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Abstract. In the context of multi-agent simulation of biological complex sys-
tems, we present a reaction-agent model for biological chemical kinetics that en-
ables interaction with the simulation during the execution.In a chemical reactor
with no spatial dimension -e.g. a cell-, a reaction-agent represents an autonomous
chemical reaction between several reactants : it reads the concentration of re-
actants, adapts its reaction speed, and modifies consequently the concentration
of reaction products. This approach, where the simulation engine makes agents
intervene in a chaotic and asynchronous way, is an alternative to the classical
model -which is not relevant when the limits conditions change- based on differ-
ential systems. We establish formal proofs of convergence for our reaction-agent
methods, generally quadratic. We illustrate our model with an example about the
extrinsic pathway of blood coagulation.

1 Introduction

Simulation in biology makes use of algorithms for the numerical resolution of dif-
ferential systems. These algorithms, though they give precise results, do not fit well
with the study of complex systems [At1]. Indeed, complex systems area priori open
(dynamical appearance/disappearance of components), heterogenous (various morphol-
ogy and behaviours) and made of entities that are composite,mobile and distributed in
space ; their number changes during time, and they interact with each other. Describ-
ing the evolution of such systems by means of deterministic methods like differen-
tial systems is uneasy, for limits conditions and number of processus fluctuate. As an
alternative, the multi–agent approach [Fe1,WC1], alreadyused in several biochemi-
cal models [HX1,JS1,WW1], provides a conceptual, methodological and experimental
framework well-fitted for imagination, modelisation and experimentation of complex-
ity. In this context, our work applies to the simulation of biological chemical kinetics
phenomenons taking into account the variability of the number of implied reactants.

In a dimensionless chemical reactor -e.g. a cell-, a reaction-agent represents a chem-
ical reaction which loops into a perception/decision/action cycle : it reads the concentra-
tion of reactants, adapts its reaction speed, and modifies consequently the concentration
of reaction products. Each agent independently executes a classical ordinary differen-
tial system algorithm [CL1]. For each of these classical methods, we build the matching
reaction-agent method.
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The simulation engine evolves reaction-agents asynchronously and chaotically (see
section 2), in order to avoid the typical inflexibility of synchronous systems, as well as
bias in numerical results.

From a more general point of view, we set up agents autonomy as abasic princi-
ple [TH1] : firstly autonomy is characteristic of living organisms, from the cell to the
man (they areessentially autonomous); secondly the model should be able, at runtime,
to sense changes in environment and thus the limits conditions, especially if the man is
part of the system (necessarily autonomous); lastly, they areautonomous by ignorance
since we are for now unable to report the behaviour of complex systems by the way of
analysis reductionist method.

Therefore we gain the ability to interact with a running simulation, opening the path
to a new way of experimenting : thein virtuo experimentation [Ti1].In virtuo exper-
imentation makes it possible to interfere with a chemical kinetics model by adding or
removing reactions. The main interest of such an experimentation is that these alter-
ations are possible without having to stop the progress of thesimulation : experimental
conditions of thein virtuo way are therefore very close to thein vivo andin vitro (with
“man in the loop”) ones, and fundamentally different from the in silico one (without
“man in the loop”).

In section 2 of this paper, we present the reaction-agent model for numerical com-
putation of differential systems for chemical kinetics. Insection 3 we formalize our
model and state the main results about convergence of one step reaction-agent methods.
In section 4 we describe how we adapt reaction-agent point of view for multistep meth-
ods, in the special case where the number of reactions is constant. Section 5 shows an
illustrating example of our approach for a blood coagulation simulation. For the sake
of concision, we will not expose the detailed demonstrations of mathematical results.
Please contact first author to obtain proofs.

2 Reaction-agent model

2.1 Principle

The reaction-agents based methods are numerical methods for computation of differ-
ential systems which permit to take into account, at runtime,the evolvingness of these
systems. Chemical kinetics is a natural application context for these methods : a clas-
sical example is given by cancer, since chromosomic instability [HW1] implies on a
regular basis modifications or creations of new reactions [Bo1]. We have also used our
reaction agent model for simulation ofMAPK pathway [QR1]. We propose here (see
section 5) an example about the extrinsic pathway of blood coagulation [LB1].

