
HAL Id: hal-00875540
https://hal.science/hal-00875540

Submitted on 22 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emotion Oriented Programming: Computational
Abstractions for AI Problem Solving

Kevin Darty, Nicolas Sabouret

To cite this version:
Kevin Darty, Nicolas Sabouret. Emotion Oriented Programming: Computational Abstractions for AI
Problem Solving. The 25th Florida Artificial Intelligence Research Society Conference (FLAIRS-25),
May 2012, Marco Island, Florida, United States. pp.157-162. �hal-00875540�

https://hal.science/hal-00875540
https://hal.archives-ouvertes.fr


Emotion Oriented Programming: Computational Abstractions for AI Problem
Solving

Kevin Darty and Nicolas Sabouret
Laboratoire d’Informatique de Paris 6

Université Pierre et Marie Curie, Paris, France

Abstract
In this paper, we present a programming paradigm for AI
problem solving based on computational concepts drawn
from Affective Computing. It is believed that emotions par-
ticipate in human adaptability and reactivity, in behaviour se-
lection and in complex and dynamic environments. We pro-
pose to define a mechanism inspired from this observation
for general AI problem solving. To this purpose, we synthe-
size emotions as programming abstractions that represent the
perception of the environment’s state w.r.t. predefined heuris-
tics such as goal distance, action capability, etc. We first de-
scribe the general architecture of this “emotion-oriented” pro-
gramming model. We define the vocabulary that allows pro-
grammers to describe the problem to be solved (i.e. the en-
vironment), and the action selection function based on emo-
tion abstractions (i.e. the agent’s behaviours). We then present
the runtime algorithm that builds emotions out of the en-
vironment, stores them in the agent’s memory, and selects
behaviours accordingly. We present the implementation of a
classical labyrinth problem solver in this model. We show that
the solutions obtained by this easy-to-implement emotion-
oriented program are of good quality while having a reduced
computational cost.

Introduction
Decision making in complex and dynamic environments
gives rise to space-state combinatorial explosion that makes
classical AI methods difficult to use, whereas human beings
perform rather well in such environments (Minsky 2006).
(Gigerenzer and Brighton 2009) suggests that one reason
why this phenomenon is the use of heuristics by human be-
ings and several authors showed that emotions play a cru-
cial role in action selection for human and animals (Darwin,
Ekman, and Prodger 2002; Baumeister et al. 2007) and act
as a heuristic in decision making (Antos and Pfeffer 2011).
In this context, recent work in affective computing, such as
(Lisetti and Gmytrasiewicz 2002), (Scheutz 2002) and (An-
tos and Pfeffer 2011), demonstrates that emotions and classi-
cal AI decision making should not be opposed to each other,
but can be used in a complementary manner to overcome
limitations of classical AI approaches.

Emotions play several roles in human behaviour: some of
them allow us to focus our attention on specific elements,

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

some alter learning capabilities and some support the com-
munication of information about our internal states (Minsky
2006; De Melo et al. 2011). In this paper, we are interested in
one particular function of emotions that has not been much
considered in the literature: emotions also allow people to
interpret observations in a way that is consistent with their
internal state (Lazarus 1991).

Whereas in classical planning (Hoffmann 2001) and in
machine learning (Sutton and Barto 1998), precise goal in-
formation is required for the problem solver to find a so-
lution, human beings decide based on abstract and incom-
plete representations of their current state and goal. In this
context, emotions can be seen as abstractions synthesizing
a representation of the world at a definite moment and how
it has been perceived by the agent in relation to its goals.
Our claim is that we could design simple solvers whose be-
haviour is driven by such “emotions”. Not only would these
solver ease the programmer’s task (since it works with ab-
stractions instead of complete state descriptions) but it could
improve the agents performance by reducing the space state.

In this article, we propose a programming paradigm for
AI problem solving based on abstract concepts called emo-
tions that ease both the problem definition and solving algo-
rithm. In the next section, we present related work in affec-
tive computing and decision making. Section presents our
emotion-oriented programming model. Section presents our
evaluation on a dynamic labyrinth problem, which proved
that this method led to results similar to humans in quality,
while limiting the programmer’s task.

