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1 CERV, European Center for Virtual Reality, BP 38 , F-2928@4r, France,
Pascal.Redou@enib.fr,
2 Hematology Laboratory, CHU Brest, Bd Tanguy Prigent, 296042sB France

Abstract. In the context of multi-agent simulation of biological colep sys-
tems, we present a reaction-agent model for biological cterkinetics that en-
ables interaction with the simulation during the executiora chemical reactor
with no spatial dimension -e.g. a cell-, a reaction-agentasgnts an autonomous
chemical reaction between several reactants : it reads theentration of re-
actants, adapts its reaction speed, and modifies consggtlemtconcentration
of reaction products. This approach, where the simulatiginenmakes agents
intervene in a chaotic and asynchronous way, is an altemati the classical
model -which is not relevant when the limits conditions charmgesed on differ-
ential systems. We establish formal proofs of convergeaceur reaction-agent
methods, generally quadratic. We illustrate our model witlexeample about the
extrinsic pathway of blood coagulation.

1 Introduction

Simulation in biology makes use of algorithms for the nurariresolution of dif-
ferential systems. These algorithms, though they giveigge@sults, do not fit well
with the study of complex systems [At1]. Indeed, complex systarea priori open
(dynamical appearance/disappearance of componentsiogenous (various morphol-
ogy and behaviours) and made of entities that are compasitkile and distributed in
space ; their number changes during time, and they interdlateaich other. Describ-
ing the evolution of such systems by means of determinisgthods like differen-
tial systems is uneasy, for limits conditions and numberrotpssus fluctuate. As an
alternative, the multi-agent approach [Fel,WC1], alreasisd in several biochemi-
cal models [HX1,JS1,WW1], provides a conceptual, methodoédg@nd experimental
framework well-fitted for imagination, modelisation and exmentation of complex-
ity. In this context, our work applies to the simulation oblsigical chemical kinetics
phenomenons taking into account the variability of the nendf implied reactants.

In a dimensionless chemical reactor -e.g. a cell-, a rea@@ent represents a chem-
ical reaction which loops into a perception/decision/actigcle : it reads the concentra-
tion of reactants, adapts its reaction speed, and modifiesecuently the concentration
of reaction products. Each agent independently executtsssical ordinary differen-
tial system algorithm [CL1]. For each of these classicalods, we build the matching
reaction-agent method.



The simulation engine evolves reaction-agents asynclusipand chaotically (see
section 2), in order to avoid the typical inflexibility of sgfronous systems, as well as
bias in numerical results.

From a more general point of view, we set up agents autonomybasia princi-
ple [TH1] : firstly autonomy is characteristic of living orgams, from the cell to the
man (they areessentially autonomo)isecondly the model should be able, at runtime,
to sense changes in environment and thus the limits condijtespecially if the man is
part of the systemriecessarily autonomaoysastly, they areautonomous by ignorance
since we are for now unable to report the behaviour of complstems by the way of
analysis reductionist method.

Therefore we gain the ability to interact with a running sintiola, opening the path
to a new way of experimenting : ttie virtuo experimentation [Til]ln virtuo exper-
imentation makes it possible to interfere with a chemicaétics model by adding or
removing reactions. The main interest of such an experiationt is that these alter-
ations are possible without having to stop the progress dfithalation : experimental
conditions of then virtuo way are therefore very close to threvivo andin vitro (with
“man in the loop”) ones, and fundamentally different frone th silico one (without
“man in the loop”).

In section 2 of this paper, we present the reaction-agent hiodeumerical com-
putation of differential systems for chemical kinetics.dection 3 we formalize our
model and state the main results about convergence of qnesstetion-agent methods.
In section 4 we describe how we adapt reaction-agent poineaf for multistep meth-
ods, in the special case where the number of reactions isazinStection 5 shows an
illustrating example of our approach for a blood coagutagonulation. For the sake
of concision, we will not expose the detailed demonstratidmaathematical results.
Please contact first author to obtain proofs.

