
hole) and the non-dynamical (near-degeneracy) correlation effects.
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Configuration

Coefficient ¢;

| ar:
| as:
| ai:
| as:
| ar:
| ar:
| ai:
| ai:
| ai:
| ar:
| ar:
| ai:
| ai:
| ar:
| ar:
| a:
| a:
| ar:

]alz

2220 as:
2220 as:
2220 as:
2220 as:
2220 as:
2220 as:
2220 as:
2220 as:
2220 as:
2220 as:
2220 as:
2220 as:
2220 as:
2022 as:
24-2- a9:
2-24 ao:
2220 as:
2220 as:
2220 asg:

1 220 bo: 20)
: 220 ba: 20)
1 220 bo: 02)
D2+ bot +-)
D 24- byt )
0 2-- byt +4)
D24+ by - -)
© 220 by: +-)
© 220 by —+)
: 220 by: ++)

24+ by: 220 by - -)

220 bq:
222 by:
220 by:

220 by:
220 bq:
2-+ by:
24- by:

220 by:

222 by: 00)
220 by: 00)
220 by: 20)
2-+ by: 20
2+- bo: 20
2+- bo: 20
2-+ by: 20
200 by: 22)

20)
20)
20)
20)

0.9081534
-0.0749640
-0.0661446
-0.0600672
-0.0600672

0.0598511

0.0598511

0.0580685

0.0580685
-0.0577911
-0.0577911
-0.0574860
-0.0574154
-0.0523990

0.0510929

0.0510929
-0.0509593
-0.0509593
-0.0504427
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TABLE I: CASSCF wavefunction of Oy at equilibrium geometry, ¥ = 3" ¢; | ...). All coefficients ¢;

having a modulus greater than 0.05 are given. Second quantized notation, see text. Molecular or-

bitals grouped according to their symmetry (using the aq, as, b1, and by irreducible representations

of the Cy, symmetry group).

TABLES
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Configuration Coefficient ¢;
| 222220 222000) 0.8670236
| 222200 222200)  -0.3348786
| 222020 222020) -0.1620731
| 222220 220002) -0.0811422

| 22422- 22-00+)  -0.0779391
| 22-224 22+400-)  -0.0779391
| 220222 222000)  -0.0731238
| 222000 222220)  0.0723549
| 222222 220000)  -0.0710389
| 22422+ 22-00-)  0.0620807
| 22-22- 22400+)  0.0620807
| 220220 222002)  -0.0566175

TABLE II: Singlet CASSCF wavefunction at the transition state geometry, ¥ = > ¢; | ...). All
coefficients ¢; having a modulus greater than 0.05 are given. Second quantized notation in two

irreps, see text. Cy symmetry used.

FIGURE CAPTIONS

e Fig.1 Isosurface 0.10 of the EPLF for O4 at the equilibrium geometry using a HF trial

wave function.

e Fig.2 Isosurface 0.11 of the EPLF for O4 at the equilibrium geometry using a truncated
CASSCF(16,12) trial wave function.

e Fig.3
e Fig.4
e Figh
e Fig.6

e Fig.7 Isosurface 0.09 of the EPLF for the singlet O3 fragment using a HF trial wave-
function.

e Fig.8 Isosurface 0.09 of the EPLF for the singlet O3 fragment using a truncated
CASSCF(16,12) trial wavefunction.

e Fig.9
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