Related Work
Emotions play an active role in people’s behaviour. (Lazarus
1991) showed that people try to keep the situation under con-
trol by regulating their emotions. In this view, emotions oc-
cur as a result of environment stimuli and several appraisal
models are proposed to capture this “cognitive evaluations”
of the situation (Scherer, Wallbott, and Summerfield 1986;
Roseman 1996; Ortony, Clore, and Collins 1990). Although
the psychological validity of these models has been criti-
cized (Barrett 2006), the idea that emotions capture the sit-
uation in a comprehensive way seems interesting when it
comes to problem solving in non-trivial environments, i.e.
dynamic and partially observable environments with a “rea-
sonably large” space-state. This is why we propose to de-



velop AI problem solvers that use emotions as first-order
entities.

There are two main approaches to emotion representa-
tion in the literature: emotion categories (Ortony, Clore, and
Collins 1990; Batra and Holbrook 1990), which consists in
enumerating all kind of emotions; and dimensions (Mehra-
bian 1996), which considers that all emotions can be rep-
resented as positions in an N-dimension space. We will not
discuss here the validity of each model nor the number of
necessary categories or dimensions: (Gebhard 1996) showed
that dimensions are an efficient approach to parameter an
agent’s activity, whereas categories made narrative and sce-
nario construction easy, and that it was possible to relate
one to the other. When it comes to the question of program-
ming AI problem solving, this suggests that we should use
emotion categories to make life easier for programmers who
want to design decision rules, whereas the agent’s internal
should rely on a dimensional model of emotions to enhance
decision making.

(Loewenstein and Lerner 2003) wrote a comprehensive
study on the role of emotions in decision making. Some re-
searchers tried to reproduce the exact functioning of the hu-
man decision making (Anderson et al. 2004). More recently,
(de Melo, Zheng, and Gratch 2009) and (Antos and Pfef-
fer 2011) proved that emotion could help in decision tasks.
However, in most approaches, emotions are used to alter the
decision making process by giving additional information
to the agent. (Antos and Pfeffer 2011) suggests a different
path: emotions could be used directly as a heuristic for goal
selection. Our approach directly follows their tracks but in a
task-oriented programming scheme (whereas Antos and Pf-
effer use goal-oriented agents). Emotions in our model are
abstractions that control the behaviour selection.

One key element in this approach is that emotions in
agents cannot be assimilated to human emotions. According
to (Scheutz 2002), agents emotional models in AI should
stay away from anthropomorphizing labels: while a robot
can be described as being in a state of “disappointment”,
which leads to a state of “sadness”, these states will bear
no resemblance to human states labeled the same if they
are, for example, merely implemented as states of a finite
automaton. In other words, our model has to remain easily
implementable for programmer and does not need to per-
fectly fit with facts. As a consequence, the programmer in
our paradigm should not have to consider affective dimen-
sions, but rather representations of the agent’s internal state
associated with stimuli, that will allow to specify the action’s
rules. The agent internal state must be managed by the solver
itself. To this purpose, we follow (Loewenstein and Lerner
2003)’s proposition that mood plays a key role in regulat-
ing the perception-decision balance (i.e. the repartition of
cognitive activity between perception and decision-making
processes), and we implement an automated mechanism for
balancing between decision epochs and perceptions. This
mechanism will thus serve as the basis for the emotion-based
action selection.

The last element that requires specific attention in our
programming paradigm is the management of memory.
(Loewenstein and Lerner 2003) showed that emotions play

a role in the memorization of events. According to Miller,
the human being cannot focus on more than a few informa-
tion (Miller 1956). As a consequence, (James, Burkhardt,
and Skrupskelis 1981) propose to distinguish between the
primary memory (or short-term memory) to focus on im-
portant information and a secondary memory containing the
whole knowledge. We adopted this model in our approach:
mood (and thus perception-decision balance) will be com-
puted based on a limited number of recent elements, whereas
all collected information about the problem will be stored in
a long-term memory, thus allowing the programmer to de-
sign more complex behaviour.

