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Subexponential and FTP-time Inapproximability of Independent Set and Related Problems

Fixed-parameter algorithms, approximation algorithms and moderately exponential algorithms are three major approaches to algorithms design. While each of them being very active in its own, there is an increasing attention to the connection between different approaches. In particular, whether Independent Set would be better approximable once endowed with subexponential-time or fpt-time is a central question.

In this paper, we present a strong link between the linear PCP conjecture and the inapproximability, thus partially answering this question.

Introduction

In this paper we look into three approaches to algorithms design: Fixed-parameter algorithms, approximation algorithms and moderately exponential algorithms. These three areas, each of them being very active in its own, have been considered as foreign to each other until recently. Polynomial-time approximation algorithm produces a solution whose quality is guaranteed to lie within a certain range from the optimum. One illustrative problem indicating the development of this area is Independent Set. The approximability of Independent Set within constant ratios 1 has remained as the most important open problems for a long time in the field. It was only after the novel characterization of the NP given by the PCP theorem [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF][START_REF] Arora | Proof verification and intractability of approximation problems[END_REF] that impossibility of such approximability has been definitely proven. Subsequent improvements of the original PCP theorem, leading to corresponding refinements of the characterization of NP have also led to the actual very strong inapproximability result for Independent Set, namely, that it is inapproximable within ratios Ω(n ε-1 ) for any ε > 0, unless P = NP [START_REF] Zuckerman | Linear degree extractors and the inapproximability of max clique and chromatic number[END_REF].

Moderately exponential algorithm is to allow exponential running time for the sake of optimality. In this case, the endeavor lies in limiting the growth of running time function as slow as possible. Parameterized complexity provides an alternative framework to analyze the running time in a more refined way [START_REF] Downey | Fellows Parameterized Complexity[END_REF][START_REF] Flum | Parameterized complexity theorey[END_REF]. The aim is to get an O(f (k) • n o(k) )-time algorithm in which the exponent of the input size n is independent of k. As these two research programs offer a generous running time compared to polynomial-time approximation algorithms, a growing amount of attention is paid to them as a way to cope with hardness in approximability. The first one deals with moderately exponential approximation. The goal of this program is to explore approximability of highly inapproximable (in polynomial time) problems in superpolynomial or moderately exponential time. Roughly speaking, if a given problem is solvable in time say O * (γ n ) but it is NP-hard to approximate within some ratio r, we seek r-approximation algorithms with complexity -significantly -lower than O * (γ n ). This issue has been considered for several problems such as Set Cover [START_REF] Cygan | Exponential-time approximation of weighted set cover[END_REF][START_REF] Bourgeois | Efficient approximation of min set cover by moderately exponential algorithms[END_REF], Coloring [START_REF] Bjørklund | Set partitioning via inclusionexclusion[END_REF][START_REF] Bourgeois | Efficient approximation of min coloring by moderately exponential algorithms[END_REF], Independent Set and Vertex Cover [START_REF] Bourgeois | Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms[END_REF], Bandwidth [START_REF] Cygan | Exact and approximate bandwidth[END_REF][START_REF] Fürer | An exponential time 2approximation algorithm for bandwidth[END_REF].

The second research program handles approximation by fixed parameter algorithms. In this approximation framework, we say that a parameterized (with parameter k) problem Π is r-approximable if there exists an algorithm taking as inputs an instance I of Π and k and either computes a solution smaller or greater than (depending on whether Π is, respectively, a minimization, or a maximization problem) rk, or returns "no", asserting in this case that there is no solution of value at most or at least k. This line of research was initiated by three independent works [START_REF] Downey | Parameterized approximation problems[END_REF][START_REF] Cai | Fixed-parameter approximation: conceptual framework and approximability results[END_REF][START_REF] Chen | On parameterized approximability[END_REF]. As an excellent overview in this direction, see [START_REF] Marx | Parameterized complexity and approximation algorithms[END_REF].

Several natural questions can be asked dealing with these two programs. In particular, the following ones have been asked several times (see for instance [START_REF] Marx | Parameterized complexity and approximation algorithms[END_REF][START_REF] Downey | Parameterized approximation problems[END_REF][START_REF] Fürer | An exponential time 2approximation algorithm for bandwidth[END_REF][START_REF] Bourgeois | Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms[END_REF]) and of great interest: Q1 can a highly inapproximable in polynomial time problem be well-approximated in subexponential time? Q2 does a highly inapproximable in polynomial time problem become wellapproximable in parameterized time?

Few answers have been obtained until now. Regarding Q1, negative results can be directly obtained by gap-reductions for certain problems. For instance, Coloring is not approximable within ratio 4/3ǫ, since this would allow to determine whether a graph is 3-colorable or not in subexponential time. This contradicts a widely-acknowledge computational assumption [START_REF] Impagliazzo | Which problems have strongly exponential complexity?[END_REF]:

Exponential Time Hypothesis (ETH): There exists an ǫ > 0 such that no algorithm solves 3Sat in time 2 ǫn , where n is the number of variables.

