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Reoptimization of maximum weight induced hereditary subgraph problems *

The reoptimization issue studied in this paper can be described as follows: given an instance I of some problem Π, an optimal solution OPT for Π in I and an instance I ′ resulting from a local perturbation of I that consists of insertions or removals of a small number of data, we wish to use OPT in order to solve Π in I ′ , either optimally or by guaranteeing an approximation ratio better than that guaranteed by an ex nihilo computation and with running time better that that needed for such a computation. We use this setting in order to study weighted versions of several representatives of a broad class of problems known in the literature as maximum induced hereditary subgraph problems. The main problems studied are max independent set, max k-colorable subgraph, max P k -free subgraph, max split subgraph and max planar subgraph. We also show, how the techniques presented allow us to handle also bin packing.

Introduction

Hereditary problems in graphs, also known as maximal subgraph problems, include a wide range of classical combinatorial optimization problems, such as max independent set or max Hfree subgraph. Most of these problems are known to be NP-hard, and even inapproximable within any constant approximation ratio unless P = NP [START_REF] Lund | The approximation of maximum subgraph problems[END_REF][START_REF] Zuckerman | Linear degree extractors and the inapproximability of max clique and chromatic number[END_REF]. However, some of them, and in particular max independent set, have been intensively studied in the polynomial approximation framework both in the general case [START_REF] Boppana | Approximating maximum independent sets by excluding subgraphs[END_REF][START_REF] Feige | Approximating maximum clique by removing subgraphs[END_REF], as well as in particulars classes of graphs where some constant approximation ratios can be achieved in polynomial time [START_REF] Berman | A d/2 approximation for maximum weight independent set in d-claw free graphs[END_REF][START_REF] Berman | On approximation properties of the independent set problem for degree 3 graphs[END_REF][START_REF] Demange | Improved approximations for maximum independent set via approximation chains[END_REF][START_REF] Halldórsson | Approximations of weighted independent set and hereditary subset problems[END_REF][START_REF] Halldórsson | Greed is good: Approximating independent sets in sparse and bounded-degree graphs[END_REF][START_REF] Matsui | Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs[END_REF].

Also, some of these problems have been studied in dynamic settings, where instances are allowed to evolve over time, and solutions must be provided after each instance modification. In particular, a whole class of hereditary problems has been studied in the online setting [START_REF] Demange | On-line maximum-order induced hereditary subgraph problems[END_REF], and max independent set has been analyzed in both the online [START_REF] Escoffier | On-line models and algorithms for max independent set[END_REF][START_REF] Halldórsson | Online independent sets[END_REF], and a priori optimization frameworks [START_REF] Murat | A priori optimization for the probabilistic maximum independent set problem[END_REF].

In what follows, we present simple approximation algorithms and inapproximability bounds for various hereditary problems in the reoptimization setting, which can be described as follows: considering an instance I of a given problem Π with a known optimum OPT, and an instance I ′ which results from a local perturbation of I, can the information provided by OPT be used to solve I ′ in a more efficient way (i.e., with a lower complexity and/or with a better approximation ratio) than if this information wasn't available?

The reoptimization setting was introduced in [START_REF] Archetti | Reoptimizing the traveling salesman problem[END_REF] for metric tsp. Since then, many other optimization problems were discussed in this setting, including Steiner tree [START_REF] Bilò | Reoptimization of steiner trees[END_REF][START_REF] Böckenhauer | Reoptimization of steiner trees: Changing the terminal set[END_REF][START_REF] Böckenhauer | On the hardness of reoptimization[END_REF][START_REF] Escoffier | Simple and fast reoptimizations for the steiner tree problem[END_REF], minimum spanning tree [START_REF] Boria | Fast reoptimization for the minimum spanning tree problem[END_REF], as well as various versions of tsp [START_REF] Ausiello | Reoptimization of minimum and maximum traveling salesman's tours[END_REF][START_REF] Böckenhauer | On the approximability of tsp on local modifications of optimally solved instances[END_REF][START_REF] Böckenhauer | Reoptimization of the metric deadline tsp[END_REF]. In all cases, the goal is to propose reoptimization algorithm that outperform their deterministic counterparts in terms of complexity and/or approximation ratio. In [START_REF] Bilò | Reoptimization of weighted graph and covering problems[END_REF], the max independent set problem, as well as min vertex cover and min set cover problems, are discussed in a similar setting up to the fact that perturbations there concerned the edge-set of the initial graph. The authors of [START_REF] Bilò | Reoptimization of weighted graph and covering problems[END_REF] manage to provide optimal approximation results under the basic assumption that the initial solution is not necessarily optimal but ρ-approximate.

When one deals with hereditary problems, and I ′ results from a perturbation of the vertex set (insertion or deletion), solutions of I remain feasible in I ′ . This property is very interesting when reoptimizing hereditary problems, and makes most of them APX in the reoptimization setting. For exemple, a very simple algorithm provides a (1/2)-approximation for a whole class of hereditary problems when a single vertex is inserted [START_REF] Ausiello | Complexity and approximation in reoptimization[END_REF]. In what follows, we improve on this result by presenting algorithms designed for four specific hereditary problems, and also provide inapproximability bounds. We also discuss the reoptimization setting where vertices are deleted, which, as we will see, is much harder to approximate.

The paper is organized as follows: general properties regarding hereditary problems are presented in Section 2, while Sections 3 and 4 present approximation and inapproximability results regarding respectively vertex insertion and deletion. Finally, in Section 5 the bin packing problem is studied.

Preliminaries

Before presenting properties and results regarding reoptimization problems, we will first give formal definitions of what are reoptimization problems, reoptimization instances, and approximate reoptimization algorithms: Definition 1 . An optimization problem Π is given by a quadruple (I Π , Sol Π , m Π , goal(Π)) where:

• I Π is the set of instances of Π;

• given I ∈ I Π , Sol Π (I) is the set of feasible solutions of I;

• given I ∈ I Π , and S ∈ Sol Π (I), m Π (I, S) denotes the value of the solution S of the instance I, m Π is called the objective function;

• goal(Π) ∈ {min, max}.

A reoptimization problem RΠ is given by a pair (Π, R RΠ ) where:

• Π is an optimization problem as defined in Definition 1;

• R RΠ is a rule of modification on instances of Π, such as addition, deletion or alteration of a given amount of data; given I ∈ I Π and R RΠ , modif RΠ (I, R RΠ ) denotes the set of instances resulting from applying modification R RΠ to I; notice that modif RΠ (I, R RΠ ) ⊂ I Π .

For a given reoptimization problem RΠ(Π, R RΠ ), a reoptimization instance I RΠ of RΠ is given by a triplet (I, S, I ′ ), where:

• I denotes an instance of Π, referred to as the initial instance;

• S denotes a feasible solution for Π on the initial instance I;

• I ′ denotes an instance of Π in modif RΠ (I, R RΠ ); I ′ is referred to as the perturbed instance.

For a given instance I RΠ (I, S, I ′ ) of RΠ, the set of feasible solutions is Sol Π (I ′ ).

Definition 2. For a given optimization problem RΠ(Π, R RΠ ), a reoptimization algorithm A is said to be a ρ-approximation reoptimization algorithm for RΠ if and only if:

• A returns a feasible solution on all instances I RΠ (I, S, I ′ );

• A returns a ρ-approximate solution on all reoptimization instances I RΠ (I, S, I ′ ) where S is an optimal solution for I.

Note that Definition 2 is the most classical definition found in the literature, as well as the one used in this paper. However, an alternate (and more restrictive) definition exists (used for example in [START_REF] Bilò | Reoptimization of steiner trees[END_REF][START_REF] Böckenhauer | Reoptimization of steiner trees: Changing the terminal set[END_REF][START_REF] Böckenhauer | On the hardness of reoptimization[END_REF]), where a ρ 1 -approximation reoptimization algorithm for RΠ is supposed to ensure a ρ 1 ρ 2 approximation on any reoptimization instance I RΠ (I, S, I ′ ) where S is a ρ 2 approximate solution in the initial instance I.

A property P on a graph is hereditary if the following holds: if the graph satisfies P, then P is also satisfied by all its induced subgraphs. Following this definition, independence, planarity, bipartiteness are three examples of hereditary properties: in a given graph, any subset of an independent set is an independent set itself, and the same holds for planar and bipartite subgraphs. On the opposite hand, connectivity is no hereditary property since there might exist some subsets of G whose removal disconnect the graph. It is also well known that any hereditary property in graphs can be characterized by a set of forbidden subgraphs or minors [START_REF] Robertson | Graph minors. xx. wagner's conjecture[END_REF].

In other words a property P is hereditary if and only if, there is a set of graphs H such that every graph that verifies P does not admit any graph in H as a minor or as an induced subgraph. To revisit the three examples of hereditary properties presented before:

• an independent set is characterized by one forbidden subgraph: a K 2 (a clique on 2 vertices, i.e., an edge).

• a planar graph is characterized by two forbidden minors: K 5 (a clique on 5 vertices), and K 3,3 (a complete bipartite subgraph with both its color-classes of size 3). This result is known as Wagner's Theorem [START_REF] Wagner | On finite affine line transitive planes[END_REF].

• a bipartite graph is characterized by a infinite set of forbidden subgraphs: all odd cycles H = {C 2n+1 , n 1}.

Definition 3. Let G(V, E, w) be a vertex-weighted graph with w(v) 0, for any v ∈ V . The max induced subgraph with property P problem (or, for short, maximum subgraph problem) is the problem consisting, given a graph G(V, E), of finding a subset of vertices S such that G[S] satisfies a given property P and that maximizes w(S) = v∈S w(v). We call hereditary problems all such problems where P is a hereditary property.

For instance, max weighted independent set, max weighted induced bipartite subgraph, max weighted induced planar subgraph are three classical hereditary problems that correspond to the three hereditary properties as defined in Definition 3.

As it is proved in [START_REF] Lund | The approximation of maximum subgraph problems[END_REF] (see Theorem 1 just below) most hereditary problems are highly inapproximable unless P = NP. Theorem 1. ( [START_REF] Lund | The approximation of maximum subgraph problems[END_REF]) There exists an ε ∈ (0, 1) such that the maximum subgraph problem cannot be approximated with ratio n -ε in polynomial time for any nontrivial hereditary property that is false for some clique or independent set, or more generally is false for some complete multipartite graph, unless P = NP.

Throughout the paper, all inapproximability results will be obtained by the same technique, which we sketch out here.

Considering an unweighted graph H(V, E) on which one wants to solve a given hereditary problem Π, known to be inapproximable within any constant ratio, we build a reoptimization instance I p , where p denotes a vector of fixed size (i.e., independent of the size n of G; so, |p| is a fixed constant) that contains integer parameters between 1 and n. This instance is characterized by an initial graph G p (that contains H), with a known solution, and a perturbed instance G ′ p . Then, we prove that, for some specific (yet unknown) value p ′ of the parameter vector p, an optimal solution can be easily determined in the initial graph G p ′ , and a ρ-approximate solution

S p ′ in G ′ p ′ necessarily induces a solution S p ′ [V ]
in H, that is a constant approximation for the initial problem.

Considering that the vector p can take at most n |p| possible values, it is possible in polynomial time to build all instances I p , to run the polynomial ρ-approximation algorithm on all of them, and to return the best set S p * [V ] as solution for Π in H. The whole procedure is polynomial and ensures a constant-approximation for Π, which is impossible unless P = NP, so that a ρ-approximation algorithm cannot exist for the considered reoptimization version of Π, unless P = NP.

In the sequel, G p and G ′ p will denote initial and perturbed instances, while OPT p and OPT ′ p will denote optimal solutions in G p and G ′ p , respectively. For simplicity and when no confusion arises, we will omit subscript p. The function w refers to the weight function, taking a vertex, a vertex set, or a graph as input (the weight of a graph is defined as the sum of weights of its vertices). Finally, note that throughout the whole paper, the term "subgraph" will always implicitly refer to "induced subgraph".