Emotion Oriented Programming
Our proposal is to draw the line to a new programming
paradigm for AI problem solving that considers emotions
as the core elements. Emotions in this work must not be un-
derstood as human-like emotions, but as abstract concepts
playing two roles: 1) they synthesize information about the
solving process (distance to the goal, current progress, etc)
and 2) they allow programmers to write simpler rules, based
on the emotional state of the agent and partial elements of its
environment. We call this paradigm Emotion Oriented Pro-
gramming (EOP) and we claim that it leads to interesting
results in non-trivial environments.

In this section, we first present the general architecture
of the model, and we separate what is part of the problem
definition, what is processed automatically by the EOP in-
terpreter and what is devoted to the solution’s programmer.
We give a complete definition of the vocabulary for both the
environment and solver agent definition.

General Architecture
The EOP model architecture has three parts:

• the problem definition part which allows the problem
programmer to specify the problem as an environment,
characterized by observable variables (e.g. the agent is lo-
cated on (x, y)) and operations on these variables (e.g.
move one step forward).

• the behaviour definition part which allows the solution
programmer to design behaviours used by the emotion-
oriented solver. Behaviours can be understood as series of
operations guarded by emotions.

• the EOP interpreter which automatically computes emo-
tions from the environment, balances the decision and ob-
servation processes, and selects a behaviour based on the
programmed solution.

On the figure, these three parts are represented with red
dashed blocks for tasks devoted to the problem programmer,
green dotted blocks for those devoted to the solution pro-
grammer and blue circled blocks for the EOP interpreter.

At each step of the execution, the environment builds an
evaluation of the problem state which is used by the solver
to generate an emotional state. It also provides information
about its variables as perceptions. Perceptive filters can be
used to block some of them, whereas all others automat-
ically generate what we call emotions. Emotions describe



Figure 1: General architecture

why a given emotional state was generated at a given time
period. They are stored in the memory and the most recent
ones (i.e. those stored in the working memory) are used to
actualize a PAD-based mood values (i.e. the agent’s internal
state). This mood will be used to balance between action and
perception cycles. Moreover, during a perception cycle, the
reaction behaviour is selected depending only on the work-
ing memory.

Emotions
The EOP model uses a dimensional representation of emo-
tional state for both stored emotions and internal mood. An
emotional state −−−→PAD = (P,A,D) ∈ [−1, 1]3 contains the
three Mehrabian dimensions (Mehrabian 1996): Pleasure,
Arousal and Dominance which are interpreted as follows:
• the pleasure expresses the proximity of a local goal. An

important pleasure means that the solver is getting closer
to the solution. An aversion denotes that the solver is mov-
ing away from it goal.

• the arousal represents the novelty and is measured with
differences between the current and the previous problem
state. Thus, a neutral value correspond to a traversal in
which states are similar. When sudden changes take place,
the arousal increase.1

• the dominance indicates if the situation is under control
(i.e. the ability for the solver to act on the environment).
A strong dominance means that the solver has a wider
range or possible actions to perform.

This model is used at two levels. First, the agent’s inter-
nal mood, whose role is to balance between perception and
decision, is directly a −−−→PAD vector. Second, each percep-
tion from the environment is turned into an emotion. In our
model, an emotion is a triple e = (

−−−−→
PADe, Re, te) where

Re is the reason of the emotion, i.e. the environment’s ele-
ments that triggered the affective dimensions (for instance, I
was feared by a monster) and te is the date of the emotion.

1One could argue that arousal only occurs when state change
is connected to the agent’s goal. This notion of “connection to the
goal” is however difficult to capture in a generic context. Filters
and relevance functions, presented later, can be used to control this
notion.

The computation of−−−−→PADe is presented in section “Problem
Solving”.