Regarding Q2, [START_REF] Downey | Parameterized approximation problems[END_REF] shows that assuming FPT = W [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF], for any r the Independent Dominating Set problem is not r-approximable (in FPT time) 2 . Among interesting problems for which Q1 and Q2 are worth being asked are Independent Set, Coloring and Dominating Set. They fit in the frame of both Q1 and Q2 above: they are hard to approximate in polynomial time while their approximability in subexponential or in parameterized time is still open. Note that Independent Set and Dominating Set are moderately exponential approximable within any ratio 1ε, for any ε > 0 [START_REF] Bourgeois | Efficient approximation of min set cover by moderately exponential algorithms[END_REF][START_REF] Bourgeois | Approximation of max independent set, min vertex cover and related problems by moderately exponential algorithms[END_REF], while Coloring is approximable within ratio (1 + 1/χ(G)), where χ(G)) denotes the chromatic number of a graph G in moderately exponential time [START_REF] Bjørklund | Set partitioning via inclusionexclusion[END_REF][START_REF] Bourgeois | Efficient approximation of min coloring by moderately exponential algorithms[END_REF].

Our contribution in this paper is to establish a link between a major conjecture in PCP theorem and inapproximability in subexponential-time and in fpt-time, assuming ETH. We first state the conjecture while the definition of PCP is deferred to the next section.

Linear PCP Conjecture (LPC): 3Sat ∈ PCP 1,1/2 [log n + D, E],
where n is the number of variables in the 3Sat instance, D and E are constant.

Unlike ETH which is arguably recognized as a valid statement, LPC is a wide open question. In the main results summarized below, we claim that if LPC turns out to hold, it immediately implies that one of the most interesting questions in subexponential and parameterized approximation is negatively answered.

Theorem 1. (Main Result) Assuming ETH, the followings hold for Independent Set on n vertices, for any constant 0 < r < 1.

(i) There is no r-approximation algorithm in time O(2 n 1-δ ) for any δ > 0. (ii) There is no r-approximation algorithm in time O(2 o(n) ) if LPC holds. (iii) There is no r-approximation algorithm in time O(f (k)n O(1) ) if LPC holds.
Note that (i) is not conditional upon LPC. In fact, this is an immediate consequence of near-linear PCP construction achieved recently in [START_REF] Moshkovitz | Two query pcp with sub-constant error[END_REF]. It has led to inapproximability results for Max-3Sat and Max-3Lin for some subexponential running time under ETH. Section 2 reviews the known consequences of near-linear PCP. In Section 3, we present new results along this line. In Section 4, we consider parameterized inapproximability of two fundamental problems Independent Set and Dominating Set, provided LPC holds.

Preliminaries

PCP and inapproximability of Max-3Sat

A problem is in PCP α,β [q, p] if there exists a PCP verifier which uses q random bits, reads at most p bits in the proof and is such that:

-if the instance is positive, then there exists a proof such that V(erifier)

accepts with probability at least α; -if the instance is negative, then for any proof V accepts with probability at most β.

Based upon the above definition, the following theorem is proved in [START_REF] Moshkovitz | Two query pcp with sub-constant error[END_REF], presenting a further refinement of the characterization of NP. The following is a stronger version of Corollary 2: it holds if LPC holds. This will be our working hypothesis.

Hypothesis 1 Under ETH, there exists r < 1 such that: for every ǫ > 0 it is impossible to distinguish between instances of Max-3Sat with m clauses where at least (1ǫ)m are satisfiable from instances where at most (r + ǫ)m are satisfiable, in time 2 o(m) .

A very standard argument gives the following fact.

Lemma 1. If LPC holds, then Hypothesis 1 also hold.

Proof. Suppose that 3Sat ∈ PCP 1,1/2 [log n + D, E], where n is the number of variables in 3Sat instance, D and E are constants.

Then the size of the proof is at most E2 |R| = cn for some constant c (where |R| = log n + D is the number of random bits) since E2 |R| is the total number of bits that we read in the proof. Take one variable for each bit in the proof: x 1 , • • • , x cn . For each random string R: take all the 2 E possibilities for the E variables read, and write a CNF formula which is satisfied if and only if the verifier accepts. This can be done with a formula with a constant number of clauses, say C 1 , each clause having a constant number of variables, say C 2 (C 1 and C 2 depends on E).

If we consider the CNF formed by all theses CNF for all the random clauses, we get a CNF with C 1 2 |R| clauses on variables x 1 , • • • , x cn . The clauses are on C 2 variables but by adding a constant number of variables we can replace a clause on C 2 variables by an equivalent set of clauses on 3 variables. This way we get a 3-CNF formula and multiply the number of variables and the number of clauses by a constant, so they are still linear in n. For each R you have a set of say C ′ 1 clauses.

