On the NP-Completeness of the Perfect Perfect Matching Free Subgraph Problem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

On the NP-Completeness of the Perfect Perfect Matching Free Subgraph Problem

Résumé

Given a bipartite graph G = (U υ V,E) such that |U| = |V | and every edge is labelled true or false or both, the perfect matching free subgraph problem is to determine whether or not there exists a subgraph of G containing, for each node u of U, either all the edges labelled true or all the edges labelled false incident to u, and which does not contain a perfect matching. This problem arises in the structural analysis of differential-algebraic systems. The purpose of this paper is to show that this problem is NP-complete. We show that the problem is equivalent to the stable set problem in a restricted case of tripartite graphs. Then we show that the latter remains NP-complete in that case. We also prove the NP-completeness of the related minimum blocker problem in bipartite graphs with perfect matching.
Fichier principal
Vignette du fichier
cahier_312.pdf (276.12 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00875532 , version 1 (22-10-2013)

Identifiants

  • HAL Id : hal-00875532 , version 1

Citer

Mathieu Lacroix, Ridha Mahjoub, Sébastien Martin, Christophe Picouleau. On the NP-Completeness of the Perfect Perfect Matching Free Subgraph Problem. 2011. ⟨hal-00875532⟩
309 Consultations
90 Téléchargements

Partager

More