Vertex insertion

Under vertex insertion, the inapproximability bounds of Theorems 1 and are easily broken. In [START_REF] Ausiello | Complexity and approximation in reoptimization[END_REF], a very simple strategy, denoted by R1 in what follows, provides a (1/2)-approximation for any hereditary problem. This strategy consists of outputting the best solution among the newly inserted vertex and the initial optimum. Moreover, this strategy can also be applied when a constant number h of vertices is inserted: it suffices to output the best solution between an optimum in the h newly inserted vertices (that can be found in O(2 h ) through exhaustive search) and the initial optimum. The 1/2 approximation ratio is also ensured in this case [START_REF] Ausiello | Complexity and approximation in reoptimization[END_REF].

Note that an algorithm similar to R1 was proposed for knapsack in [START_REF] Archetti | Reoptimizing the 0-1 knapsack problem[END_REF]. Indeed, this problem, although not being a graph problem, it is hereditary in the sense defined above, so that returning the best solution between a newly inserted item and the initial optimum ensures a (1/2)-approximation ratio. The authors also show that any reoptimization algorithm that does not consider objects discarded by the initial optimal solution cannot have ratio better than 1/2.

In the following, we start by proving that this approximation ratio is the best constant approximation ratio one can achieve for the max independent set problem (Section 3.1), unless P = NP. Then, we present other simple polynomial constant-approximation strategies, as well as inapproximability bounds for various hereditary problems: max k-colorable subgraph (Section 3.2), max P k -free subgraph (Section 3.3), max split subgraph (Section 3.4), and max planar subgraph (Section 3.5).

max independent set

Since max independent set is a hereditary problem, strategy R1 provides a simple and fast (1/2)-approximation in the reoptimization setting under insertion of one vertex. We will now prove that this ratio is the best one can hope, unless P = NP. Proposition 1. In the reoptimization setting, under one vertex insertion, max independent set is inapproximable within ratio 1/2 + ε in polynomial time, unless P = NP.

Proof. By contradiction, assume that there exists a reoptimization approximation algorithm A for max independent set, which, in polynomial time, computes a solution with approximation ratio bounded by 1/2 + ε. Now, consider a graph H(V, E). All n vertices in V have weight 1, and no assumption is made on V . Note that in such a graph (which is actually unweighted), max independent set is inapproximable within any constant ratio, unless P = NP.

We will now make use of A to build an ε-approximation for max independent set in H, and thus prove that such an algorithm cannot exist. Denote by α the independence number associated with H, that is, the -unknown -cardinality of an optimal independent set in H, and consider the following instance I α of max independent set in the reoptimization setting (here the vector p is an 1-vector, so it is an integer between 1 and n):

• The initial graph denoted G α (V α , E α ) is obtained by adding a single vertex x to V , with weight α, and connecting this new vertex to every vertex in V . Thus, V α = V ∪ {x}, and

E α = E ∪ v i ∈V (x, v i ).
In this graph, a trivial optimum independent set is {x}. This trivial solution will be the initial optimum used in the reoptimization instance.

• The perturbed graph

G ′ α (V ′ α , E ′ α )
is obtained by adding a single vertex y to G α , also with weight α, and connecting this new vertex to vertex x only.

Denote by OPT ′ an optimal independent set in G ′ α . Notice that y (whose weight is α) can be added to an optimal independent set in H (whose weight is also α) to produce a feasible solution in G ′ α , so that: w(OPT ′ ) 2α. Now, suppose that one runs the approximation algorithm A on the so-obtained reoptimization instance I α . By hypothesis on A, it holds that w(S α ) (1/2 + ε)w(OPT ′ ) (1 + ε)α.

Considering the lower bound on its weight, we can assert that the solution returned by A, does not contain x (the only independent set containing x is x itself, and thus it cannot have weight more than α). Moreover, it must contain y, otherwise it would be restricted to an independent set in G, so it couldn't have weight more than α. So, it holds that w(S α [V ]) = w(S α )w(y) (1 + ε)αα = εα, where w(S α [V ]) denotes the restriction of S α to the initial graph H. Now, consider the following approximation algorithm A1 for max independent set: build n reoptimization instances I i in the same way as I α (only the weights of vertices x and y will be different from one instance to the other), for i = 1, . . . , n, and run the reoptimization A on each of them. Denoting by S i the solution returned by A on instance I i , and S i [V ] its restriction to the initial graph H, output the set S max [V ] with maximal weight among S i [V ]'s.

Obviously, considering that 1 α n, it holds that S max [V ] S α [V ] εα. Thus, the algorithm A1, using n times the algorithm A as subroutine, produces in polynomial time an ε-approximation for Unweighted max independent set, which is impossible unless P = NP. Note that the results also hold when a constant number h of vertices are inserted. Indeed, it is easy to see that all the arguments of the proof remain valid when the set of inserted vertices is {y 1 , . . . , y h } each with weight α/h and connected only to vertex x. Proposition 2. Under insertion of one vertex and unless P = NP, max independent set is not approximable within ratio (1/2 + (1/(n -1) ǫ ), for any ǫ > 0, where n is the order of the perturbed graph.

Let us note that inapproximability bounds stated in Propositions 4, 6, 9, 11 and 14, that are of the form ρ+ε, ε ∈ (0, 1), can be strengthened to ρ+n -ε . Indeed, the proofs of these propositions are based upon the argument that the existence of a (ρ + ε)-approximation algorithm for a given reoptimization problem RΠ induce the existence of a O(ε)-approximation algorithm for the "static" support Π of RΠ. However, the "static" problems dealt in these propositions are not only inapproximable within O(ε), unless P = NP, but within O(n -ε ). Hence, revisiting their proofs, one can replace ε by n -ε getting so inapproximability bounds ρ + n -ε instead.

max k-colorable subgraph

Given a graph G(V, E, w) and a constant k n, the max k-colorable subgraph problem consists of determining the maximum-weight subset

V ′ ⊆ V that induces a subgraph of G that is k-colorable.
The result of Section 3.1 can be generalized to the max k-colorable subgraph problem as shows the following proposition. Proposition 3. In the reoptimization setting, under insertion of one vertex, max k-colorable subgraph is inapproximable within ratio k k+1 + ε in polynomial time, unless P = NP. Proof. As before, we will start by considering a reoptimization approximation algorithm A for max k-colorable subgraph, which, in polynomial time, computes a solution with approximation ratio bounded by k k+1 + ε. Once more, we consider a graph H(V, E), where all vertices have weight 1. Denoting by OPT an optimal k-colorable subgraph in H, and taking into account that a k-colorable subgraph can be divided in k independent sets, it holds that w(OPT) kα.

We now build a reoptimization instance I α of max k-colorable subgraph as follows:

• The initial graph G α is obtained by adding to H a clique X of k vertices X = (x 1 , . . . , x k ), each with weight α, and connecting all these vertices to all vertices of the initial graph H. In this graph, an optimal k-colorable subgraph is given by the k-clique X, and this solution will be the initial optimum used in the reoptimization instance.

• The perturbed graph G ′ α is obtained by adding a single vertex y to G α , also with weight α, and connecting this new vertex to all vertices in X.

Denote by OPT ′ an optimal k-colorable subgraph in G ′ α . Notice that y, and k -1 vertices of X (with weight, in all kα) can be added to an optimal independent set in H (with weight α) to produce a feasible solution in G ′ α , so that: w(OPT ′ ) (k + 1)α. Let S α be the solution returned by A on the reoptimization instance I α we just described. It holds that:

w(S α ) k k + 1 + ε w(OPT ′ ) (1 + ε)kα (1) 
As before, noticing that this weight is strictly superior to the weight of the initial optimum, we can assert that the new vertex y belongs to the solution S α . Now, denote by j the number of vertices of X that belong in S α , 0 j k -1. The restriction of S α to H, that is S α [V ] forms a (kj)-colorable subgraph, and its weight verifies:

w(S α [V ]) = w(S α ) -w(S α ∩ X) -w(y) = w(S α ) -(j + 1)α
Combination of the expression above with (1), leads to w(S α [V ]) (kj -1 + kε)α.

Now, recall that an optimal solution for max k-colorable subgraph cannot have more than kα vertices. Then, approximation ratio between the set w(S α [V ]) (which is a feasible solution for the max k-colorable subgraph problem in G) and the unknown optimum OPT on the graph H(V, E) is bounded as follows:

w(S α [V ]) w(OPT) (k -j -1 + kε)α kα (2) 
Finally, taking into account that j k -1, (2) can be simplified, and leads to w(Sα[V ])

w(OPT)
ε. As before, a polynomial approximation algorithm ensuring an approximation ratio bounded by ε for max k-colorable subgraph consists of building n reoptimization instances I i (1 i n), running the algorithm A on each of them, and outputting the biggest set S max [V ]).

However, max k-colorable subgraph has been proved to be inapproximable within any ratio n -ε for some ε ∈ (0, 1) [START_REF] Lund | The approximation of maximum subgraph problems[END_REF][START_REF] Panconesi | Quantifiers and approximation[END_REF], which forbids the existence of any constant-approximation algorithm for this problem, unless P = NP.

Once more, the result can be generalized to the case where h vertices are inserted. However, the inapproximability bound gets lower for bigger values of h. To be even more precise, it holds that: Proposition 4. In the reoptimization setting, under the insertion of h vertices, max k-colorable subgraph is inapproximable within ratio max k k+h , 1 2 + ε in polynomial time, unless P = NP.

Proof. Consider a graph H, instance of max independent set, and denote by α the independence number associated with this instance. We build in polynomial time a graph H k , instance of max k-colorable subgraph, by duplicating k times the instance of max independent set, and connecting all pairs of vertices from different copies. The graph associated with this instance is denoted H k (V, E). In H k , an optimal k-colorable subgraph has weight exactly kα. Indeed, given the structure of instance H k , it holds that its independence number is the same as H (namely α), so that no k-colorable subgraph can weight more than kα. On the other hand, taking an optimal independent set in each copy produces a k-colorable subgraph with weight exactly kα. We build a reoptimization instance I α,k,h of max k-colorable subgraph as follows:

• The initial graph G α,k,h is obtained by adding to the graph H k a clique X of k vertices X = (x 1 , . . . , x k ), each with weight α, and connecting all these vertices to all vertices of V . In this graph, an optimal k-colorable subgraph is given by the k-clique X, and this solution will be the initial optimum used in the reoptimization instance.

• The perturbed graph G ′ α,k,h is obtained by adding a clique Y of h vertices y 1 , . . . , y h to G α,k,h , also with weight α, and connecting all these vertices to all vertices in X.

Denote by OPT ′ an optimal k-colorable subgraph in G ′ α,k,h . An optimal k-colorable subgraph in Y has weight at most min{h, k}α, and, considering that Y is disconnected from V , the union of a k-colorable subgraph in Y and one in V is also k-colorable. Recall that an optimal k-colorable subgraph in V has weight kα, then it holds that w(OPT ′ ) (k + min{h, k})α.

Denote by A a max k k+h , 1 2 + ε approximation algorithm for the reoptimization of max k-colorable subgraph under the insertion of h vertices. Let S α,k,h be the solution returned by A on the reoptimization instance I α,k,h we just described. It holds that:

w(S α,k,h ) k k + min{h, k} + ε OPT ′ (1 + ε)kα
However, considering that X ∪ Y is a clique on k + h vertices, each with weight α , then the restriction of S α,k,h to X ∪ Y cannot have weight more than kα. Hence,

w(S α,k,h [V ]) = w(S α,k,h ) -w(S α,k,h [X ∪ Y ] εkα. Now, notice that S α,k,h [V ]
is a partitioned in at most k independent sets, the biggest of which has weight at least εα, and is constrained to be included in a single copy of the original instance of max independent set. Thus, building n reoptimization instances I i,k,h (1 i n), and applying algorithm A on each of them, one can find in polynomial time an independent set of size at least εα in the original instance of max independent set, which is impossible unless

P = NP.
This inapproximability bound is tight for the max independent set problem (which can also be defined as the Max 1-colorable subgraph), where an easy reoptimization algorithm produces solutions with approximation ratio bounded by 1/2. We now show that this tightness holds also for max k-colorable subgraph for any k 1.