Suppose that we start from a satisfiable instance of 3Sat. Then there exists a proof for which the verifier always accepts. By taking the corresponding values for the variables x i , and extending it properly to the new variables y, all the clauses are satisfied.

Suppose that we start from a non satisfiable instance of 3Sat. Then for any proof (i.e. any truth values of variables), the verifier rejects for at least half of the random strings. If the verifier rejects for a random string R, then in the set of clauses corresponding to this variable at least one clause is not satisfied. It means that among the

C ′ 1 2 |R| clauses (total number of clauses), at least 1/2 • 2 |R| are not satisfied, ie a fraction 1/(2C ′ 1 ) of the clauses. Then either m = C ′ 1 2 |R| = O(n) clauses are satisfiable, or at least m/(2C ′ 1 )
clauses are not satisfied by each assignment. Distinguishing between these sets in time

2 o(m) would solve 3Sat in 2 o(n) . ⊓ ⊔
Dealing with Independent Set, it is easy to see that, for any increasing and unbounded function r(n), the problem is approximable within ratio 1/r(n) in subexponential time (recall that ratios n ǫ-1 are are very unlikely to be achieved in polynomial time). Indeed, simply consider all the subsets of V of size at most n/r(n) and return the largest independent set among these sets. If a maximum independent set has size at most n/r(n) then the algorithm finds it, otherwise the algorithm outputs a solution of size n/r(n), while the size of an optimum solution is at most n. The running time of the algorithm is

O * ( n n/r(n) ) that is subexponential in n.
Let us finally note that Independent Set has the so called self-improvement property [START_REF] Garey | Computers and intractability. A guide to the theory of NP-completeness[END_REF] claiming, roughly speaking, that either it is polynomially approximable by a polynomial time approximation schema, or no polynomial algorithm exists that guarantees some constant approximation ratio, unless P = NP.

With a similar proof, the above self-improvement property can be proved for Independent Set also in the case of parameterized approximation. Lemma 2. [START_REF] Escoffier | Moderately exponential and parameterized approximation: some structural results[END_REF] The following statements are equivalent for Independent Set:

there exists r ∈ (0, 1) such that there exists an r-approximation parameterized algorithm; -for any r ∈ (0, 1) there exists an r-approximation parameterized algorithm.

Expander Graphs

Expander graphs is a well known tool that has been used to amplify the inapproximability gap for Independent Set in polynomial time. Similar arguments allow actually to derive a gap amplification with linear size amplification of the instance (see Theorem 4 below). This will be useful later to derive inapproximability bounds in subexponential time (where linear size amplification plays a crucial role). This fact follows from the following lemmas. Lemma 3 ([19], or Th. 8.1 in [START_REF] Hoory | Expander graphs and their applications[END_REF]). For every positive integer k, there exists a (k 2 , 8, 5 √ 2/8)-expander graph, computable in polynomial time.

Definition 1. A graph G is a (n, d, α)-expander graph if (i) G has n vertices, (ii) G is d-regular, (iii) all the eigenvalues λ of G but the largest one is such that |λ| αd.
If G is a graph with adjacency matrix M , let us denote G k the graph with adjacency matrix M k .

Lemma 4 (Fact 1.2 in [START_REF] Reingold | Entropy Waves, the Zig-Zag Graph Product, and New Constant-Degree Expanders and Extractors[END_REF]).

If G is a (n, d, α)-expander graph, then G k is a (n, d k , α k )-expander graph.
Proof. G k is obviously d k regular, and the eigenvalues of G k are the eigenvalues of G to the power of k.

⊓ ⊔

Proof of Fact 1. Fix some α > 0 and let p be the smallest integer such that (5

√ 2/8) p α. Then, G p is as required. ⊓ ⊔
Let G be a graph on n vertices and H be a (n, d, α)-expander graph. Let t be a positive integer. We build the graph G ′ t on N = nd t-1 vertices: each vertex corresponds to a (t -1)-random walk x = (x 1 , • • • , x t ) on H (meaning that x 1 is chosen at random, and x i+1 is chosen randomly in the set of neighbors of x i ), and two vertices

x = (x 1 , • • • , x t ) and y = (y 1 , • • • , y t ) in G ′ t are adjacent iff {x 1 , • • • , x t , y 1 , • • • , y t } is a clique in G.
Theorem 3 (claims 3.15 and 3.16 in [START_REF] Hoory | Expander graphs and their applications[END_REF]). Let G be a graph on n vertices and H be a (n, d, α)-expander graph. If b > 6α, then:

-If ω(G) bn then ω(G ′ t ) (b + 2α) t N ; -If ω(G) bn then ω(G ′ t ) (b -2α) t N .
We are now able to prove the gap amplification with linear size amplification. Theorem 4. Let G be a graph on n vertices (for a sufficiently large n) and a > b be two positive real numbers. Then for any real r > 0 one can build in polynomial time a graph G r such that:

-G r has N Cn vertices for C independent of G (C may depend on r); -If ω(G) bn then ω(G r ) b r N ; -If ω(G) an then ω(G r ) a r N ; -b r /a r r. Proof. Let k = ⌈ √ n⌉. We modify G by adding k 2 -n dummy (isolated) vertices. Let G ′ be the new graph. It has n ′ = k 2 vertices. Note that n ′ ( √ n + 1) 2 = n + 2 √ n + 1 = n + o(n).
Let n be such that 1ǫ n/n ′ 1 for a small ǫ. Thanks to Fact 1, we consider a (k 2 , d, α)-expander graph H for a sufficiently small α (the value of which will be fixed later). According to Theorem 3 (applied on G ′ ) we build in polynomial time a graph G ′ t on N = n ′ d t vertices such that (choosing α < b/6):

-If ω(G) bn then ω(G ′ ) = ω(G) bn ′ , hence ω(G ′ t ) (b + 2α) t N ; -If ω(G) an then ω(G ′ ) = ω(G) an ′ (1 -ǫ), hence ω(G ′ t ) (a(1 -ǫ) - 2α) t N .
We choose ǫ and α such that a(1ǫ) -2α > b + 2α, and then t such that (a(1ǫ) -2α) t /(b + 2α) t r. The number of vertices of G ′ t is clearly linear in n (first point of the theorem). Furthermore, b r = (b+2α) t and a r = (a(1-ǫ)-2α) t fulfil items 2, 3 and 4.

⊓ ⊔

3 On the approximability of Independent Set and related problems in subexponential time

As mentioned in Section 2, an almost-linear size PCP construction [START_REF] Moshkovitz | Two query pcp with sub-constant error[END_REF] for 3Sat allows to get the negative results stated in Corollaries 1 and 2. In this section, we present further consequences of Theorem 2, based upon a combination of known reductions with (almost) linear size amplifications of the instance. First, Theorem 2 combined with the reduction in [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF] showing inapproximability results for Independent Set in polynomial time, leads to the following result.

Theorem 5. Under ETH, for any r > 0 and any δ > 0, there is no rapproximation algorithm for Independent Set running in time O(2 N 1-δ ), where N is the size of the input graph for Independent Set.

Proof. Consider r > 0 and δ > 0. Given an instance φ of 3 sat on n variables, we use the fact that 3Sat∈ PCP 1,r [(1 + o(1)) log n + D r , E r ] (where D r and E r are constants that depends only on r) to build the following graph G φ (see also [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF]):

-for any random string R, and any possible values of the E r bits read by V, add a vertex in the graph if V accepts; -if two vertices are such that they have at least one contradicting bit (they read the same bit which is 1 for one of them and 0 for the other one), add an edge between them.

In particular, the set of vertices corresponding to the same random string is a clique. Assume that φ is satisfiable. Then there exists a proof for which the verifier accepts for any random string R. Take for each random string R the vertex in G φ corresponding to this proof. There is no conflict (no edge) between any of these 2 |R| vertices, hence α(G φ ) = 2 |R| (where, in a graph G, α(G) denotes the size of a maximum independent set).

If φ is not satisfiable, then α(G φ ) r2 |R| . Indeed, suppose that there is an independent set of size α > r2 |R| . This independent set corresponds to a set of bits with no conflict, defining part of a proof that we can arbitrarily extend to a proof P. The independent set has α vertices corresponding to α random strings (for which V accepts), meaning that the probability of acceptance for this proof P is at least α/2 |R| > r, a contradiction with the property of the verifier.

Furthermore, G φ has N 2 |R| 2 Er Cn 1+o (1) vertices (for some constant C). Then, one can see that, for any r ′ > r, an r ′ -approximation algorithm for Independent Set running in time O(2

N 1-δ ) would solve 3 sat in time O(2 n 1-δ ′ ) for some δ ′ < δ, contradicting ETH. ⊓ ⊔ Since (for k N ), N k 1-δ = O(2 N 1-δ ′
), for some δ ′ < δ, the following result also holds.

Corollary 3. Under ETH, for any r > 0 and any δ > 0, there is no rapproximation algorithm for Independent Set (parameterized by k) running in time O(N k 1-δ ), where N is the size of the input graph.

The results of Theorem 5 and Corollary 3 can be immediately extended to problems that are linked to Independent Set by approximability preserving reductions (that preserve at least constant ratios) and have linear amplifications of the sizes of the instances.