2 Reaction-agent model

2.1 Principle

The reaction-agents based methods are numerical methodsrfgputation of differ-
ential systems which permit to take into account, at runtitme evolvingness of these
systems. Chemical kinetics is a natural application cdrftexthese methods : a clas-
sical example is given by cancer, since chromosomic inggafHW1] implies on a
regular basis modifications or creations of new reactiormg [BWe have also used our
reaction agent model for simulation sfapk pathway [QR1]. We propose here (see
section 5) an example about the extrinsic pathway of bloadjatation [LB1].

To achieve modelisation of such a processus we proposeyateimical reactions.
These reified reactions should be able, independently df etter, to carry out or
not. Since it’s the reactions that are reified in our model, aied it reaction-agent
Each reaction-agent matches a reaction of the system we evarddelize. Each agent
behaviour loops in the following cycle :

- Perception: sensing of concentration of all reactions componenés reactants
and products),



- Decision: computation of the amount of consumed reactants (and thaiseo
amount of formed products),
- Action : writing the new concentrations of the reaction components.

Reaction-agents act by the way of chaotic and asynchronerations, as described
below.

2.2 Chaotic and asynchronous iterations

At each step, the scheduler [HT1] makes one reaction-ageytaatrits perception/de-
cision/action cycle. Reaction-agents act one after therdtilowing the scheduler cy-
cle whose length equals the number of agents. The reactiemtsagach act once and
only once in a sheduler cycle, but the order in which they dessamdomly chosen.
Let's precise these notions :

- Asynchronous iterations: a fundamental statement is that in the classical ap-
proach, time discretisation induces the hypothesis tHateattion occur simul-
taneously during the same time-step. Indeed, classicatid differencial systems
numerical resolution algorithnes priori do this hypothesis based upon the choice
of infinitesimal time-stepA contrarig, reaction-agent model does the asynchronic
hypothesis for chemical reactions. We claim that this hlgpsis is not only more
realistic, but moreover allows the user to interfere at matwith the reactions by
adding or removing a reaction-agent, at any time of the satran. Time is then di-
vided into scheduler cycles inside of which each reactiognrtagcts once and only
once, considering the state of the system at the momentsit Batm a physical
point of view, each scheduler cycle corresponds to one fitap-of the classical
approach.

- Chaotic iterations : an unalterable arrangement for reaction-agents opesaéib
each cycle might introduce a bias -we proved some matherhegmalts that con-
firm it- in the simulation. In order to avoid this bias the sdbker makes each
reaction-agent operate in a random order, which changesafir ieration step.
This is what we call chaotic iterations.

Figure 1 illustrates this scheduling strategy.

tn t n+l t n+2 t n+3 .
i Classical approac

Physical time

Reaction—agent

fi T2 Ty T3 Tp T3 Iy Ty T3 Ty f Iy

simulation cycle

Fig. 1. Classical and reaction-agent points of view for reactiarieduling. Case of 4 reaction-
agentsj, 1<i<4.



2.3 lllustration

Let’s illustrate our views, and consider a medium with no spalimension containing
several reactants. L¢E(t)] be the concentrations vector at instanin this medium
m chemical reactions occur. Their respective speeds ar@ diiyevectorial functions
fi, 1 <i < m, whose arguments are time and concentrations vector. THetievoin
time of reactants concentrations are classicaly deschippelde differential system

d

dt
under condition€|to] for concentrations at initial instant. Such systems areemoaly
solved by the mean of very precises algorithms [CL1,HN1], whilkbws computation
of all concentrations at each instant of the discretiseé tifior one step methods, the

concentrations vectd@, 1 at instant,,.; is computed from the same vector at instant
th, namedCy. This leads to a computation algorithm such as below :