Proposition 5. Under the insertion of h vertices

, max k-colorable subgraph problem is max k k+h , 1 2 -approximable.
Proof. Consider a reoptimization instance I of the max k-colorable subgraph problem. The initial graph is denoted by G(V, E), and the perturbed one by G ′ (V ′ , E ′ ) where V ′ = V ∪{Y }, Y = y 1 , . . . , y h . Let OPT and OPT ′ denote optimal k-colorable graphs on G, and G ′ respectively. The initial optimum OPT is given by a set of k independent sets: (S 1 , . . . , S k ), and w.l.o.g., suppose w(S 1 ) w(S 2 ) . . . , w(S k ). Now, consider the following algorithm:

• if h k, then apply the algorithm R1, described in [START_REF] Ausiello | Complexity and approximation in reoptimization[END_REF] (ensuring a 1/2-approximate solution for any hereditary problem);

• else (h < k), let SOL 1 = k-h
i=1 S i ∪ {Y }, and SOL 2 = OPT;

• return the best solution SOL between SOL 1 and SOL 2 .

First, considering that the restriction of OPT ′ to V cannot define a better solution than OPT, it holds that:

w(SOL 2 ) = w(OPT) w(OPT ′ ) -w(Y ) (3) 
Note that SOL 1 is a feasible solution. Indeed, k-h i=1 S i induces a (kh)-colorable subgraph, thus, adding h vertices to it (here, the set Y ) induces a k-colorable subgraph.

Moreover,

w k-h i=1 S i k-h k w(OPT) k-h k (w(OPT ′ ) -w(Y ))
, which leads to:

w(SOL 1 ) k -h k w(OPT ′ ) -w(Y ) + w(Y ) k -h k w(OPT ′ ) + h k w(Y ) (4) 
Finally, summing (3) and ( 4) with coefficients 1 and k/h, one gets:

w(SOL 2 ) + k h w(SOL 1 ) k h w(OPT ′ )
and taking into account that k+h h w(SOL) w(SOL 2 ) + k h w(SOL 1 ), it holds that w(SOL) k k+h w(OPT ′ ), and the proof is completed.

max P k -free subgraph

A graph is said to be P k -free if it does not contain a path on k edges. Here, P k -free means that the graph does not admit a P k as minor (and not as induced subgraph). For example, a C k+1 admits a P k as minor, so, although it does not admit a P k as induced subgraph, we consider that a C k+1 is not P k -free. Hence, the max P k -free subgraph problem discussed in this subsection refers to max partial P k -free subgraph (with P k as forbidden minor), and not to max induced P k -free subgraph (with P k as forbidden induced subgraph). Formally, the max P k -free subgraph problem handled in this section consists, given a graph G(V, E, w) and a constant k n, of finding a maximum-total weight set of vertices that induces a subgraph of G that is P k -free. Before proceeding to the approximability analysis of max P k -free subgraph, we need to prove the following lemma.

Lemma 1. A P k -free graph can be colored with k colors in polynomial time.

Proof. Let G be a P k -free graph, and consider the following algorithm (if G is not connected, run the procedure on each of its connected components):

• Starting from an arbitrary vertex of the graph, label all vertices from v 1 to v n following their order of appearance in a DFS on G.

• Starting from v 1 , which receices color S 1 , assign to each vertex the color labelled with their depth in the tree T induced by the DFS (vertices of depth 2 will be assigned to color S 2 , etc).

(a) A P7-free graph An example is provided in Figure 1 on a P 7 -free graph. We show that following this procedure always produces a feasible k-coloring.

Consider the rooted tree T induced by the DFS on G (T ⊆ G). Of course, in T , some edges are missing with respect to G. However, this tree shows some interesting properties. First, notice that T has a depth bounded by k (otherwise, a path on k +1 vertices would exist in T and thus in G). Moreover, no pair of vertices on the same level in T can be neighbors in G. Indeed, consider two vertices labelled v i and v j in T (w.l.o.g. i < j), that are neighbors in G. It is easy to see that the subtree rooted at v i contains all vertices that are reachable from v i in the subgraph induced by vertices v i+1 , . . . , v n . Thus, if i and j are neighbors in G, then j is bound to be part of this subtree, and to be labelled with color at least S i+1 . Thus, the subset of vertices of a given depth i in T is always an independent set in G, and assigning a distinct color to each of these sets results in a feasible k-coloring.

Note that such a coloring is the best one can get in the general case, since the worst case is a K k (a clique of k vertices), which is a P k -free graph, and whose chromatic number is k. Proposition 6. Under one vertex insertion, max P k -free subgraph is inapproximable within ratio 2k 3k+1 + ε in polynomial time if k is odd, and inapproximable within ratio 2k 3k+2 + ε if k is even, unless P = NP.

Proof. Consider a graph H that has independence number α, on which one wishes to solve (or approximate) max independent set problem. Transform this graph H into a graph H k (V, E) in the following way:

• each vertex v i of H is turned into a clique V i of k vertices in H k • if (v i , v j ) belongs to H,
then all edges between vertices of cliques V i and V j are in E.

Considering that the biggest independent set in H has size α, then the same holds in H k : an independent set in G can only take one vertex in each clique V i , and it cannot take two vertices from cliques that corresponds to neighbors in H.

Following Proposition 1, it holds that any P k -free subgraph in H k can be partitioned in k independent sets, so that, denoting by OPT an optimal P k -free subgraph in H k , |OPT| kα.

Moreover, denoting by IS an optimal independent set in H (that has exactly α vertices), then, in H k , the union of all cliques corresponding to vertices of IS defines a P k -free subgraph with value exactly kα, so that |OPT| = kα.

Remark 1. Following the same arguments, it holds that for any i k a P i -free subgraph in H k cannot weight more than iα (and an optimal one has weight exactly iα).

First, suppose that k is odd. We build a weighted reoptimization instance I α,k of max P k -free subgraph as follows:

• The initial graph G α,k is obtained by adding to the graph H k a set of vertices X which consists of two cliques X 1 , and X 2 to G. Both these cliques have k vertices, each with weight kα. X 1 , is divided into two subcliques X 1C and X 1N C . X 1C has (k + 1)/2 vertices that are all connected to all vertices in V , while the other(k -1)/2 vertices of X 1N C are not connected to any vertex in V . X 2 is divided in the same fashion. Finally, each vertex in V receives weight k + 1, hence, for any 1 i k an optimal P i -free subgraph inside V has weight exactly i(k + 1)α.

• The perturbed graph G ′ α,k is obtained by adding a single vertex y to G α , with weight k(k + 1)α, that is connected to all vertices of X. In the initial graph, it holds that any P k -free subgraph S has weight no more than 2k 2 α. We distinguish the following two cases.

Case 1: S ∩ V = ∅. In this case, S ⊆ X so that w(S) w(X) = 2k 2 α Case 2: S ∩ V = ∅. Denote by i the length of the longest path in S ∩ V (in terms of vertices). Then S ∩ V defines a P i -free subgraph in G, which following Remark 1 has weight at most i(k + 1)α. Denote by i 1 and i 2 the number of vertices taken by S in X 1C and

X 2C X 1C X 1N C X 2C X 2N C k-1 2 k+1 2 k-1 2 k+1 2 y H k Figure 2: Reoptimization instance I α,k
respectively. Then it holds that S can take at most kii 1 vertices in X 1N C and kii 2 vertices in X 2N C (taking more vertices induces a P k in S). Thus:

w(S) i(k + 1)α + (i 1 + i 2 )kα + (2k -2i -i 1 -i 2 )kα i(k + 1)α + 2(k -i)kα = 2k 2 -i(k -1) α 2k 2 α that concludes Case 2.
Hence, any solution that has weight 2k 2 α is optimal and we will thus consider X (which is feasible and has weight exactly 2k 2 α) as the initial optimum of the reoptimization instance I α . Now, notice that, denoting by

F * an optimal P k -free subgraph in H k , {y}∪X 1N C ∪X 2N C ∪F * is a feasible solution in G ′ α,k . Indeed, {y} ∪ X 1N C ∪ X 2N C
has exactly k vertices (thus, it defines a P k -free subgraph), and it is disconnected from H k , so that adding an optimal P k -free subgraph in H k to it produces a P k -free subgraph that has two connected components. Thus,

w ({y} ∪ X 1N C ∪ X 2N C ∪ F * ) = k(3k + 1)α, and w(OPT ′ ) k(3k + 1)α.
Consider a ( 2k 3k+1 + ε)-approximation algorithm A for the reoptimization version of max P kfree subgraph, and denote by S α,k a solution returned by A on the reoptimization instance I α,k we just described. Then:

w(S α,k ) 2k 3k + 1 + ε w(OPT ′ ) (1 + ε)2k 2 α (5) 
As before, this solution has to take y since its weight is strictly better than the initial optimum. However, if it takes y, then it cannot take more than k -1 vertices in X 1 ∪ X 2 so that:

w (S α,k [X ∪ {y}]) k(k + 1)α + (k -1)kα = 2k 2 α (6) 
It immediately results from ( 5) and ( 6) that w(S α,k [V ]) 2k 2 εα, where S α,k [V ] denotes the restriction of S α,k to V . This set defines a P k -free subgraph in G, that can be partitioned in k independent sets, the biggest of which has weight at least 2kεα, and thus at least 2 k k+1 εα εα vertices (recall that each vertex in V has weight k + 1).

Considering that H k has n cliques, each corresponding to a vertex of the original graph H, any independent set in H k must have its vertices in different cliques that do not correspond to neighbors in H. Thus, an independent set of size εα in G α,h defines an independent set of the same size in H.

Hence, when confronted to a graph H where one wants to approximate max independent set, one could build all instances I i,k (1 i n), run the algorithm A on each of them, and find an independent set of size at least εα in H k (and thus in H) when running it on the instance I α,k . The whole procedure is polynomial, and provides a constant approximation ratio for max independent set, which is impossible unless P = NP. Thus, the first part of the Proposition 6 is true. Now, suppose that k is even. Let opt = kα, fix an integer t with arbitrarily large value, and consider the following reoptimization instance I opt,k :

• The initial graph G opt,k is obtained by adding t cliques X 1 , . . . , X t to H k . The set X is defined as X = t i=1 X i . All these cliques have k vertices, each with weight opt kt-1 . All the vertices in X are connected to all vertices in V . All vertices in V have weight 1.

• The perturbed graph G ′ opt,k is obtained by adding a single vertex y to G α,k , with weight

(k/2+1)t-1 kt-1
opt, that is connected to all vertices of the t cliques X 1 , . . . , X t .

We prove that a P k free subgraph S in the initial graph G opt,k has weight at most kt kt-1 opt. For this, we still distinguish two cases.

Case 1: S ∩ V = ∅. In this case, w(S) w(X) = kt kt-1 opt. Case 2: S ∩ V = ∅. Denote by i the length of the longest path in S[V ] in terms of vertices (1 i k). Put differently, S[V ] is P i -free but not P i-1 -free. Thus, following Remark 1:

w(S[V ]) i × α = i k opt = i × t k × t opt < i × t k × t -1 opt (7) 
On the other hand, no set S[X j ] can contain more than ki vertices, otherwise, there would exist a path on k + 1 vertices in S[X j ∪ V ]. Moreover, denoting the size of the biggest clique in S[X] by c max , (0 c max k -1), and the size of the second biggest clique in S[X] by c max 2 , one verifies that c max 2 cannot exceed kic max . Indeed, consider the path going through the biggest clique in X then through the i vertices of longest path in S[V ] , and finally through the second biggest clique in X. By hypothesis, this path cannot go through more than k vertices, so that: c max + i + c max 2 k. Thus, regarding the values of c max and c max 2 it holds that:

c max k -i -c max2 (8) 
and taking into account that c max c max 2 , it also holds that:

c max 2 k -i 2 (9) 
Indeed, suppose that c max 2 ⌊ k-i 2 ⌋ + 1, then c max + i + c max 2 k + 1, which is impossible. Notice that S[X] consists of t cliques, one with c max vertices, and t -1 with at most c max 2 vertices, the total number of vertices in S[X] is bounded as follows:

|S[X]| c max + (t -1)c max 2 k -i -c max 2 + (t -1)c max 2 k -i + (t -2) k -i 2 (10) 
where the second line follows from [START_REF] Bilò | Reoptimization of weighted graph and covering problems[END_REF], and the third from [START_REF] Böckenhauer | On the approximability of tsp on local modifications of optimally solved instances[END_REF].