Problem description
The problem definition part is used by the problem program-
mer to describe the environment. An environment E is de-
fined as a 7-tuple E = 〈V, P,O,A,N, F, Proc〉 with:

• V is a set of private variables v with domains Dv;

• P : v → Dv is perception function that associate values
to variables (only a subset of V is visible);

• O is a set of operations o = 〈Prec,Eff〉 with precondi-
tions and effects on V ;

• A is a set of possible actions for the solver: ∀a ∈ A, a =
〈o, c〉 with c the action cost associated to operation o;

• N is the total number of action points that the solver can
use at each execution step;

• F is a set of evaluation functions for the solver;

• Proc is the environment’s internal process, i.e. a series of
operations applied at each execution step.

Four evaluation functions are mandatory in our model for
the computation of the system’s emotional states (i.e. the
PAD value) in our EOP-solver:

• Solved : V → B which returns true only if the problem
is in a final state;

• Solvable : V → B which returns true if the problem still
has a solution;

• Goal(s) : V → R+ which returns an evaluation of the
distance to the goal;

• Distance : d(s, s′) → R+, d(s, s′) = 0 ⇔ s = s′

which returns an evaluation of the distance between two
different states.

Emotion-oriented behaviour description
Once the problem has been defined (previous section), an
EOP solution consists in a set of behaviours. The EOP
solver (presented in the next section) selects behaviours
based on its mood and received emotions.

A behaviour b = 〈pb, fb, rb〉 is characterized by:



• Its plan, i.e. a linear sequence of actions pb =
(a1, a2, ..., an) to perform while this behaviour is active.
Keep in mind that actions are defined with precondition
(for example, moves need to check for wall) and effect
(e.g. changing position). If a precondition fails, the be-
haviour is stopped and re-examined at the next decision
epoch (see next section).

• A set of filters applicable to each plan step: ∀ai, fi ∈ V
is the subset of variables that the agent wants to ignore:
no emotion will be computed based on the perceptions
P (v), v ∈ fi. As a consequence, filtered perceptions no
longer affect the mood nor future decisions.

• A relevance function rb : m × EWM → R+ where m =−−−→
PAD is the current mood andEWM is the set of emotions
in the working memory.

As will be explained in the next section, behaviours are
selected based on the relevance function rb, i.e. on the emo-
tions in the working memory and the current mood of the
solver −−−→PAD. This allows the programmer to better control
the behaviour selection. For instance, a flee behaviour can
be triggered as soon as the user is in a fear mood, or only
if a real danger is perceived in the environment: all this is
encompassed in rflee.

Problem solving
The EOP problem solver works in cycles of 3 steps. First,
the environment performs the next actions in the currently
selected behaviour (in the limit of the maximum allowed
action points). If no behaviour has been selected or if the
solver is in a “perception” epoch (depending on its mood),
a new behaviour is selected. Second, the environment runs
one step (see Proc in “Problem description”). Third, new
perceptions are received (based on the current state and fil-
ters), corresponding emotions are generated and the mood is
updated accordingly. This subsection presents the behaviour
selection step and the mood update.

Behaviour selection Whenever new behaviour must be
selected, the solver compares the rb values of all behaviours
b such that rb > 0. These values are normalized and we use
a random selection based on the order of rb.

Mood update The new mood
−→
m′ is computed from the

previous mood −→m, the initial mood −→m0 and the working
memory WM :

−→
m′ = γ.

(
ε

(
−→σ ×

∑
e∈WM

−−−−→
PADe

|WM |
− −→m

)
+−→m

)
+−→m0

where γ ∈ [0, 1] is the convergence factor toward the initial
mood, ε ∈ [0, 1] is influence factor of new perceptions on the
mood and −→σ ∈ [0, 1]3 is the sensibility on each dimension.

Once the mood value has been updated, it is used to bal-
ance between perception and action epochs:

bal =
mD +mP + 2

4
× mA + 1

2

Whenever bal ≥ 0, the solver is set in an action epoch:
it will perform the next actions of the currently selected be-
haviour. On the contrary, when bal < 0, it enters a percep-
tion epoch and will select a new behaviour.