[CH)] = (fa+ fot -+ fm) (1, C[t]), €y

Co= C[to] (2)
Cns1 = Cn+ @ty £ (tn,Cny )

wherehn = thy1 —tn, Pt 4.4, IS & function dependent on the sumfpfspeeds, and
which characterizes the chosen algorithm. As we stated, hactars are supposed to
be simultaneous and the main drawback of this modelisatiitg $saticness : adding or
removing a reaction at runtime implies rewriting the systew geruning the program,
which is unsuitable for complex system simulation and ruatimodification of these
systems. Our method also uses a classical resolution dlgolut applies it for each
reaction during the same time-step. Let's consider an aitamg example with two
reactions, whose speeds dieand f2. As an alternative to the numerical computation
of the system (1) (whem = 2) using algorithm (2), that is,

Chs1=Cn+hn®s, 11, (tn,Cn,hn), 3
we propose aeaction-agent versioof this algorithm :
C* - Cn"’ hncbfl(tnacn,hn) (4)
Cn+1 = C* + hn(sz (tn7C*7 hn)

or, equiprobably,
C, = Ch+ hn®s, (tn,Cn, hn) (5)
Cn+1 = C* + hncbfl (tnacm hn)
Thus, in a single time-step, the algorithm is here appliealtimes : once for each re-
action. Each application takes into account the state ofyseem at the current time.
In order to avoid bias, at each time step a random arrangeshegdiction-agents oper-
ations is performed.

3 Formalization and principal results

We now give the mathematical formalization of our reactament model, and the val-
idating results we have obtained. The natural integers grgpiledN, R is the reals



field, andSy, the permutations of orden group [Cal]. For the sake of simplicity we
only consider differential systems of a single equationyéner definitions and results
are easily generalizable. More details about numericaluésn of ordinary differen-
tial equations can be found in [HN1].

Remark 1.We have also adapted this autonomous agents point of viewldssical
multiple steps methods, or for implicits methods [HN2] : we depehis point in sec-
tion 4. Convergence and stability features are better fese¢hmethods than for single
step methods. However these methods not only conflict with iplizeof multi agents
systems whose behaviour is markovian; but moreover theyuilghe ability to modify
the number of agents at runtime.

3.1 General definition

Definition 1. Let

Ynt+1 = Yn+ hn®s (tn, Yn, hn) (6)
be a one step method for Cauchy problem resolution
y(to) = Yo
7
0 ¥ "

Let me N*. We callreaction-agent version of method (&r resolution of problem

Y(t)=(fi+ fo+- -+ fm) (t,¥(t))
_ 8)
y(to) = Yo
the method given by
Ynt+1 = Yn+ hn®g,, (tn, Yn, hn) 9)

defined by an equiprobable choice, at each time step n+ 1, of o, € Sy, and by
relations
Vi1 = Yn+ hnmfcn(l) (tn, ¥n, hn)
Vi, 1<i<m-—1,
Yait1 = Yui T hn®@s, o (t, Yais hn)
Yn+1 = Yam

(10)

Example 1.We remind the reader that for Cauchy problem resolution ¢jer 2
Runge-Kutta method is given by

Yn+1 = Yn+ Dn@s (th, Yn, hn)

where h h
The matching reaction-agent version for resolution of frol(8) is given by definition
1, wherevi, 1<i<m,

h h
(Dfi (taya h) = fi (t+ an"_if(tvy))



For instance, two reaction-agents case leads to

Yn+1 = Yn+hn®g, (th, Yn, hn)
with, equiprobably,

cbon(tdﬂh
= fa(t+5,y+5fi(t,y)
+o(t+By+hhit+ Ly +h(ty)

6ty +hht+ §y+5h(ty)

=

if op=1d

or
cbon(tdﬂh
= fo(t+ 5. y+ 5 fa(t,y))
+(t+By+hht+ Ly+5h(ty)

+fty+hht+ §y+5h(ty)

=

if on(1) =2.

3.2 Average order of a reaction-agent method

Acoording to definition 1, the computation gf, 1 in function ofy, depends upon the
choice of the permutatiog,. Thus we have to keep this in mind to characterize the
convergence. With the same notations as above, the avevalygi@n on one step is
given by _

Yn+1 = Yn+ P(tn,Yn, hn),

D= 1 an%“ (11)
mt ;£

Definition 2. The order (in the usual sense) of the method given by (11) iscctie
average ordenf the method given by definition 1.