Recall that each vertex in X has weight exactly opt kt-1 , then one can finally bound the weight of S[X]:

w(S[X]) opt kt -1 k -i + (t -2)⌊ k -i 2 ⌋ topt kt -1 ⌊ k -i 2 ⌋ + k -i -2⌊ k-i 2 ⌋ t topt kt + 1 + k -i + k -i -2⌊ k-i 2 ⌋ -t⌈ k-i 2 ⌉ t ( 11 
) (k -i)t kt + 1 opt (12) 
where [START_REF] Böckenhauer | Reoptimization of the metric deadline tsp[END_REF] follows from noticing that for a big enough value of t, the rightmost fraction in ( 11) is negative.

Finally, taking into account that V and X define a partition of the graph G opt,k , and combining ( 7) and ( 12), one proves that for any value of i, w(S) = w(S

[V ]) + w(S[X]) kt kt-1 opt that concludes Case 2.
Hence, any feasible solution that has weight exactly kt kt-1 opt on the initial graph G opt,k is optimal, and we can consider X as the initial optimum. Now, notice that y ∪ F * (where F * denotes an optimal P k -free subgraph in H k ) is a feasible solution in the modified graph G ′ opt,k . Thus, denoting by

OPT ′ an optimal solution in G ′ opt,k , it holds that w(OPT ′ ) w(y ∪ F * ) = ( k 2 +1)t-1 kt-1 opt + opt = 3k+2 2 t-2
kt-1 opt. Now, suppose that there exists an reoptimization algorithm A that ensures an approximation ratio bounded by 2k 3k+2 + ε for the reoptimization version of max P k -free subgraph. Then, denoting by S opt,k a solution returned by this algorithm on the reoptimization instance I opt,k :

w(S opt,k ) 2k 3k + 2 + ε 3k+2 2 t -2 kt -1 opt kt kt -1 opt 1 + ε + ε(t(k + 2)/2 -2) -1 kt (13) 
(1 + ε) kt kt -1 opt (14) 
where [START_REF] Boria | Fast reoptimization for the minimum spanning tree problem[END_REF] follows from noticing that the rightmost fraction in ( 13) is positive for a big enough value of t.

Considering that this solution is strictly better than the initial optimum (which has weight exactly kt kt-1 opt), then it has to take y. For arguments similar to those explained in Case 2 of the present analysis

(with i = 1), S opt,k [X] contains at most k -1 + (t -2)⌊ k-1
2 ⌋ vertices (the result is derived from [START_REF] Böckenhauer | Reoptimization of steiner trees: Changing the terminal set[END_REF]). Recall that k is supposed to be even, and that each vertex in X has weight opt kt+1 , then

w(S opt,k [X]) k -1 + (t -2) k 2 -1 opt kt-1 k 2 -1 t + 1 opt kt-1 , from which one immediately derives w(S opt,k [X ∪ {y}]) = w(S opt,k [X]) + w(y) kt kt-1 opt.
Thus, the weight of the restriction of S opt,k to vertices of V , denoted by S opt,k [V ], is bounded by w(S opt,k [V ]) ε kt kt-1 opt εopt = εkα. Hence, for reasons similar to those explained in the proofs of all inapproximability bounds, the existence of a reoptimization polynomial algorithm for max P k -free subgraph providing ratio 2k 3k+1 + ε (for odd values of k) or 2k 3k+2 + ε (for even values of k) induces the existence of an ε polynomial approximation algorithm for max independent set (in the original graph H), which is impossible unless P = NP. We now prove that this ratio is tight for small values of k, namely when k 6. Consider the following hypothesis: Hypothesis 1 . In polynomial time, a P k -free subgraph S can be partitioned in 3 sets S 1 , S 2 and S 3 , such that both S 1 and S 2 are P ⌈k/2⌉-1 -free, and w(S 3 ) w(S)/k if k is odd and w(S 3 ) 2w(S)/k if k is even.

For values of k where Hypothesis 1 is true, the following proposition holds. Proposition 7. Under Hypothesis 1, max P k -free subgraph problem is approximable within ratio 2k 3k+1 for odd values of k, and 2k 3k+2 for even values of k in the reoptimization setting, under one vertex insertion.

Proof. Consider a reoptimization instance I of max P k -free subgraph, given by two graphs G (initial) and G ′ (perturbed) and an optimal solution OPT on the initial graph G. G and G ′ differ only by vertex y (and its incident edges) which belongs to G ′ but not to G. Classically, denoting by OPT ′ an optimal solution on G ′ , it holds that w(OPT) w(OPT ′ )w(y). Suppose that Hypothesis 1 is verified, and consider the following algorithm:

• partition OPT in 3 sets S 1 , S 2 and S 3 as defined in Hypothesis 1, and without loss of generality, suppose w(S 1 ) w(S 2 ); set SOL 1 = S 1 ∪ {y} and SOL 2 = OPT;

• return the best solution SOL between SOL 1 and SOL 2 .

First, let us prove that this algorithm returns a feasible solution: SOL 2 is trivially feasible in G ′ , and consider a path P in SOL 1 . If this path does not go through y then it cannot go through more than ⌈k/2⌉ -1 vertices (by hypothesis, S 1 is P ⌈k/2⌉-1 -free). If it does go through y, then denote by P 1 the set of vertices visited before y in P and P 2 the set of vertices visited after.

Considering that both P 1 and P 2 are included in S 1 , which is supposed to be P ⌈k/2⌉-1 -free, then

|P 1 |, |P 2 | ⌈k/2⌉ -1, so that |P | = |P 1 | + |P 2 | + 1 k,
and thus SOL 1 is also P k -free. We define r k as an integer that is equal to 1 if k is odd, and to 2 if k is even. Regarding the partitioning induced by Hypothesis 1, it holds that w(S 3 )

r k w(OPT) k
, and thus w(S 1 ) (w(OPT)w(S 3 ))/2 k-r k 2k w(OPT), thus:

w(SOL 2 ) k -r k 2k w(OPT) + w(y) = k -r k 2k w(OPT ′ ) + k + r k 2k w(y) (15) 
On the other hand:

w(SOL 1 ) w(OPT ′ ) -w(y) (16) 
Summing ( 15) and ( 16) with coefficients 1 and k+r k 2k respectively, one finally proves that:

3k + r k 2k w(SOL) w(SOL 2 ) + k + r k 2k w(SOL 1 ) w(OPT ′ )
that concludes the proof. Now let us prove that Hypothesis 1 is true for k 6 (note that it is an open question whether it remains true for bigger values of k, or not). In what follows, we suppose that the P k -free graph S to be partitioned is connected (if it is not so, then proving that the hypothesis is true for each of its connected components amounts to proving it for the whole graph). k = 1, 2. Simply set S 3 = S and S 1 , S 2 = ∅. k = 3. Split the graph in three independent sets S ′ 1 , S ′ 2 ,and S ′ 3 in polynomial time (that is possible according to Lemma 1), and w.l.o.g., suppose w(S ′ 1 ) w(S ′ 2 ) w(S ′ 3 ). Finally, set S 1 = S ′ 1 , S 2 = S ′ 2 , and S 3 = S ′ 3 . k = 4. Split the graph in four independent sets from S ′ 1 to S ′ 4 in polynomial time, and w.l.o.g., suppose w(S ′ 1 ) w(S ′ 2 ) w(S ′ 3 ) w(S ′ 4 ). Finally, set S 1 = S ′ 1 , S 2 = S ′ 2 , and S 3 = S ′ 3 ∪ S ′ 4 . k = 5. Here, we wish to prove that S can be partitioned in three sets S 1 , S 2 and S 3 such that both S 1 and S 2 are P 2 -free and w(S 3 ) w(S)/5. We distinguish the following five cases.

Case 1. S contains a C 5 (a cycle on 5 vertices). In this case, S contains exactly 5 vertices. Let v min denote the vertex with minimum weight among the 5 vertices of S, and set S 3 = {v min }. Finally assign two remaining vertices to each of S 1 and S 2 arbitrarily.

Case 2. S contains no C 5 but it contains a C 4 with two diagonals (a clique on 4 vertices). In this case let S ′ denote the set of vertices of S that do not belong to this K 4 . Then it holds that:

• S ′ forms an independent set. Indeed, suppose that there exist an edge v i , v j in S ′ , then there must exist a path through at least 6 vertices in S, that would go through v i , v j , and the K 4 (recall that S is connected).

• All vertices of S ′ are connected to the same vertex in the K 4 , say v c . Indeed, in a K 4 , any pair of vertices can be the two extremities of a P 4 . Suppose that vertices of S ′ are connected to two different vertices in the K 4 , say v c1 and v c2 . First, notice that a single vertex cannot be connected to both v c1 and v c2 , since it would form a C 5 which contradicts the hypothesis of Case 2. Then, if at least two different vertices of S ′ are connected to two different vertices v c1 and v c2 , then there exists a path through 6 vertices in G, impossible. Thus, the structure of Case 2 can be only be as described in Figure 3(a). In this case, one can partition the graph in 5 independent sets from S ′ 1 to S ′ 5 (as shown in Figure 3(b)), such that S \ S ′ min (where S ′ min denotes the lightest of the 5 independent sets) can be partitioned in two P 2 -graphs: it suffices to ensure that S ′ 3 and S ′ 4 are not in the same partition. Case 3. S contains no C 5 but it contains a C 4 with at most one diagonal. Again, let S ′ denote the set of vertices of S that do not belong to this C 4 . For reasons similar to those explained in Case 2 it holds that:

• S ′ is an independent set.

• Two different vertices of S ′ cannot be connected to two vertices that are neighbors in the C 4 (because inside the C 4 , there always exists a path going through 4 vertices, and having two neighbors in the C 4 as extremal vertices).

• Two different vertices of S ′ cannot be connected to two vertices of the gadget that are opposite in the C 4 , but not connected by the diagonal, if any (for similar reasons).

Hence, vertices of S ′ can be either all connected to the same vertex in the C 4 (and can be partitioned in the same fashion as in Case 2), or connected to two opposite vertices in it (and only to the two opposites that are connected by the diagonal, if any). The structure is represented in Figure 4(a), and once more, it can be partitioned in five independent sets from S ′ 1 to S ′

5

(Figure 4(b)). Here, a partitionning in three sets S 1 , S 2 and S 3 that fit Hypothesis 1 is very easy to obtain: set Then it holds that there is no path from v i to v j (1 i < j 3) using at least one vertex of S ′ , otherwise there would exist a C 4 in S, which contradicts the hyposthesis of Case 4. Thus, S ′ can be partitioned in 3 disconnected subgraphs H 1 , H 2 and H 3 , that are respectively reachable by v 1 in S ′ ∪ v 1 , by v 2 in S ′ ∪ v 2 and by v 3 in S ′ ∪ v 3 (Figure 5). Case 4-a. Suppose that there exists at least one edge (h 1 , h 2 ) in one set H i , say in H 1 . Then it holds that either h 1 or h 2 is connected to v 1 , otherwise there would exist a path going through 6 vertices in S: (v 3 , v 2 , v 1 , P, h 1 , h 2 ) or (v 3 , v 2 , v 1 , P, h 2 , h 1 ) (where P contains at least one vertex). So, w.l.o.g, suppose that v 1 is connected to h 1 . Then there exists at least 2 path through exactly 5 vertices in S: (v 3 , v 2 , v 1 , h 1 , h 2 ), and (v 2 , v 3 , v 1 , h 1 , h 2 ), so that any vertex in H 2 or H 3 immediately results in a path through 6 vertices, impossible. Hence, H 2 = ∅ and

S 1 = S ′ 1 ∪ S ′ 3 ∪ S ′ 5 , S 2 = S ′ 2 ∪ S ′ 4 ,
H 1 H 2 H 3 v 1 v 2 v 3
H 3 = ∅.
Considering the symmetry of the structure, one can assert that if there exist edges in S ′ , then they are all included in one H i while the other two are empty. Continue to suppose that these edges are within H 1 . These edge (h i , h j ) can be of two types:

• Type 1: both h i and h j are connected to v 1 . These edges necessarily form a matching.

Indeed, suppose that two of these edges have one vertex in common, say (h i , h j ) and (h i , h k ) then there exists a path through 6 vertices in S:

(v 2 , v 3 , v 1 , h j , h i , h k ).
• Type 2: only h i is connected to v 1 . For similar reasons, these edges form disconnected stars rooted at neighbors of v 1 .

Note also that edges of Type 1 and 2 cannot have a vertex in common.