Perception and emotions When new perception occur
(i.e. at the end of each step), the system computes emotion
values as follows:
• Pleasure is based on the distance to the goal: P =
f(goal(v′)−goal(v)), where f(x) = 1−exp−x if x ≥ 0
and expx − 1 otherwise.

• Arousal is based on the distance with previous state: A =

1− 2exp−d(v,v
′)).

• Dominance is based on the number of possible actions:
D = 2

(
|a∈A.aPrec=>)|

|A|

)
− 1.

These emotions will, in turn, lead to mood update and even-
tually to new behaviour selection.

Experimentation
Implementation
Our model was implemented as a Java 1.5 API. This API
allows programmers to implement the problem part as an
Environment subclass and the behaviour definition part as a
EOPSolution one. The problem definition requires to imple-
ment the evaluation functions (goal, distance, solved, etc)
and the process method that applies the action sequence,
updates the problem state and sends agent perceptions (all
these elements being problem-dependant).

The EOP model itself, with perception, mood and action
selection, is integrated and the programmer needs only to fill
its EOPSolution with instances of Behaviour and Filter. Be-
haviours define the action plans and its precondition in terms
of emotions. Filters are sets of perceptions, emotions and
relevance functions which define in which emotional state
perceptions will be filtered.

Example
To test our EOP model, we implemented a Wumpus prob-
lem, using the Java API. The labyrinth contains treasures,
traps (that must be avoided) and monsters (that chase the
agent). The goal is to reach the exit with a maximum amount
of treasure, while avoiding traps and monsters. The agent
perceives only the 4 surrounding positions when they con-
tain walls, traps or treasures. It also receives information
when a monster is less than 4-cells away (monster smell).
The agent does not know the position of the exit, but it
knows the distance to this exit (through the distance func-
tion). It can “see” the exit at a distance of 3.

The agent has five possible actions: moving one step up,
down, left or right, and picking up a treasure when the cur-
rent position contains one. This problem makes an interest-
ing testbed for the EOP model because it is both dynamic
(monsters move) and partially observable (positions of mon-
sters, traps, treasures and exit is unknown). Moreover, using
action points, we can also add a time constraint for decision
and action. In our implementation, out of 50 action points
per turn, each move costs 10 and taking a treasure costs 40.



Figure 2: The implemented Wumpus problem. Exit is rep-
resented by a flag, start by a coin, walls by bricks, treasures
by rubies, traps by policeman’s helmets, monsters by yellow
squares, agent location by a blue square.

We developed several solvers for this labyrinth, including
a simple random-based action selection model and a naive
depth-first search algorithm, but we focus the discussion on
two solvers:

• a modified A* that has access to the full labyrinth configu-
ration (which removes the partially-observable aspect but
gives an idea of what could be an “optimal” solution on
the labyrinth),

• a simple EOP-based solution which relies on 4 affective
behaviours:

– Discover which selects the less visited patch among the
4 surrounding ones. It does not apply any filter to the
agent’s perceptions. Its relevance is set to 10 (i.e. low
w.r.t. other behaviours) when it is in a neutral emotional
state. When there is a monster or a trap nearby, its rel-
evance does not fall down completely to 0. As a conse-
quence, it has a (low) probability to be selected even in
other situations (i.e. mood and working memory).

– FollowEnd draws a direct path to the exit with moving
actions and filters all perceptions so as to focus on the
exit. Its relevance is very high (100) when the arousal
increases and the exit patch is visible. It cannot be se-
lected when the exit position is unknown.

– GoToTreasure builds a plan to move toward a treasure
and pick it up. It filters other possible treasure percep-
tions so as to focus on this one. Its relevance is 20
if pleasure and arousal increase due to a surrounding
patch containing a treasure. It cannot be selected when
no treasure has been detected.

– RunAway which moves 4 patches back to avoid a mon-
ster. It does not apply any filter. Its relevance is 50 when
pleasure and dominance are negative (due to a mon-
ster perception). It cannot be selected in the absence of
monster nearby.