Remark 2.This definition is consistent, for during the execution cdagon-agent al-
gorithm, all elements o%, intervene with the same probability, even though only one
of these elements is chosen at each time step. As we considavelege om! algo-
rithms, each one bound to one permutation, a reaction-agetitod of average order

p will in fact be less efficient than a method of ordein the classical sense. Actually,
we prove that its efficiency is intermediate between two medtadarderp — 1 andp,
respectively. Example in section 5 illustrates this fact.

3.3 Main results

We enounciate here our main results about convergenceadfaragent methods. We
just provide the main ideas of the proofs, detailed ones eaasked to first author.

Theorem 1. 1. Reaction-agent version of Euler's method is convergemtvefage
order 1.



2. Reaction-agent version of ord@rRunge-Kutta method is convergent of average
order 2.

3. Consider a one step method, convergent of order 3 Thus its reaction-agent
version is convergent of average order

Theorem 1 claims in substance that there is no point in ugiagtion-agent’s version
of a Runge-Kutta method of order 3.

One can regret that the efficiency of our reaction-agent msaelt better. However,
we stress again the point that it is the only model -to our kndgée that enablein
virtuo experimentation.

Proof. We now give a few elements about the proof of theorem 1, whichses two
parts : we first prove the stability of a given reaction-ageathud, then we evaluate
the consistency error. We keep the same notations as intd@isil and 2.

1. Stability.
We suppose that functiod®, are lipschitzian iry. Thus there aré\1,A2,...,Am) €
R™ such that :
|(Dfi (t,yz,h)—fbfi (t,yl,h)| S)\i|y2_yl| (12)

This implies the following lemma, proved by induction :
|q)0'n (t7y27 h) - qDOn (t7y17 h)|

< Sy — vl
+h3iT AiAjly2 — il (13)
+. .

+hm71)\1)\2 e >\m|y2 — y1|

As @, is lipschitzian, the stability is proved for reaction-ageersion of any clas-
sical method.

2. Consistency.
According to the following lemma :

Lemma 1. The algorithm

Y(to) =Yo, Yn+1=Yn+ha®s(tn,Yn,hn) (14)
is consistent of order p if and only if
p hk—l
ch (t7y7 h) = z T f k=1l (tvy) + o(hp)7
k=1 ™ (15)

dn
] =
wherefM(t, z(t)) g (f(t,z(t))).
Thus, we end by establishing the following equality :

1
_| zsmcpdn(tayah)
m: One
P pk=1 m (16)

IR SR LR P | o
k; i (i;ﬁ) (t,y) +O(hP),

which is true if and only ifp < 2.
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4 Multistep and implicit methods

Simulation of systems submitted to constant perturbatopsgori empeaches the use
of implicit or multistep methods [HN1,HN2], since the number ofistituants of the
system can change from one time step to the other. Howeveg icetbe where, during
the simulation, the system is stable, involving for insea@onstant number of chemi-
cal reactions, we wish to keep the efficiency of such methodsafideep the point of
view of autonomous agents and use implicit and multistegbous in this case, where
reaction-agent model is unprofitable.

4.1 Description

Recall that if we want to solve the Cauchy problem (1), Addms1-step classical
methods [HN1] are based on algorithms like :

k—1

Cn+1:Cn+hn z Bi(fl+"'+ fm)(tnfivcnfi)a (17)
i=1

where the sun;(f1 +--- 4+ fm)(th—i,Cni) is the interpolation polynomial of function
fi1+---+ fmatpoints(t;,C;), n—k+1 <1 <n-+1. Or, this can also be written, for any
permutatiorno, in Sy,

Ci1=Cn+hn Zkz_il Bi fon(1) (th-i,Cn-i)
C*Z = C*l + hn z:(;il Bi fcn(z) (tnfi ,Cnfi)
: (18)

Cim = Cim-1)+hn Zik;fl Bi fon(m) (th-i,Cn-i)
Cn+1 = C*m-

The algorithm described above enables one to keep the poimw of autonomous
agents carrying their own execution of implicit and mulfsédgorithm.