In this case, a partitionning of the vertices of S in 5 independent sets from S ′ 1 to S ′ 5 can be obtained in the following way:

• the first independent set S ′ 1 contains only v 1 ,
• S ′ 2 ∪ S ′ 3 forms a perfect matching between all pairs of vertices forming a triangle along with v 1 (including v 2 and v 3 ). Put differently, the cut between and S ′ 2 and S ′ 3 contains all edges of Type 2 as well as (v 2 , v 3 ),

• S ′ 4 contains all remaining neighbors of v 1 ,

• S ′ 5 contains all neighbors of vertices in S ′ 4 .

The partition is presented in Figure 6, and one can verify that for any S ′ min ∈ (S 1 , . . . , S 5 ), S \ S ′ min can be partitioned in two P 2 -free subgraphs, each using two remaining independent sets of the partition. For example, if the lightest independent set is S ′ 4 , the partition is (S ′ 2 , S ′ 3 ) (that is a perfect matching), and (S ′ 1 , S ′ 5 ) (that is an independent set), or if the lightest independent set is S ′ 5 , the partition is (S ′ 2 , S ′ 3 , S ′ 4 ) (that is a perfect matching and an independent set), and (S ′ 1 ) (that is a single vertex). Case 4-b. S ′ is an independent set. This case is much easier in the sense that the graph S can immediately be partitioned into two P 2 -free subgraphs:

S ′ 1 S ′ 2 S ′ 3 S ′ 4 S ′ 5 v 1 v 2 v 3
S 1 = H 1 ∪ {v 2 } ∪ {v 3 } and S 2 = H 2 ∪ H 3 ∪ v 1 (and S 3 = ∅).
Case 5. S contains no C 5 , no C 4 , and no C 3 . Hence, S is a tree, so that it is trivially 2-colorable, thus defining S 1 as the first color, S 2 as the second color, and S 3 as an empty set, one gets a partitioning of S that fits Hypothesis 1.

In any case, Hypothesis 1 is verified when k = 5. k = 6. In this case, Hypothesis 1 is verified if S can be partitioned in 3 P 2 -free subgraphs (the lightest of which will be S 3 , and the other two S 1 and S 2 ). Here, we distinguish the following four cases.

Case 1. S contains a C 6 . It is clear that S contains exactly 6 vertices, which can easily be partitioned in three P 2 -free subgraphs (2 vertices in each set of the partition).

Case 2. S contains a C 5 and no C 6 . Let S ′ denote the set of vertices that are not in C 5 . It holds that S ′ is an independent set, and that a pair of vertices that are neighbors in the C 5 cannot both have neighbors in S ′ (if one of these two properties is not verified, then there exists a P 6 in S. Thus, without making assumption on the number of chords in the C 5 , the general structure of S is as described in Figure 7, with a partitioning in three P 2 -free subgraphs (represented in the figure as white, grey, and black vertices). Case 3. S contains a C 4 . We distinguish here the following two subcases. Case 3-a. S contains a C 4 but no C 5 and no C 6 , and denoting by S ′ the set of vertices that are not in the C 4 , S ′ contains at least an edge (v 1 , v 2 ). Obviously, these two vertices v 1 and v 2 cannot be connected to two different vertices of the C 4 , otherwise, S would contain a C 5 or a C 6 .

Moreover, at least one of these two vertices must be connected to a vertex of the C 4 . Indeed, taking into account that S is supposed to be connected, if none of these vertices is connected to a vertex of the C 4 , then there exists a P 6 in S.

Finally, supposing w.l.o.g that v 1 is the vertex connected to a vertex x in the C 4 , then no neighbor of x in the C 4 can be connected to any vertex of S ′ (otherwise there would exist a P 6 in S).

Hence, denoting vertices of the C 4 by x, y, z and t as in Figure 8, only vertices x and z might have neighbors in S ′ . Moreover, denoting by N ({x} ∪ {z}) the neighborhood of these two vertices, it holds that this set is P 2 free, otherwise a path on 7 vertices would exist in S (the 3 vertices of the P 2 in N ({x} ∪ {z}), and the 4 vertices of the C 4 ). Thus, coloring in white the vertices of N ({x} ∪ {z}) as well as y and t, and in black all the other vertices of S, one gets a partition of S into two 2 free colors.

Case 3-b. S contains a C 4 but no C 5 and no C 6 , and let S ′ denote the set of vertices that are not in the C 4 , S ′ contains no edge. This case is much simpler than the previous one, considering that S ′ forms an independent set. To get a partition of S into three P 2 -free subgraphs, it suffices Case 4. S contains no C 4 , no C 5 and no C 6 . In this case, it holds that the neighborhood N (x) of any vertex x is P 2 free, since a P 2 (on 2 edges, and 3 vertices) in N (x) amounts to a C 4 in x ∪ N (x). Moreover, denoting by N (N (x))) = N 2 (x)) the set of neighbors of vertices in N (x), it holds that N (N (x)) is also P 2 -free, since the neighborhood of each vertex in N (x) is P 2 -free (considering what we stated above), and disjoint from one another (otherwise there would exist C 4 in S). Naturally, the same holds for any N i (x).

Hence, in this case, the graph can be easily partitioned in 2 P 2 -free subgraphs: starting from a arbitrary vertex that is colored black, one colors its neighborhood white, then the neighborhood of its neighborhood black, etc. Considering what we proved earlier, each color defines a P 2 -free subgraph.

Finally, Hypothesis 1 is also verified when k = 6.

max split subgraph

Given a graph G(V, E, w), the max split subgraph problem consists of determining a maximumweight subset V ′ ⊆ V that induces a split subgraph of G. A split graph is a graph whose vertices can be partitioned into two sets C and S, C being a clique, and S being an independent set. Any subset of a clique remains a clique, and any subset of independent set remains an independent set, hence, being a split graph is a hereditary property. Moreover, considering that the property is false for a complete bipartite graph with at least two vertices in each independent set, the result of Theorem 1 applies to the max split subgraph problem. So max split subgraph is inapproximable within any constant ratio, unless P = NP. We prove that this strong inapproximability result does not hold in the reoptimization setting, but we first need to prove the following lemma.

Lemma 2. Let G be a graph with h 3 vertices. It holds that w(G

S ) + w(G C ) h+1 h w(G) if h 2 and w(G S ) + w(G C ) 5 4 w(G) if h = 3
, where G S and G C respectively denote an optimal independent set and an optimal clique in G.

Proof. If G is a clique, then w(G C ) = w(G) and w(G S ) w(G) h , and symmetrically, if G is an independent set, then w(G S ) = w(G) and w(G C ) w(G) h . In both cases, the proposition is verified.

If G is neither a clique nor an independent set (which might occur when h = 3), then there are only two possible configurations, both represented in Figure 9. In Case 1, there are two maximal cliques:

v 1 v 2 v 3 (a) Case 1 v 1 v 2 v 3 (b) Case 2
{v 1 , v 2 } and {v 1 , v 3 }, so w(G C ) 2w(v 1 )+w(v 2 )+w(v 3 )
2 . On the other hand there are two maximal independent sets: {v 1 } and {v 2 , v 3 }, so w(G S )

1 4 w(v 1 ) + 3 4 (w(v 2 ) + w(v 3 )). In all: w(G C ) + w(G S ) 5w(v 1 )+5w(v 2 )+5w(v 3 ) 4 = 5 
4 w(G). Taking into account the symmetry between Cases 1 and 2, the same bound holds for Case 2, which concludes the proof.

Proposition 8. Under insertion of h vertices, max split subgraph problem is h+1

2h+1 -approximable for h 2, and 5 9 -approximable for h = 3. Proof. Consider a reoptimization instance I of the max split subgraph problem. The initial graph is denoted by G(V, E), and the perturbed one G ′ (V ′ , E ′ ), where V ′ = V ∪ Y where |Y | = h 3. Let OPT and OPT ′ denote optimal split-graphs on G, and G ′ respectively. The initial optimum OPT is given by a clique C and an independent set S. Let Y S and Y C denote optimal independent sets and cliques in Y . Consider the following algorithm: First, noticing that S ∪Y C and C ∪Y S both define split graphs, it holds that the algorithm returns a feasible solution. Then summing w(SOL 1 ), and w(SOL 2 ), we get the following equality:

• Let SOL 1 = S ∪ Y C , SOL 2 = C ∪ Y S ,
w(SOL 1 ) + w(SOL 2 ) = w(C) + w(S) + w(Y C ) + w(Y S ) w(OPT) + h+1 h w(Y ) if h 2, w(OPT) + 5 4 w(Y ) if h = 3.
The second line follows noticing that w(C) + w(S) = w(OPT), and taking into account that, according to Lemma 2, w(Y S ) + w(Y C )

h+1 h w(Y ) if h 2, and w(Y S ) + w(Y C ) 5 4 w(Y ) if h = 3.
Notice that w(OPT) w(OPT ′ )w(Y ), one verifies that:

w(SOL 1 ) + w(SOL 2 ) w(OPT ′ ) + 1 h w(Y ) if h 2 w(OPT ′ ) + 1 4 w(Y ) if h = 3 (17) 
w(SOL 3 ) w(OPT ′ ) -w(Y ) (18) 
Finally, summing ( 17) and ( 18) with coefficients h and 1, if h 2, and 4 and 1 if h = 3:

(2h + 1)w(SOL) h(w(SOL 1 ) + w(SOL 2 )) + w(SOL 3 ) (h + 1)w(OPT ′ ) if h 2 9w(SOL) 4(w(SOL 1 ) + w(SOL 2 )) + w(SOL 3 ) 5w(OPT ′ ) if h = 3
and the proof is completed.

Recall that for any h (and a fortiori for h 4) the problem is 1/2-approximable by the algorithm R1 presented in [START_REF] Ausiello | Complexity and approximation in reoptimization[END_REF]. We prove that these simple approximation algorithms achieve the best constant ratios possible. By symmetry, the same holds for the independence number. In what follows, we note γ = α + β. Consider the graph H α,β,h 1 ,h 2 (h 1 , h 2 1) that consists of h 1 + h 2 -1 copies of the graph H α,β . Among them, h 1 copies are disjoint from one another, and h 2 copies are connected by all possible pairs of vertices from different copies (an example is provided in Figure 10). It holds that: In what follows, we will build three different reoptimization instances, for cases h 2, h = 3 and h 4. In the three cases, the initial graphs will have the same generic structure, defined as G α,β,h 1 ,h 2 (h 1 and h 2 will take different values in the three specific cases).

H H H H H H 1 H 1 H 1 H 1 H 1 H 2 H 2 H 2 H 2 H 2
• H α,β,h 1 ,h 2 has independence number h 1 γ, • H α,β,h 1 ,h 2 has clique number h 2 γ,
This graph is obtained by adding to H α,β,h 1 ,h 2 a set X of vertices, which consists of a clique X C of size h 2 γ + 1 and an independent set X S of size h 1 γ + 1. Each vertex in the graph receives weight 1. X C is disconnected from V , and each vertex of X S is connected to all other vertices of the graph, namely vertices of both V and X C . In this initial graph, it holds that a split-graph SG has weight at most (h 1 + h 2 )γ + 2. We distinguish the three following cases.

Case 1.

SG ∩ V = ∅, then w(S) w(X) (h 1 + h 2 )γ + 2. Case 2. |SG ∩ V | = 1
, and denote by v the single vertex of SG ∩ V . In this case, SG cannot take more than max{h 1 , h 2 }γ + 1 vertices in X. Indeed, if it takes more vertices, then it means that SG contains at least two vertices of each set X S and X C , which necessarily forms a forbidden subgraph along with v. It means that w(SG)

max{h 1 , h 2 }γ + 2 (h 1 + h 2 )γ + 2. Case 3. |SG ∩ V | 2.
Denote by SG C the clique in SG and by SG S the independent set in SG.

If SG[V ] is a clique, then the clique in SG, SG C , can contain at most h 2 γ vertices in V and one vertex in X S , so that w(SG C ) h 2 γ + 1. On the other hand, the biggest independent set in X is X S , so that w(SG S ) w(S X ) h 1 γ + 1. In all:

w(SG) = w(SG S ) + w(SG C ) (h 1 + h 2 )γ + 2
A symmetrical arguments holds when SG[V ] is an independent set. Suppose now that SG[V ] is neither a clique nor an independent set. Then w(SG[V ]) (h 1 + h 2 )γ, and both SG S and SG C contain at least one vertex in V . Thus, SG C cannot contain any vertex of X C , and at most one of vertex of X S . Symmetrically, SG S cannot contain any vertex of X S , and at most one of vertex of X C . In all, w(SG[X])

2, and once more, w(SG) (h 1 + h 2 )γ + 2, concluding so Case 3.