For instance, this is the case of Set Packing (preservation of constant ratios and of ratios functions of the input size with amplification that is the identity function). This holds for the Max Bipartite Subgraph problem where, given a graph G(V, E), the goal is to find a maximum-size subset V ′ ⊆ V such that the graph G[V ′ ] is a bipartite graph. Consider the following reduction from Independent Set to Max Bipartite Subgraph ( [START_REF] Simon | On approximate solutions for combinatorial optimization problems[END_REF]). Let G(V, E) be an instance of Independent Set of order n. Construct a graph G ′ (V ′ , E ′ ) for Max Bipartite Subgraph by taking two distinct copies of G (denote them by G 1 and G 2 , respectively) and adding the following edges: a vertex v i1 of copy G 1 is linked with a vertex v j2 of G 2 , if and only if either i = j or (v i , v j ) ∈ E. G ′ has 2n vertices. Let now S be an independent set of G. Then, obviously, taking the two copies of S in G 1 and G 2 induces a bipartite graph of size 2|S|. Conversely, consider an induced bipartite graph in G ′ of size t, and take the largest among the two color classes. By construction it corresponds to an independent set in G, whose size is at least t/2 (note that it cannot contain two copies of the same vertex). So, any r-approximate solution for Max Bipartite Subgraph in G ′ can be transformed into an r-approximate solution for Independent Set in G. Observe finally that the size of G ′ is two times the size of G.

Proposition 1. Under ETH, for any r > 0 and any δ > 0, there is no rapproximation algorithm for either Set Packing or Max Bipartite Subgraph running in time O(2 n 1-δ ) in a graph of order n.

Dealing with minimization problems, Theorem 5 and Corollary 3 can be extended to Coloring, thanks to the reduction given in [START_REF] Lund | On the Hardness of Approximating Minimization Problems[END_REF]. Given a graph G whose vertex set is partitioned into K cliques each of size S, and given a prime number q > S, a graph H q having the following properties can be built in polynomial time:

-the vertex set of H q is partitioned into q 2 K cliques, each of size q 3 ; α(H q ) max{q 2 α(G); q 2 (α(G) -1) + K; qK}; -if α(G) = K then χ(H q ) = q 3 . Note that this reduction uses the particular structure of graphs produced in the inapproximability result in [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF] (as in Theorem 5). Then, we deduce the following result.

Proposition 2. Under ETH, for any r > 1 and any δ > 0, there is no rapproximation algorithm for Coloring running in time O(2 n 1-δ ) in a graph of order n.

Proof. Fix a ratio r > 1, and let r IS > 0 be such that r IS +r 2 IS 1/r. Start from the graph G φ produced in the proof of Theorem 5 for ratio r IS . The vertex set of G φ is partitioned into K = 2 |R| cliques, each of size at most 2 Er . By adding dummy vertices (a linear number, since E r is a fixed constant), we can assume that each clique has the same size S = 2 Er , so the number of vertices in G φ is

N = KS = 2 |R| 2 Er .
Let q > max{S, 1/r IS } be a prime number, and consider the graph H q produced from G φ by the reduction in [START_REF] Lund | On the Hardness of Approximating Minimization Problems[END_REF] mentioned above. If φ is satisfiable, α(G φ ) = K and then by the third property of the graph H q , χ(H q ) = q 3 . Otherwise, by the second property α(H q ) max{q 2 α(G φ ); q 2 (α(G φ ) -1) + K; qK}. Formula φ being not satisfiable, α(G φ ) r IS K. By the choice of q, qK q 2 r IS K, so α(H q ) q 2 r IS K + K = (q 2 r IS + 1)K. Since the number of vertices in H q is Kq 5 , we get that χ(H q ) q 5 /(q 2 r IS + 1). The gap created for the chromatic number in the two cases is then at least:

q 5 (q 2 r IS + 1)q 3 = 1 r IS + 1/q 2 1 r IS + r 2 IS r
The result follows since H q has Kq 5 vertices and q is a constant (that depends only on the ratio r and on the constant number of bits p read by V), so the size of H q is linear in the size of G φ .

⊓ ⊔

We consider the approximability of Vertex Cover and Min-Sat in subexponential time. The following statement provides a lower bound to such a possibility.

Proposition 3. Under ETH, for any r > 0 and any δ > 0, there is no (7/6ǫ)-approximation algorithm for Vertex Cover running in time O(2 N 1-δ ) in graphs of order N .

Proof. We combine Corollary 1 with the following classical reduction. Consider an instance I of max 3-lin on m equations. Build the following graph G I :

-for any equation and any of the eight possible values of the 3 variables in it, add a vertex in the graph if the equation is satisfied; -if two vertices are such that they have one contradicting variable (the same variable has value 1 for one vertex and 0 for the other one), then add an edge between them.

In particular, the set of vertices corresponding to the same equation is a clique. Note that each equation is satisfied by exactly 4 values of the variables in it.