4.2 Simulation strategy

Hence, simulation of chemical kinetics phenomenons usiagti@n-agents can be sum-
marized the following way :

— If, during the simulation, the system is perturbed by a newnamenon (e.g. a
new chemical reaction), a one step reaction-agent metherilisaced, to take this
perturbation into account.

— During a long non-perturbation period, we embrace a multistdams method,
however keeping the autonomy principige for our multi-aggatesn.



5 Example

Recall that our reaction-agent model is not intented to kitewchemical kinetics phe-
nomenons when the number of reactions is constant. Howeverder to illustrate
results of section 3, we consider such a case.

We take, as an example of application of our method, the matieal model of the
extrinsic pathway of blood coagulation published by [LBsge figure 2. In their study,
they used a kinetic model based on ordinary differentiabéigus in order to show that
factor 1Xa could be a major product of the extrinsic pathwag Néve implemented
this model and solved it using either our reaction-agente(ldenoted RA) methods,
either classical methods. When the system is solved usingeaation-agent methods,
a Euler or an order 2 Runge-Kutta or an order 4 Runge-Kuttdatets embedded
in each reaction-agent. When the system is solved usingicédsnethods, a euler or
an order 2 Runge-Kutta or an order 4 Runge-Kutta is used. \&esfsolely on factor
Xa generationi(e. only on the solution of one equation). We have compared tta lo
error obtained on 6 points with each method (RA euler, RA rk&,rk4, ODE euler,
ODE rk2, ODE rk4) to the solution given when the system is solveugusn adaptative
step size Runge-Kutta-Fehlberg method (here denoted ODEhckdupposed to be the
exact solution). Results are shown in table 1.

Table 1. Results The set of ODE of the kinetic model is solved using either oactien agent
(RA) method, either classical methods. Local errors (oletiwith a constant step size of 1.0 s)
on 6 points are reported. We intentionally use a huge step isiorder to get a significant error.

time (s)] RA euler | RATk2 | RATk4 |

50 277% | 0.30% | 0.54%
100 3.26% | 0.33% | 0.62%
150 3.67% | 0.41% | 0.68%
200 410% | 0.50% | 0.58 %
250 475% | 0.55% | 0.47 %
300 5.65% | 0.86% | 0.48 %

time (s)|ODE euler|ODE rk2 |ODE rk4
50 2.93% | 0.05% | 0.00 %
100 259% | 0.04% | 0.00 %
150 239% | 0.04% | 0.00 %
200 2.16% | 0.04% | 0.00 %
250 1.90% | 0.04% | 0.00 %
300 1.61% | 0.04% | 0.00 %

As expected, when classical methods are used, the higherdbeafrthe method,
the smaller the local error. This table confirms that thelleo@r obtained using the RA
Euler method is approximatively of the same order than thssital one. The RA order
2 Runge-Kutta method gives a smaller error than the Eulebahthe classical order 2
Runge-Kutta is a bit more precise. The RA order 4 Runge-Kutthod shows a local
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error similar to the RA order 2 Runge-Kutta one, which confithret the precision of
the reaction-agent method could not exceed order 2.

TF-Vila-AT
1
AT
+
TEVia +IX — TE-Vila+ IXa
+ +
TF-Vlla-Xa-TFPI X AT
11 ! !
TE-Vila TE-Vila IXa-AT
+ +

Xa TFPI = TEPI+ Xa + AT — XaAT

Fig. 2. Kinetic model of blood coagulation extrinsic pathway proguéy [LB1].

6 Conclusion

We have exposed the proof of efficiency of reaction-agenédasethods for thén
virtuo simulation of biological chemical kinetics phenomenons. Wsve chosen to au-
tonomize reactions. This leads to a lesser convergencétthame obtained by one step
classical methods, since this order is at best quadratéry Esuperior order classical
method is chosen. Nevertheless, as far as we know, reactemt-agdel is the only one
which allowsin virtuo simulation of a true dynamic chemical kinetics, as can badou

only in life.
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