Thus, any solution that has weight exactly (h 1 + h 2 )γ + 2 is optimal in G α,β,h 1 ,h 2 , so in all reoptimization instances we will build, we can consider X as the initial optimum.

Assume h 2. We build a reoptimization instance, I α,β,h in the following way:

• The initial graph is the graph G α,β,h,1 . We proved earlier that X is an optimum on this graph. Here, its weight is (h + 1)γ + 2.

• The perturbed graph G ′ α,β,h,1 is obtained by adding a set of vertices Y to G α,β,h,1 , which consists of an independent set of h vertices, each with weight γ. All vertices in Y are connected to all vertices in X S only.

The overall structure is represented in Figure 11, as well as the weight of optimal independent sets and cliques (denoted by S * and C * in the Figure) in all sets V , X C , X S and Y .

Notice that, in the perturbed graph Y ∪ X C ∪ IS * (where IS * is an optimal independent set in V ) defines an split graph of weight (2h + 1)γ + 1. Indeed, Y ∪ IS * defines an independent set, while X C defines an clique. Thus, denoting by OPT ′ an optimal split graph in G ′ α,β,h,1 , it holds that w(OPT ′ ) (2h + 1)γ + 1.

Suppose that, for a given h 2, there exists an approximation algorithm A for the reoptimization version of max split subgraph, which provides an approximation ratio bounded by h+1 2h+1 + ε, under the insertion of h vertices. Denoting by S α,β,h a solution returned by this

Y S * = hγ C * = γ V S * = hγ C * = γ X C S * =1 C * =γ+1 X S S * =hγ+1 C * =1
Figure 11: The reoptimization instance I α,β,h , h 2 algorithm on the reoptimization instance I α,β,h we just described, it holds that:

w(S α,β,h ) h + 1 2h + 1 + ε OPT ′ (1 + ε)(h + 1)γ
However, a split graph SG in X ∪ Y (and a fortiori the restriction of S α,β,h to X ∪ Y , denoted by S α,β,h [X ∪ Y ]) cannot have weight more than (h + 1)γ + 2. We distinguish here the following two cases. Case 1. SG takes at most one vertex in X S , then w(SG[X S ]) 1, and thus:

w(SG) = w(SG[X S ]) + w(X C ) + w(Y ) 1 + γ + 1 + hγ = (h + 1)γ + 2
Case 2. SG takes at least two vertices in X S , then the independent set in SG can contain only vertices of X S . In other words, the vertices of Y ∪ X C can only be part of the clique in SG. It is quite obvious that the biggest clique in Y ∪ X C is X C itself so that in this case w(SG) w(X) = (h + 1)γ + 2. One immediately derives from this result that w(S α,β,h [X ∪ Y ]) (h + 1)γ + 2 and Case 2 is concluded. So, in both cases it is verified that w(S α,β,h

[V ]) = w(S α,β,h ) -w(S α,β,h [X ∪ Y ]) εγ - 2.
Considering that γ is not a constant, if an algorithm A exists, one can get in polynomial time a constant-approximate solution for max split subgraph in the graph H α,β,h,1 , which is impossible unless P = NP.

Suppose now that h = 3. In this case, the reoptimization instance I α,β,h is built as follows:

• The initial graph is the graph G α,β,2,3 . X is an optimum on this graph. Here, its weight is 5γ + 2.

• The perturbed graph G ′ α,β,2,3 is obtained by adding a path Y to G α,β,2,3 , which has 3 vertices, y 1 , y 2 and y 3 . y 1 is the central vertex of the path, and has weight 2γ, while y 2 and y 3 are end vertices of the path, and have both weight γ. All vertices in Y are connected to all vertices in X S , but not to any vertex in X C . y 1 is connected to all vertices in V , while vertices y 2 and y 3 are not connected to any vertex in V .

Notice that, in the perturbed graph Y ∪ F * (where F * is an induced optimal split subgraph in V ) defines a split graph of weight at least 9γ -1 (in V the maximum clique F * C and the maximum independent set F * S might have one vertex in common). Indeed, y 1 ∪ F * C defines a clique, while y 2 ∪ y 3 ∪ F * S defines an independent set. Thus, denoting by OPT ′ an optimal split graph in G ′ α,β,h , it holds that w(OPT ′ ) 9γ -1.

Assume that there exists an approximation algorithm A for the reoptimization version of max split subgraph, which provides an approximation ratio bounded by 5 9 + ε, under the insertion of h = 3 vertices. Denoting by S α,β,h a solution returned by this algorithm on the reoptimization instance I α,β,h we just described, it holds that:

w(S α,β,h ) 5 9 + ε OPT ′ (1 + 9ε)5γ - 5 9 -ε (1 + ε)5γ (19) 
where the last inequality follows from noticing that 5/9+ε < 8εγ, otherwise a single vertex defines a 8ε-approximate solution in V , which is supposed to be impossible to provide in polynomial time, unless P = NP. However, it holds that a split graph SG in X ∪ Y has weight at most 5γ + 3 and we study the following four cases.

Case 1.

SG[Y ] = ∅. Then w(SG) w(X) = 5γ + 2, Case 2. |SG[Y ] = 1|.
If the single vertex is part of the clique in SG, then this clique can take at most one additional vertex in X S . Symmetrically, if this vertex is part of the independent set in SG, then this independent set can take at most one additional vertex in X C :

w(SG) w(y 1 ) + 1 + max{w(X C ), w(X S )} 5γ + 3 Case 3. |SG[Y ] = 2|. If SG[Y ] has two connected vertices, then: • w(SG[Y ]) = 3γ;
• the clique in SG can take at most one vertex in X S , and none in X C ;

• the independent set in SG cannot weight more than w(X S ) = 2γ + 1.

If, on the other hand, SG[Y ] has two disconnected vertices, then:

• w(SG[Y ]) = 2γ;
• the independent set in SG can take at most one vertex in X C , and none in X S ;

• the clique in SG cannot weight more than w(X C ) = 3γ + 1.

Hence, in both cases, one verifies that w(SG) 5γ + 3.

Case 4. |SG[Y ] = 3|. In this case, w(SG[Y ]) = 4γ, and SG can take at most two vertices of X, one of X S that can be part of the clique in SG, of X C that can be part of the independent set in SG. In all, w(SG) 4γ + 2, that concludes Case 4.

Taking into account that any split graph in X ∪ Y cannot have weight more than 5γ + 3, the same holds a fortiori for S α,β,h [X ∪ Y ]. Combining this bound with [START_REF] Escoffier | On-line models and algorithms for max independent set[END_REF], one immediately derives that:

w(S α,β,h [V ]) (1 + ε)5γ -5γ -3 = εγ -3 (20) 
For reasons already explained, (20) makes impossible the existence of a polynomial algorithm A that ensures a 5 9 + ε approximation ratio under the insertion of h = 3 vertices, unless P = NP. Finally, suppose that h 4. We build the following reoptimization instance I α,β,h :

• The initial graph is the graph G α,β,1,1 . In it, X defines an optimal split graph of weight 2γ + 2.

• The perturbed graph G ′ α,β,h (V α,β,h , E α,β,h ) is obtained by adding a set Y of h vertices, in which 4 vertices have weight γ/2, and are as represented in Figure 12: all these vertices are connected to all vertices in X S , while only y 1 and y 2 are connected to all vertices in V . The other h -4 vertices in Y have null weight, and will be ignored in what follows. Notice that in V , an optimal split graph F * has weight at least 2γ -1 (since a clique and independent set can have at most one vertex in common), notice also that Y ∪ F * defines a feasible solution: the clique in F * forms a clique along with y 1 and y 2 , and the independent set in F * forms an independent set along with y 3 and y 4 . Thus, denoting by OPT ′ an optimal solution in the perturbed graph G ′ α,β,h , it holds that w(OPT ′ ) 4γ -1. Suppose that, for a given h 4, there exists an approximation algorithm A for the reoptimization version of max split subgraph, which provides an approximation ratio bounded by 1 2 + ε, under the insertion of h vertices. Denoting by S α,β,h a solution returned by this algorithm on the reoptimization instance I α,β,h we just described, its weight can be bounded as follows:

V S * = γ C * = γ X C S * =1 C * =γ+1 X S S * =γ+1 C * =1
w(S α,β,h ) 1 2 + ε w(OPT ′ ) (1 + 2ε)2γ - 1 2 -ε (1 + ε)2γ (21) 
where the last inequality follows from noticing that 1/2 + ε < 2εγ. If not, then a single vertex defines a solution in V .

We prove now that a split graph SG in X ∪ Y (and a fortiori the restriction of S α,β,h to this set) cannot have weight bigger than 2γ + 2. For this, we study the following three cases.

Case 1. |SG ∩ Y | = 0. Obviously w(SG) w(X) = 2γ + 2, Case 2. |SG ∩ Y | = 1, 2.
SG can take at most γ + 2 vertices in X, otherwise, it takes at least 2 vertices in both X C and X S , which form a forbidden subset along with one vertex in Y . Thus, w(SG) γ

+ 4 2γ + 2 Case 3. |SG ∩ Y | 3, 4.
Given the structure of Y , then 3 (and a fortiori 4) vertices cannot form an independent set, nor a clique. Thus, SG can take at most one vertex in each set X C and X S , and w(SG) 2γ + 2 and Case 3 is concluded.

Hence, the restriction of S α,β,h to X ∪ Y has weight bounded as follows:

w(S α,β,h [X ∪ Y ]) 2 γ + 2 (22) 
Combining ( 21) and ( 22), one easily derives:

w(S α,β,h [V ]) (1 + ε)2γ -2γ -2 = εγ -2 (23) 
So, S α,β,h [V ] is a constant-approximate solution for max split subgraph in the graph H α,β,1,1 , which is impossible to provide in polynomial time unless P = NP.

max planar subgraph

Given a graph G(V, E, w), the max planar subgraph problem consists of determining a maximum-weight subset V ′ ⊆ V that induces a planar subgraph of G. A planar graph is defined as a graph that can be embedded in the plane in a way that no edges cross each other. It is proved in [START_REF] Robertson | Graph minors. xx. wagner's conjecture[END_REF] that the class of planar graph is characterized by two forbidden minors: K 5 and K 3,3 . On the other hand, an outerplanar graph is a planar graph that can be embedded in the plane such that all its vertices belong to the outer-face of the embedding (see Figure 13(b)). Similarly, the class of outerplanar graphs is characterized by two forbidden minors: K 4 and K 2,3 . Given a planar graph G(V, E), the level of a vertex is defined inductively as follows: the set L1 of vertices at level 1 is constituted by vertices on the exterior face of G; then, the set L i of vertices at level i is the set of vertices on the exterior face of the subgraph of G induced by V (L 1 , . . . , L i-1 ). A planar graph is said to be k-outerplanar if every vertex is at level at most k (for at least one planar embedding, see Figure 13(a)). Every planar graph is k-outerplanar for some k and can be embedded in polynomial time. An interesting property regarding outerplanarity is that the addition of a single vertex to an outerplanar graph results in a planar graph. We prove the following lemma. Proof. Recall that a planar embedding of a planar graph can be obtained in polynomial time by the algorithm presented in [START_REF] Boyer | On the cutting edge: Simplified o(n) planarity by edge addition[END_REF]. Given an embedding of G, there is a simple way to partition G into two induced outerplanar subgraphs: recall that any planar embedding can be partitioned in layers L 1 . . . , L l , where L 1 denotes the outerface of the embedding, L 2 denotes the outerface of the embedding without L 1 , L 3 the outerface of the embedding without L 1 and L 2 , etc. Notice that each layer induces an outerplanar graph, and that each layer L i is a separating set that cuts the graph into two connected components, one that contains all layers L 1 , L 2 , . . . , L i-1 , and the other that contains all layers L i+1 , . . . , L l .

Hence, the union of all layers with odd labels consists of disjoint layers, and is thus outerplanar, and so is the union of all layers with even labels (see also Figure 13(a)).