Then, the number of vertices in the graph is N = 4m. Consider an independent set S in the graph G I . Since there is no conflict, it corresponds to a partial assignment that can be arbitrarily completed into an assignment τ for the whole system. Each vertex in S corresponds to an equation satisfied by τ (and S has at most one vertex per equation), so τ satisfies (at least) |S| equations. Reciprocally, if an assignment τ satisfies α clauses, there is obviously an independent set of size α in G I . Hence, if (1ǫ)m equations are satisfiable, there exists an independent set of size at least (1ǫ)m, i.e., a vertex cover of size at most

N -(1 -ǫ)m = N (3/4 + ǫ/4
). If at most (1/2 + ǫ)m equations are satisfiable, then each vertex cover has size at least N -

(1/2 + ǫ)m = N (7/8 -ǫ/4). ⊓ ⊔
The result of Proposition 3 can be extended to the Min-Sat problem via the following reduction [START_REF] Marathe | On Approximation algorithms for the minimum satisfiability problem[END_REF]. Given a graph G, build the following instance on Min-Sat. For each edge (v i , v j ) add a variable x ij . For each vertex v i add a clause c i .

Variablen x ij appears positively in c i and negatively in c j . Then, take a vertex cover V * of size k; for any x ij fix the variable to true if

v i ∈ V * , to false otherwise. Consider a clause c j with v j ∈ V * . If x ij is in c j then v i is in V * hence x ij is true; if x ji
is in c j then, by construction, x ji is false. So c j is not satisfied, and the assignment satisfies at mostn k clauses. Conversely, consider a truth assignment that satisfies

k clauses c i1 , • • • , c i k . Consider the vertex set V * = {v i1 , • • • , v i k }. For an edge (v i , v j ), if x ij is set to true then c i is satisfied and v i is in V * , otherwise c j is satisfied and v j is in V * , so V * is a vertex cover of size k.
Since the number of clauses in the reduction equals the number of vertices in the initial graph, we get the following result.

Proposition 4. Under ETH, for any r > 0 and any δ > 0, there is no (7/6-ǫ)approximation algorithm for Min-Sat running in time 2 m 1-δ in CNF formulae with m clauses.

All the results given in this section are valid under ETH and rule out some ratio in subexponential time of the form 2 n 1-δ . It is worth noticing that if LP C holds, then all these result would hold for any subexponential time. Proof. Using LPC, the same proof as in Theorem 5 creates a graph on N = O(n) variables with either an independent set of size αN (if φ is satisfiable) or a maximum independent set of size at most α/2N (if φ is not satisfiable). Then Theorem 4 allows to amplify this gap from 1/2 to any constant r > 0 while preserving the linear size of the instance. Results for the other problems immediately follow from the same arguments as above. ⊓ ⊔

Parameterized inapproximability bounds

It is shown in [START_REF] Chen | Strong computational lower bounds via parameterized complexity[END_REF] that, under ETH, for any function f no algorithm running in time f (k)n o(k) can determine whether there exists an independent set of size k,

or not, (in a graph with n vertices). A challenging question is to obtain a similar result for approximation algorithms for Independent Set. In the sequel, we propose a reduction from Max-3Sat to Independent Set that, based upon the negative result of Corollary 2, only gives a negative result for some function f (because Corollary 2 only avoids some subexponential running time). However, this reduction gives the desired inapproximability result if Hypothesis 1, which is an enforcement of Corollary 2, is used.

Based upon Hypothesis 1, the following parameterized inapproximability bound can be proved. Recall that Hypothesis 1 assumes ETH. Theorem 6. Under Hypothesis 1, for every ǫ > 0, no parameterized approximation algorithm for Independent Set running in time f (k)N o(k) can achieve approximation ratio r + ǫ in graphs of order N .

Proof. Suppose that such an algorithm exists for some ǫ > 0. W.l.o.g., we can assume that f is increasing, and that f (k) 2 k . Take an instance I of Max-3Sat, let K be an integer that will be fixed later, and do the following:

-Partition the m clauses into K groups H 1 , • • • , H K each of them containing, roughly, m/K clauses each. -Each group H i involves a number s i 3m/K of variables.
For all possible values of these variables, add a vertex in the graph G I if these values satisfy at least λm/K clauses in H i (the value of λ will also be fixed later).

-Add an edge between two vertices if they have one contradicting variable.

In particular the vertices corresponding to the same group of clauses form a clique. It is easy to see that the so-constructed graph contains N K2 3m/K vertices.

The following easy claim holds.

Claim. If a variable assignment satisfies at least λm/K clauses in at most s groups, then it satisfies at most λm + s(1λ)m/K clauses.

Proof of claim. Consider an assignment as the one claimed in claim's statement. This assignment satisfies at most m/K clauses in at most s groups, and at most λm/K in the other Ks groups, so in total at most sm/K + (Ks)λm/K = λm + s(1λ)m/K, that completes the proof of the lemma. ⊓ ⊔ ✸ Now, let us go back to the proof of the theorem.

-Assume an independent set of size at least t in G I . Then one can achieve a partial solution that satisfies at least λm/K clauses in at least t groups. So, at least tλm/K clauses are satisfiable. In other words, if at most (r + ǫ ′ )m clauses are satisfiable, then a maximum independent set in G I has size at most K r+ǫ ′ λ .