Note that since our model clearly separate the problem
definition to its resolution, the behaviour definition part on
the EOP model was an effortless task. Using emotions as
programming abstractions makes the solver definition quite
easy. The real difficulty is in the problem definition itself
(defining action rules and evaluation functions).

Experimental setting
The studied class problem is not solvable with random or
classic naive algorithm (our depth-first search implementa-
tion hardly obtains 5% success when monsters are in the
labyrinth). Problem specific strategies give better results. In
particular, good results are obtained by the A* algorithm
with full information (however, this implementation does
not fulfill the partially-observable hypothesis and lacks re-
activity when monsters are in the path to the exit).

In a slightly different configuration, Antos and Pfeffer
showed that PDM learning can lead to good results (Antos
and Pfeffer 2011), especially when the stochastic impact is
reduced (which is the case when the number of monsters is
limited). However, for this kind of problems, human beings
tend to be much more efficient. For this reason, we propose
to compare our EOP model’s results with those obtained by
human beings.

We implemented a graphical user interface (GUI) that al-
lows users to select the agent sequence of actions and to ob-
serve perceptions in a visual representation of the labyrinth.
Unknown patches are replaced by a question mark and the
labyrinth boundaries are not visible to the user. Six people
participated to this evaluation. Each subject was first intro-
duced the system’s functioning through a test labyrinth, after
which it had to solve 6 different labyrinths with increased
order of difficulty.

Results
We compared the overall score (computed after the num-
ber of collected treasures defined here as subgoals, the total
number of actions, the tics count and whether the exit (i.e.
the goal) was reached or not) between the human users and
our EOP algorithms (run six times) on the same labyrinth
configuration. We also compared the human and solver ac-
tion sequences (respectively seqh and seqs) using the Leven-
shtein distance (LD) normalized by the length of the longer
solution:

1− LD(seqh, seqs)

max(|seqh|, |seqs|)
Human and solver perception times are not comparable and
are not considered during our tests, this is why we remove
perception tics from the sequence.

When the exit is reached, scores obtained by human sub-
jects (avg = 989) are slightly better than those obtained
by the EOP solver(avg = 867). A* performs better (avg =
1012), obviously because it has access to the entire labyrinth
structure. These values tend to confirm that human users
adopt behaviours that lead almost to the maximum score
(which was one of our working hypothesis) and that the EOP
solver is not so bad on these non-trivial problems.

More interestingly, two out of six configurations were
complete failures for both human subjects and our EOP
solver: whenever the human user cannot solve the problem,
neither does our EOP model. In these situations, the “sur-
vival time” of the solver is three times higher than those of
the human subjects or the A* solver: our solution selects the
RunAway behaviour quite often.



As far as action sequences are concerned, we first observe
that there is a low similarity between different human sub-
jects on the same labyrinth (42% similarity in average, with
a peak to 58% for one labyrinth and a standard deviation of
0.079). This reflects that they adopted different solutions on
the same labyrinth. Compared to those human behaviours,
our solver has a 42% similarity (with a standard deviation
of 0.063), which tends to confirm that it uses some sort of
similar actions, although this would require a closer look to
determine which aspects are similar (e.g. maximum and av-
erage similar sequence length).

Conclusion and future work
This paper presents a new approach to AI problem solv-
ing in non-trivial environments, based on programming with
abstract concepts, called emotions. These emotions capture
information on the solving process, based on information
given by the solver, and serve as the basic element for the
action rules definition.

We implemented a prototype version of this model in Java
and tested it against different environments in a dynamic
labyrinth problem with partial information. We compared
our results with classical AI approaches and with human be-
haviours. We showed that our model obtains slightly bet-
ter results than human testers and that the path to the solu-
tion shows similarities with the behaviour adopted by hu-
mans. Moreover, the implementation of the EOP solution,
compared to other possible approaches (e.g. Q-Learning),
is quite straightforward: the programmer gives action rules
based on emotions and perceptions. It could be interesting
to compare the EOP performance to POMDP approaches.