Proposition 10. Under vertex insertion, the max planar subgraph problem is approximable within ratio 2/3.

Proof. Consider a reoptimization instance I of the max planar subgraph problem. The initial graph is denoted by G(V, E), and the perturbed one G ′ (V ′ , E ′ ) where V ′ = V ∪ {y}. Let OPT and OPT ′ denote optimal planar graphs on G, and G ′ respectively. Using the method proposed in Lemma 3, OPT can be partitioned into 2 sets S 1 , and S 2 such that both these sets induce outerplanar graphs. Suppose that S 1 is the heavier of theses two sets. Consider the following algorithm:

• Let SOL 1 = S 1 ∪ {y}, and SOL 2 = OPT;

• return the best solution SOL among SOL 1 , and SOL 2 .

First, notice that SOL 1 is planar, since it consists of the union of an outerplanar graph and a single vertex, so that the algorithm always returns a feasible solution for max planar subgraph.

Then, classically, it holds that w(OPT) w(OPT ′ )w(y), so that w(SOL 1 ) and w(SOL 2 ) are bounded as follows:

w(SOL 1 ) w(OPT ′ ) -w(y) 2 + w(y) = w(OPT ′ ) 2 + w(y) 2 (24) 
w(SOL 2 ) w(OPT ′ ) -w(y) (25) 
Summing ( 24) and ( 25) with coefficients 2 and 1, respectively, we get:

3w(SOL) 2w(SOL 1 ) + w(SOL 2 ) 2w(OPT ′ )
that concludes the proof. The four colors Theorem proved in [START_REF] Robertson | A new proof of the four-colour theorem[END_REF], claims that every planar graph is 4-colorable. We use this theorem to prove the following proposition.

Proposition 11. Under vertex insertion, the max planar subgraph problem is inapproximable within ratio 4/5 + ε in polynomial time, unless P = NP.

Proof. Consider a graph H that has independence number α, where one wishes to solve max independent set problem. It is possible to turn this instance into an instance of max planar subgraph by turning the graph H into a graph H ′ as follows:

• each vertex v i of H is turned into a clique V i of 4 vertices in H ′ ;

• if (v i , v j ) belongs to H, then all edges between vertices of cliques V i and V j are in E.

For reasons similar to those explained in the proof of Proposition 6, it holds that:

• H ′ is also α-independent;

• denoting by OPT an optimal planar subgraph in G, then w(OPT) = 4α.

We build a weighted reoptimization instance I α of max planar subgraph as follows:

• The initial graph G α is obtained by adding a clique X of 4 vertices to H ′ , each with weight α. E α contains all edges between X and V .

• The perturbed graph G ′ α is obtained by adding a single vertex y to G α , with weight α that is connected to all vertices of X.

Any planar subgraph S in G α has weight at most 4α. Indeed, let i denote the number of vertices of X in S, then S ∩ [V ] is (4i)-colorable, so that it has weight at most (4i)α. Thus, w(S) iα + (4i)α = 4α.

Hence, any planar subgraph that has weight exactly 4α is optimal in G α , so we assume that X (which has weight 4α) is the initial optimum of the reoptimization instance I α .

In G ′ α , {y} ∪ OPT is a feasible solution, so that w(OPT ′ ) 5α. Consider an algorithm A that provides a 4/5 + ε for the reoptimization version max planar subgraph. Denote by SOL α a solution returned by A on the reoptimization instance I α we just described. Then:

w(S α ) 4 5 + ε OPT ′ (1 + ε)4α
However, a planar subgraph in {y} ∪ X can take at most four vertices (taking 5 vertices induces a K 5 ), so that w (S α ∩ ({y} ∪ X)) 4α. Thus, it holds that w(S α [V ]) 4εα.

Notice that, S α [V ] being planar, it can be partitioned in four independent sets in polynomial time. The biggest of these 4 four independent sets has weight at least εα, and by construction, one can easily determine an independent set of the same size in the original max independent set instance, which is impossible unless P = NP.

Vertex deletion

Let us consider now the opposite kind of perturbations: vertex-deletion. When dealing with hereditary optimization problems, some properties discussed just above still remain valid, while some others do not. As before, let us consider a given instance of a hereditary problem, for which we know an optimal solution OPT. Consider now that one vertex of the graph is deleted, along with its incident edges. Two cases might occur:

• the deleted vertex y was not part of the initial optimum, so it remains the same in the new graph.

• y was part of the initial optimum, and might even have been one of its most important elements. Though having a priori no information on the quality of the initial optimum OPT \ {y} in the new graph G ′ (or rather what is left of it), we can still assert that OPT \ {y} remains a feasible solution in the new graph.

In what follows, we discuss to what extent the techniques used in the case of insertion can be applied to the case of deletion. As in Section 3, we will start by an inapproximability result on the most elementary hereditary problem, max independent set (Section 4.1), and then extend the result to all inapproximable hereditary problems (Section 4.2). Then, we provide some tight positive results for max k-colorable subgraph (Section 4.3), and finally we present general techniques for reoptimizing hereditary problems in graphs of bounded degree (Section 4.4).

max independent set

Recall that under vertex insertion, any hereditary problem is easily 1/2-approximable. The results does not extend to the case of vertex deletion, where max independent set is as hard to approximate as its deterministic version:

Proposition 12. Under vertex deletion, max independent set is inapproximable within any ratio n -ε in polynomial time, for any ε ∈ (0, 1), unless P = NP.

Proof. Consider an instance H(V, E) of (unweighted) max independent set, and build the following reoptimization instance I:

• The initial instance G is obtained by adding to H a single vertex y with weight n. y is connected to all the vertices in H. Obviously, the single vertex y is an optimal solution in G.

• The perturbed instance is the graph H.

Suppose that there exists an approximation algorithm A that ensures an approximation n -ε for max independent set under vertex deletion, then this algorithm can be used to obtain an n -ε on any instance H by running A on the reoptimization instance I we just described. Hence, such an algorithm cannot exist unless P = NP [START_REF] Zuckerman | Linear degree extractors and the inapproximability of max clique and chromatic number[END_REF].

It is thus clear that, unlike in the insertion case, there is no polynomial algorithm providing a constant approximation ratio for any hereditary problem in the deletion case. However, the max independent set problem is probably the hardest to approximate in the vertex deletion setting, in the sense an optimal solution might contain a single vertex, so that the deletion of this vertex discards the whole information provided by the initial optimum.

But regarding other hereditary properties, this phenomenon will not occur systematically, and in fact, the strong inapproximability bound on the reoptimization version of max independent set under vertex deletion cannot be transferred directly to all hereditary problems.

General negative result

When dealing with max independent set, the whole initial optimum can disappear when deleting a single vertex, since the minimal size of a maximal solution is 1, put differently, a single vertex can be a maximal solution. However, this fact does not hold for any hereditary property. Consider for example the max bipartite subgraph problem. Regarding this problem, a single vertex cannot define a maximal solution, and it takes at least two deleted vertices to delete the whole initial optimum. We derive from this idea the following general inapproximability result: Proposition 13. Let M (Π) denote the minimal size of a maximal solution for a given hereditary problem Π. Under the deletion of h M (Π) vertices, Π is inapproximable within any ratio n -ε in polynomial time, unless P = NP.

Proof. Consider an instance of a given unweighted non trivial hereditary problem Π, that consists of a graph H(V, E). We build the following reoptimization instance I:

• The initial graph G is obtained by adding to H a set of vertices Y of size h M (Π). This set contains a gadget of size M (Π) that constitutes a maximal solution in G, where each vertex has weight n, and h -M (Π) vertices with weight 0 (which will be ignored in what follows).

• The perturbed graph is the graph H It is clear that the M (Π) vertices of weight n in Y define an optimal solution in the initial graph G: This gagdet is feasible and maximal, so that in G an optimal solution has weight at least M (Π)n. On the other hand, any solution that does not take the whole gadget has weight at most (M (Π) -1)n + OPT M (Π)n, where OPT denotes the cardinality of an optimal solution in H. Thus, Y can be considered as the initial optimum of the reoptimization instance I. Consider a reoptimization algorithm A, which, for a given h M (Π), does provide an approximation ratio n -ε under the deletion of h vertices. When using it on the reoptimization instance I we just described, this algorithm produces a n -ε -approximate solution in H in polynomial time, which is impossible unless P = NP.

Regarding the four specific problems discussed in Section 3, the four following corollaries hold.

Corollary 1. Under deletion of h

k vertices, max k-colorable subgraph is inapproximable within ratio n -ε unless P = NP. Corollary 2. Under deletion of h k vertices, max P k -free subgraph is inapproximable within ratio n -ε unless P = NP. Corollary 3. Under deletion of h 3 vertices, max split subgraph is inapproximable within ratio n -ε unless P = NP.

Corollary 4. Under deletion of h

4 vertices, max planar subgraph is inapproximable within ratio n -ε unless P = NP.

For Corollaries 1 and 2, it suffices to notices that K k 's can define maximal solution for both these problems.

For Corollary 3, notice that 3 vertices can define a maximal solution for max split subgraph: revisiting the proof of Proposition 13, build the gadget in Y as follows: two vertices y 1 , y 2 that are connected only one to the other, and a vertex y 3 connected to all vertices in H. Clearly, {y 1 , y 2 , y 3 } defines a maximal (and optimal) solution in G.

Finally Corollary 4 derives from the fact that a planar graph is 4-colorable, so that a K 4 can define a maximal solution.

max k-colorable subgraph

Following Corollary 1, it holds that no constant approximation ratio can be expected in polynomial when more than k vertices are deleted, However if the number of deleted vertices is smaller than k, the non deleted part of the initial optimum is non-empty. Following this idea we provide the following positive result for max k-colorable subgraph: Proposition 14. Under deletion of h < k vertices, max k-colorable subgraph is approximable within ratio k-h k . Proof. Consider a reoptimization instance I of the max k-colorable subgraph problem, under deletion of h < k vertices. The initial graph is denoted by G(V, E), and the perturbed one

G ′ (V ′ , E ′ ) where G ′ = G[V \ Y ].
Let OPT and OPT ′ denote optimal k-colorable subgraphs on G, and G ′ respectively. Considering that Y has h vertices, and denoting by h ′ the number of independent sets in OPT that contain at least one vertex of Y , it holds that h ′ h.

Let S 1 denote the (kh ′ )-colorable subgraph in OPT which does not contain any vertex of Y , and S 2 the h ′ -colorable subgraph in OPT such that each independent set in it has at least one vertex in Y . Consider the simple reoptimization algorithm that consists of returning the set SOL = OPT \ Y (that is, the remaining part of the optimum after the deletion of Y ). It holds that:

w(SOL) = w(S 1 ) + w(S 2 \ Y ) (26) 
w(OPT ′ ) w(OPT ′ \ S 2 ) + w(S 2 \ Y ) (27) 
It also holds that S 1 is an optimal

(k -h ′ )-colorable subgraph in the induced subgraph G[V \ S 2 ]
(otherwise OPT wouldn't be an optimal solution). It also holds that

OPT ′ \ S 2 defines a colorable subgraph in G[V \ S 2 ]
. Thus, the kh ′ biggest independent sets in OPT ′ \ S 2 have weight at most w(S 1 ), and at least k-h k w(OPT ′ \ S 2 ). Hence, one verifies that:

w(S 1 ) k -h ′ k w(OPT ′ \ S 2 ) (28) 
Combining ( 26), ( 27) and ( 28), one finally proves that:

SOL OPT ′ k-h ′ k w(OPT ′ \ S 2 ) + w(S 2 \ Y ) w(OPT ′ \ S 2 ) + w(S 2 \ Y ) k -h k
that concludes the proof. Moreover, a simple proof based on the same construction as in Proposition 3 shows that this constant approximation ratio is the best one can obtain by a polynomial algorithm (unless P = NP). Proposition 15. Under deletion of h < k vertices, max k-colorable subgraph is inapproximable within ratio k-h k + ε in polynomial time, unless P = NP. Proof. Revisit the proof of Proposition 3: out of an instance H of max independent set, with independence number α, we can build an instance H α (V, E) of max k-colorable subgraph, such that for any i k, an optimal i-colorable subgraph in H α has weight exactly iα, and any constant approximation for max k-colorable subgraph is impossible in H α , unless P = NP. We build the following reoptimization instance of max k-colorable subgraph, I α,h (h < k):

• The initial graph G α,h is obtained by adding to H α a clique Y of k vertices, each connected to all vertices of H α , and each with weight α.