-Suppose that at least (1ǫ ′ )m clauses are satisfiable. Then, using Lemma 4, there exists a solution satisfying at least λm/K clauses in at least 1-ǫ ′ -λ 1-λ K groups; otherwise, it should be λm + s(1λ)m/K < (1ǫ ′ )m. Then, there exists an independent set of size 1-ǫ ′ -λ 1-λ K in G I . Now, set K = ⌈φ(m)/(1ǫ 2 )⌉ where φ is the inverse function of f (i.e., φ = f -1 ). Set also λ = 1ǫ, and ǫ ′ = ǫ 3 . Run the assumed (r + ǫ)-approximation parameterized algorithm for Independent Set in G I with parameter k = (1ǫ 2 )K. Then:

-if at least (1ǫ ′ )m equations are satisfiable, there exists an independent set of size at least 1-ǫ ′ -λ 1-λ K = (1ǫ 3 /ǫ)K = (1ǫ 2 )K = k; so, the algorithm must output an independent set of size at least (r + ǫ)k; -if at most (r + ǫ ′ ) equations are satisfiable, the size of an independent set is at most

K r+ǫ ′ λ = K r+ǫ 3 1-ǫ = k r+ǫ 3 (1-ǫ)(1-ǫ 2 ) = k(r + rǫ + o(ǫ)).
So, for ǫ sufficiently small, the algorithm allows to distinguish between the two cases of Max-3Sat (for ǫ ′ ).

The running time of the yielded algorithm is k) for some increasing and unbounded function ψ, and

f (k)N o(k) , but f (k) = f ((1 - ǫ 2 )K) = m, and N o(k) = N k/ψ(
N o(k) = (K2 3m/K ) k/ψ(k) = 2 o(m) . ⊓ ⊔
Using Lemma 2 together with Theorem 6, the following result can be easily derived.

Corollary 5. Under Hypothesis 1, for any r ∈ (0, 1) there is no r-approximation parameterized algorithm (i.e., an algorithm that runs in time f (k)p(n) for some function f and some polynomial p).

Let us now deal with Dominating Set that is known to be W [START_REF] Arora | Proof verification and intractability of approximation problems[END_REF]-hard [START_REF] Downey | Fellows Parameterized Complexity[END_REF]. Existence of fpt-approximation algorithms for this problem is an open question [START_REF] Downey | Parameterized approximation problems[END_REF].

Here, we present an approximation preserving reduction (fitting the parameterized framework) that works with the special set of instances produced in the proof of Theorem 6. This reduction will allow us to obtain a lower bound (based on the same hypothesis) for the approximation of min dominating set from Theorem 6. Consider a graph G(V, E) on n vertices where V is a set of K cliques C 1 , • • • , C K . We build a graph G ′ (V ′ , E ′ ) such that G has an independent set of size α if and only if G ′ has a dominating set of size 2Kα. The graph G ′ is built as follows:

-For each clique C i in G, add a clique C ′ i of the same size in G ′ . Add also: • an independent set S i of size 3K, each vertex in S i being adjacent to all vertices in C ′ i ; • a special vertex t i adjacent to all the vertices in C ′ i . -For each edge e = (u, v) with u and v not in the same clique in G, add an independent set W e of size 3K. Suppose that u ∈ C i and v ∈ C j . Then, each vertex in W e is linked to t i and to all vertices in C ′ i but u (and t j and all vertices in C ′ j but v).

Informally, the reduction works as follows. The set S i ensures that we have to take at least one vertex in each C ′ i , the fact that |W e | = 3K ensures that it is never interesting to take a vertex in W e . If we take vertex t i in a dominating set, this will mean that we do not take any vertex in the set C i in the corresponding independent set in G. If we take one vertex in C ′ i (but not t i ), this vertex will be in the independent set in G. Let us state this property in the following lemma.

Lemma 5. G has an independent set of size α if and only if G ′ has a dominating set of size 2Kα.

Proof. Suppose that G has an independent set S of size α. Then, S has one vertex in α sets C i , and no vertex in the other Kα sets. We build a dominating set T in G ′ as follows: for each vertex in S we take its copy in G ′ . For each clique C i without vertices in S, we take t i and one (anyone) vertex in C ′ i . The dominating set T has size α + 2(Kα) = 2Kα. For each C ′ i there exists a vertex in T ; so, vertices in C ′ i , t i and vertices in S i are dominated. Now take a vertex in W e with e = (u, v), u ∈ C i and v ∈ C j . If C i ∩ S = ∅ (or C j ∩ S = ∅), then t i ∈ T (or t j ∈ T ) and, by construction, t i is adjacent to all vertices in W e . Otherwise, there exist w ∈ S ∩ C i and x ∈ S ∩ C j . Since S is an independent set, either w = u or x = v. If w = u, by construction w (its copy in C ′ i ) is adjacent to all vertices in W e and, similarly, for x if x = v. So, T is a dominating set.