The work is only a first step toward a real programming
paradigm and many perspectives can be foreseen. With the
growing interest in affective computing and its connection
to decision making, new operators for emotional concepts
can be proposed, i.e. different abstractions of the situation
and the progress to the goal. Those operators should be inte-
grated into an Emotion Oriented Platform, so that program-
mers could compare and combine them together.

Acknowledgments
Thanks to Cindy Mason for giving us the permission to ex-
ploit the original idea of emotion oriented programming.

References
Anderson, J.; Bothell, D.; Byrne, M.; Douglass, S.; Lebiere,
C.; and Qin, Y. 2004. An integrated theory of the mind.
Psychological review 111(4):1036.
Antos, D., and Pfeffer, A. 2011. Using emotions to en-
hance decision-making. In Twenty-Second International
Joint Conference on Artificial Intelligence.
Barrett, L. F. 2006. Solving the emotion paradox: Cate-
gorization and the experience of emotion. Personality and
social psychology review 10(1):20.
Batra, R., and Holbrook, M. 1990. Developing a typology
of affective responses to advertising. Psychology and Mar-
keting 7(1):11–25.

Baumeister, R. F.; Vohs, K. D.; DeWall, C. N.; and Zhang,
L. 2007. How emotion shapes behavior: Feedback, anticipa-
tion, and reflection, rather than direct causation. Personality
and Social Psychology review 11:167–203.
Darwin, C.; Ekman, P.; and Prodger, P. 2002. The expres-
sion of the emotions in man and animals. Oxford University
Press, USA.
De Melo, C.; Gratch, J.; Antos, D.; and Carnevale, P. 2011.
A Computer Model of the Interpersonal effects of Emotion
Displayed in Social Dilemmas. In Proc. Affective Comput-
ing and Intelligent Interaction.
de Melo, C.; Zheng, L.; and Gratch, J. 2009. Expression of
moral emotions in cooperating agents. In Intelligent Virtual
Agents, 301–307. Springer.
Gebhard, P. 1996. Alma: A layered model of affect. Inter-
national Conference On Autonomous Agent 29–39.
Gigerenzer, G., and Brighton, H. 2009. Homo heuristicus:
Why biased minds make better inferences. Topics in Cogni-
tive Science 1(1):107–143.
Hoffmann, J. 2001. Ff: The fast-forward planning system.
AI magazine 22(3):57.
James, W.; Burkhardt, F.; and Skrupskelis, I. 1981. The
principles of psychology, volume 1. Harvard Univ Pr.
Lazarus, R. 1991. Emotion and adaptation. In Handbook of
personality: Theory and Research. Oxford University Press.
609–637.
Lisetti, C., and Gmytrasiewicz, P. 2002. Can a rational agent
afford to be affectless? a formal approach. Applied Artificial
Intelligence 16(7-8):577–609.
Loewenstein, G., and Lerner, J. 2003. The role of affect in
decision making. Handbook of affective science 619:642.
Mehrabian, A. 1996. Pleasure-arousal-dominance: A gen-
eral framework for describing and measuring individual dif-
ferences in temperament. Current Psychology 14(4):261–
292.
Miller, G. 1956. The magical number seven, plus or minus
two: some limits on our capacity for processing information.
Psychological review 63(2):81.
Minsky, M. 2006. The emotion machine: commensense
thinking, artificial intelligence, and the future of the human
mind. Simon and Schuster.
Ortony, A.; Clore, G.; and Collins, A. 1990. The cognitive
structure of emotions. Cambridge Univ Pr.
Roseman, I. 1996. Appraisal determinants of emotions:
Constructing a more accurate and comprehensive theory.
Cognition & Emotion 10(3):241–278.
Scherer, K.; Wallbott, H.; and Summerfield, A. 1986. Expe-
riencing emotion: A cross-cultural study. Cambridge Uni-
versity Press; Paris: Maison des Sciences de l’Homme.
Scheutz, M. 2002. Agents with or without emotions. In
Proceedings FLAIRS, volume 2, 89–94.
Sutton, R., and Barto, A. 1998. Reinforcement learning: An
introduction. The MIT press.