• The perturbed graph G ′ α,h is obtained by deleting h of the k vertices of Y . Denote by Y ′ the set of remaining vertices of Y after the deletion (|Y ′ | = kh).

For reasons already explained in the proof of Proposition 3, it holds that Y can be considered as the initial optimum of the reoptimization instance.

Suppose that, for a given h, there exists an algorithm A that computes a k-h k +ε approximation for max k-colorable subgraph under deletion of h vertices. And let S α,h denote the solution returned by A on the instance I α,h , it holds that w(S α,h

) (1 + ε)(k -h)α, and considering that w(Y ′ ) = (k -h)α, it holds that w(S α,h [V ]) ε(k -h)α.
Thus, an algorithm A cannot exist for any h, otherwise it would provide a constant approximation for max k-colorable subgraph in the graph H α (V, E), which is impossible to provide in polynomial time unless P = NP.

Restriction to graphs of bounded degree

We will start with the example of max independent set where the underlying technique of algorithm R1 can be adapted in graphs of bounded degree. We will then try to explain to what extent we can generalize this result. Proposition 16. Under-vertex deletion, max independent set is approximable within ratio 1/2 in graphs of bounded degree.

Proof. Let G(V, E) denote an instance of max independent set, with one known optimal solution OPT, and let G ′ (V ′ , E ′ ) = G[V -{y}]. On this perturbed instance, an optimal solution is denoted by OPT ′ .

Let us first note that if the deleted vertex y was not in the initial optimum OPT, then this solution remains optimal in the modified graph. Thus, let us suppose that y ∈ OPT.

In this case, what remains of the optimum is still optimal, but only in the induced subgraph G ′ [V ′ \N (y)], where G ′ is the modified graph, and N (y) is the set of neighbors of y in G. let SOL 1 denote the set OPT \ {y}, we can directly derive w(SOL 1 ) w(OPT ′ [V ′ \ N (y)]). Considering that |N (y)| is bounded by a constant, say ∆, it is possible in O(2 ∆ ) to check all possible subsets of |N (y)|, and output the maximum weight independent set among them, say SOL 2 . Obviously, w(SOL 2 ) w(OPT ′ [N (y)]). Returning the best solution among SOL 1 and SOL 2 , and taking into account that w(OPT ′ ) = w(OPT ′ [V ′ \ N (y)]) + w(OPT ′ [N (y)]), the result follows.

Note that, provided ∆ 5, the result beats the classical static approximation ratio of 3/(∆ + 2) [START_REF] Halldórsson | Greed is good: Approximating independent sets in sparse and bounded-degree graphs[END_REF] for max independent set in graphs of bounded degree. However, the technique cannot be applied to any hereditary problem. Namely, it can be extended to problems which can be characterized in terms of forbidden subgraphs (and not in terms of forbidden minors), and where the diameter of these forbidden subgraphs is bounded by a constant. Also, all the forbidden subgraphs must be connected components. We denote such problems by max H-free subgraph.

Actually, under these conditions, the deletion setting becomes somehow equivalent to the insertion setting: Proposition 17. In graphs of degree bounded by ∆, reoptimization of max H-free subgraph (where each forbidden subgraph has diameter bounded by d) under deletion of a constant number h of vertices is equivalent to reoptimization of the same problem under the insertion of hd∆ vertices.

Proof. Consider a reoptimization instance I of max H-free subgraph given by an initial graph G(V, E) with degree bounded by ∆, and with a known optimal solution OPT, and a perturbed graph

G ′ (V ′ , E ′ ) = G[V \ Y ], |Y | = h.
Recall that all forbidden subgraphs have diameter bounded by a constant d. Let F S (for forbidden subgraph) denote the set of vertices that are reachable from a deleted vertex by a path of order at most d. Obviously |F S| hd∆. It holds that OPT \ Y is an optimal solution on G

′ [V ′ \ (F S \ OPT)].
Indeed, consider a feasible solution S on the graph G ′ [V ′ \ (F S \ OPT)] each vertex of this graph is:

• either not reachable from any deleted vertex by a path of length d, thus it cannot be part of a forbidden subgraph in G along with vertices of OPT ∩ Y ;

• or in OPT, and considering that OPT is a feasible solution in G, these vertices cannot form a forbidden subgraph in G along with OPT ∩ Y .

In all, no vertex in S can form a forbidden subgraph along with OPT ∩ Y , so that S ∪ (OPT ∩ Y ) is necessarily a feasible solution in G. Now, suppose that w(S) > w(OPT \Y ). This induces that w(S ∪ (OPT ∩ Y )) > w(OPT), which is impossible considering that S ∪ (OPT ∩ Y ) is feasible in G. We proved that OPT \ Y is an optimal solution on G ′ [V ′ \ (F S \ OPT)].

Hence, any reoptimization instance I of max H-free subgraph under deletion of h vertices can be characterized by:

• a graph G ′′ (V ′′ , E ′′ ) = G ′ [V ′ \ (F S \ OPT)] with a known optimal solution OPT \ Y ;

• a graph G ′ (V ′ , E ′ ) where one wants to optimize the problem. G ′ contains G ′′ as a subgraph, and has at most hd∆ additional vertices with respect to G ′′ .

We just showed that an instance of max H-free subgraph, under deletion of h vertices is equivalent to an instance of the problem under insertion of hd∆ vertices, which concludes the proof.

Recall that, for the case of insertion, another generic algorithm was proposed in [START_REF] Ausiello | Complexity and approximation in reoptimization[END_REF]. This algorithm, denoted by R2 uses a polynomial ρ-approximation algorithm for the deterministic problem as subroutine to improve the approximation ratio for the reoptimization version from 1 2 to 1 2-ρ . However, considering that most hereditary problems are not constant-approximable in polynomial time (unless P = NP), R2 cannot be implemented in general graphs.

Regarding the result of Proposition 17, and considering that max independent set is 3/(∆ + 2) -approximable in graphs of degree bounded by ∆, this generic algorithm can be implemented in the vertex-deletion setting. Indeed, we prove the following result that improves the result of Proposition 16.

Proposition 18. In graphs of degree bounded by ∆, under deletion of h vertices, max independent set is approximable within ratio ∆+2 2∆+1 in polynomial time. Proof. Let G(V, E) be an instance of max independent set, with one known optimal solution OPT, and let G ′ (V ′ , E ′ ) = G[V \ Y ], (|Y | = h). On this perturbed instance, an optimal solution is denoted by OPT ′ . In what follows, N (S) is the set of neighbors of all the vertices in S. Denote by A ρ a ρ-approximation algorithm for max independent set in graphs of bounded degree, and A ρ (G) a solution returned by A ρ on a given graph G. Consider now the following algorithm:

• let SOL 1 = OPT \ Y ;

• for each maximal independent set S i in N (OPT ∩ Y ) (they can all be enumerated in O(2 h∆ )), set SOL 2,i = S i ∪ A ρ (G ′ [V ′ \ (S i ∪ N (S i ))]), and SOL 2 = max i (SOL 2,i ).

For reasons already explained in the proof of Proposition 16, it holds that:

w(SOL 1 ) w(OPT ′ [V ′ \ N (OPT ∩ Y )]) w(OPT ′ ) -w(OPT ′ ∩ N (OPT ∩ Y )) (29) 
On the other hand, notice that OPT ′ can be divided in two parts, OPT ′ ∩ N (OPT ∩ Y ), and OPT ′ \ N (OPT ∩ Y ). Among all sets S i 's computed in the second part of the algorithm, one must have computed the set S i * = OPT ′ ∩ N (OPT ∩ Y ). Moreover, the second part of the solution, Aρ(G ′ [V ′ \ (S i * ∪ N (S i * )]) is a ρ approximation on a subgraph where the optimum is OPT ′ \ N (OPT ∩ Y ). In all:

w(SOL 2 ) SOL 2,i * w(OPT ′ ∩ N (OPT ∩ Y )) + ρw(OPT ′ \ N (OPT ∩ Y ) ρw(OPT ′ ) + (1 -ρ)w(OPT ′ ∩ N (OPT ∩ Y )) (30) 
Combining ( 29) and [START_REF] Wagner | On finite affine line transitive planes[END_REF], with coefficients (1ρ) and 1, one finally proves that:

w(SOL) w(OPT ′ ) 1 2 -ρ (31) 
Replacing ρ with 3/(∆ + 2) in (31) leads to the claimed result.

Reoptimization and bin packing

Given a constant B, a list L of n items L = (1, 2, . . . , n, such that, for any i = 1, . . . , n, its size a i B, and n bins each of capacity B, the bin packing problem consists of arranging the items of L in the bins without exceeding their capacity (i.e., the sum of the sizes of the items placed in every bin must not exceed B) and in such a way that a minimum number of bins is used. We show in this section that the basic technique used before in order to get inapproximability results van be also applied on hereditary problems not necessarily defined on graphs. This is, for instance the case of bin packing. We will prove that this problem is inapproximable within approximation ratio 3/2ε, for any ε > 0, in the reoptimization setting studied in this paper. For simplicity we consider a non-normalized instance of bin packing where item i, i n has integer size a i and bins have capacity B. We assume also that, for every i, a i < B.

Suppose, ad contrario, that bin packing is approximable within approximation ratio 3/2 under items insertion and consider an instance I of the partition problem, where n + 1 items 0, 1, . . . , n with sizes a 0 , a 1 , . . . , a n are given such that, for 0 = 1, . . . , n, a i < B and n i=0 a i = 2B, and the objective is to find a partition of the items (if any) into two subsets such that the sum of the sizes of their items is equal to B. partition is known to be NP-complete.

Assume now that items are ordered in decreasing size order (i.e., a 0 a 1 . . . a n ) and consider the list of items L = (a 1 , . . . , a n ) as instance of bin packing. Obviously, since a 0 < B and n i=0 a i = 2B, it holds that n i=1 a i > B. Thus, an optimal bin packing-solution for L has value greater than 1. We claim that L has a solution using 2 bins. Indeed, such a solution places the first k items in one bin, where k is the largest index such that k i=1 B, and the rest of the items from k + 1 to n in a second bin. Let us prove that such a solution is feasible, or equivalently, that n i=k+1 B. Assume, ad contrario, that n i=k+1 > B, recall that, by the definition of k, k+1 i=1 a i > B and observe that k i=0 a i > k+1 i=1 a i > B. In other words, on the hypothesis that n i=k+1 > B, we derive that n i=0 a i = k i=0 a i + n i=k+1 > B + B = 2B, a contradiction. So, the bin packing-instance L has a solution of 2 bins. In all, we can assume that the initial bin packing-instance is L and the optimal solution provided with is as just described.

Assume now that item 0 with size a 0 a 1 arrives. On the hypothesis of the existence of a polynomial reoptimization algorithm achieving approximation ratio 3/2ε for bin packing, if the instance I of partition is a "yes"-instance, then this algorithm would provide a solution with 2 bins, while if I is a "no"-instance, the algorithm would provide a solution with at least 3 bins, deciding so in polynomial time partition.

On the other hand, bin packing is immediately approximable within 3/2 in the reoptimization setting under consideration. Given an instance L and a solution with k bins, when an element arrives, one can open a new bin in order to place it (after, eventually, a quick check that all the items cannot be placed in the same bin) guaranteeing so an approximation ratio (k + 1)/k 3/2, for k 2, while the case k = 1 is trivially polynomial (just check whether n i=1 a i B, or not). 

Hereditary problems

Conclusion

We have discussed the approximability of various hereditary problems in the reoptimization setting where the vertex set is modified. It appears that the initial optimum provides a very useful information when approximating the modified instances, and for most problems discussed, we presented reoptimization algorithms which take advantage of this information in the best possible way, since most approximation ratios that were presented are the best constant ratio achievable in polynomial time (unless P = NP). Indeed, as Table 1 shows, max planar subgraph is the only among the problems studied where a gap occurs between the approximation ratio and the inapproximability bound (in the general case). Reducing this gap, as well as proving Hypothesis 1 for any k are both subjects of ongoing research.
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