Conversely, suppose that T is a dominating set of size 2Kα. Since S i is an independent set of size 3K, we can assume that T ∩ S i = ∅ and the same occurs with W e . In particular, there exists at least one vertex in T in each C i . Now, suppose that T has two different vertices u and v in the same C i . Then we can replace v by t i getting a dominating set (vertices in S i are still dominated by u, and any vertex in some W e which is adjacent to v is adjacent to t i ). So, we can assume that T has the following form: exactly one vertex in each C i , and Kα vertices t i . Hence, there are α C ′ i cliques where t i is not in T . We consider in G the set S constituted by the α vertices in T in these α sets. Take two vertices u and v in S with, say, u ∈ C ′ i and v ∈ C ′ j (with t i ∈ T and t j ∈ T ). If there were an edge e = (u, v) in G, neither u nor v would have dominated a vertex in W e (by construction). Since neither t i nor t j is in T , this set would not have been a dominating set, a contradiction. So S is an independent set. ⊓ ⊔ Theorem 7. Under Hypothesis 1, for every ǫ > 0, no approximation algorithm running in time f (k)N o(k) can achieve approximation ratio smaller than 2-r -ǫ for Dominating Set in graphs of order N .

Proof. In the proof of Theorem 6, we produce a graph G I which is made of K cliques and such that: if at least (1ǫ)m clauses are satisfiable in I, then there exists an independent set of size ⊓ ⊔ Such a lower bound immediately transfers to Set Cover since a graph on n vertices for Dominating Set can be easily transformed into an equivalent instance of min set cover with ground set and set system both of size n.

Corollary 6. Under Hypothesis 1, for every ǫ > 0, no approximation algorithm running in time f (k)m o(k) can achieve approximation ratio smaller than 2-r -ǫ for min set cover in instances with m sets.

Conclusion

This paper presents conditional lower bounds of approximation ratio in subexponential and fpt-time. Assuming ETH, we prove inapproximability in time 2 n 1-δ for any δ > 0 for the problems such as: Independent Set, Set Packing, Max Bipartite Subgraph, Coloring, Vertex Cover. If Linear PCP Conjecture turns out to hold, even in time 2 o(n) we cannot approximate any better. Also assuming ETH, we proved that Linear PCP Conjecture implies that fpttime inapproximabilty of Independent Set and Dominating Set. Here, let us note that, all the results about Independent Set immediately apply also to Clique.

Our effort in this paper is only a first step and we wish to motivate further research. There remains a range of problems to be tackled, among which we propose the followings.

-Our inapproximability results, in particular those in fpt-time, are conditional upon Linear PCP Conjecture. Is it possible to relax the condition to a more plausible one? -Or, we dare ask whether (certain) inapproximability results in fpt-time imply strong improvement in PCP theorem. For example, would the converse of Lemma 1 hold?

Note finally that we have considered in this article constant approximation ratios. In this sense, Theorem 5 is "tight" with respect to approximation ratios since, as mentioned in Section 2, ratio 1/r(n) is achievable in subexponential time for any increasing and unbounded function r. However, dealing with parameterized approximation algorithms, achieving a non constant ratio is also an open question. More precisely, finding in fpt-time an independent set of size g(k) when there exists an independent set of size k is not known for any unbounded and increasing function g.

Fact 1 .

 1 For any k ∈ N * and any α > 0 there exists d and a (k 2 , d, α)-expander graph. Moreover, d depends only on α, and this graph can be computed in polynomial time for every fixed α.

Corollary 4 .

 4 If LP C, under ETH the negative results of Theorems 5, Propositions 1, 2 and 3 (resp. 4) hold for any time complexity 2 o(n) (resp. 2 o(m) ).
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 1 O(ǫ))K; otherwise (at most (r + ǫ)m clauses are satisfiable in I), the maximum independent set has size at most (r + O(ǫ))K. The previous reduction transforms G I in a graph G ′ I such that, applying Lemma 5, in the first case there exists a dominating set of size at most2K -(1 -O(ǫ))K = K(1 + O(ǫ)) while, in the second case, the size of a dominating set is at least 2K -(r + O(ǫ))K = K(2r -O(ǫ)). Thus, we get a gap with parameter k ′ = K(1 + O(ǫ)). Note that the number of vertices in G ′ I is N ′ = N + K + 3K + 3K|E I | = O(N 3 )(where E I is the set of edges in G I ). If we were able to distinguish between these two sets of instances in time f (k ′ )N ′o(k ′ ) , this would allow to distinguish the corresponding independent set instances in time f(k ′ )N ′o(k ′ ) = g(k)N o(k) since k ′ = K(1 + O(ǫ)) = k(1 + O(ǫ)) (k = K(1ǫ 3) being the parameter chosen for the graph G I ).

Actually, the result is even stronger: it is impossible to obtain a ratio r = g(k) for any function g.
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