To achieve modelisation of such a processus we propose to reify chemical reactions.
These reified reactions should be able, independently of each other, to carry out or
not. Since it’s the reactions that are reified in our model, we called it reaction-agent.
Each reaction-agent matches a reaction of the system we want to modelize. Each agent
behaviour loops in the following cycle :

- Perception : sensing of concentration of all reactions components (i.e. reactants
and products),
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- Decision : computation of the amount of consumed reactants (and thus of the
amount of formed products),

- Action : writing the new concentrations of the reaction components.

Reaction-agents act by the way of chaotic and asynchronous iterations, as described
below.

2.2 Chaotic and asynchronous iterations

At each step, the scheduler [HT1] makes one reaction-agent carry out its perception/de-
cision/action cycle. Reaction-agents act one after the other following the scheduler cy-
cle whose length equals the number of agents. The reaction-agents each act once and
only once in a sheduler cycle, but the order in which they do so is randomly chosen.
Let’s precise these notions :

- Asynchronous iterations : a fundamental statement is that in the classical ap-
proach, time discretisation induces the hypothesis that all reaction occur simul-
taneously during the same time-step. Indeed, classically used differencial systems
numerical resolution algorithmsa priori do this hypothesis based upon the choice
of infinitesimal time-step.A contrario, reaction-agent model does the asynchronic
hypothesis for chemical reactions. We claim that this hypothesis is not only more
realistic, but moreover allows the user to interfere at runtime with the reactions by
adding or removing a reaction-agent, at any time of the simulation. Time is then di-
vided into scheduler cycles inside of which each reaction-agent acts once and only
once, considering the state of the system at the moment it acts. From a physical
point of view, each scheduler cycle corresponds to one time-step of the classical
approach.

- Chaotic iterations : an unalterable arrangement for reaction-agents operations at
each cycle might introduce a bias -we proved some mathematical results that con-
firm it- in the simulation. In order to avoid this bias the scheduler makes each
reaction-agent operate in a random order, which changes for each iteration step.
This is what we call chaotic iterations.

Figure 1 illustrates this scheduling strategy.

Physical time

Classical approach

Reaction−agent
r r r r rr r r r r r r1 2 34 1 12 23 34 4

t t t tn n+1 n+2 n+3

simulation cycle

Fig. 1. Classical and reaction-agent points of view for reactions scheduling. Case of 4 reaction-
agentsr i , 1≤ i ≤ 4.
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2.3 Illustration

Let’s illustrate our views, and consider a medium with no spatial dimension containing
several reactants. Let[C(t)] be the concentrations vector at instantt. In this medium
m chemical reactions occur. Their respective speeds are given by vectorial functions
fi , 1 ≤ i ≤ m, whose arguments are time and concentrations vector. The evolution in
time of reactants concentrations are classicaly describedby the differential system

d
dt

[C(t)] = ( f1 + f2 + · · ·+ fm)(t,C[t]), (1)

under conditionsC[t0] for concentrations at initial instant. Such systems are numericaly
solved by the mean of very precises algorithms [CL1,HN1], whichallows computation
of all concentrations at each instant of the discretised time : for one step methods, the
concentrations vectorCn+1 at instanttn+1 is computed from the same vector at instant
tn, namedCn. This leads to a computation algorithm such as below :

C0 = C[t0]
Cn+1 = Cn +hnΦ f1+···+ fm(tn,Cn,hn)

(2)

wherehn = tn+1− tn, Φ f1+···+ fm is a function dependent on the sum offi speeds, and
which characterizes the chosen algorithm. As we stated, here reactions are supposed to
be simultaneous and the main drawback of this modelisation isits staticness : adding or
removing a reaction at runtime implies rewriting the system and reruning the program,
which is unsuitable for complex system simulation and runtime modification of these
systems. Our method also uses a classical resolution algorithm but applies it for each
reaction during the same time-step. Let’s consider an elementary example with two
reactions, whose speeds aref1 and f2. As an alternative to the numerical computation
of the system (1) (whenm= 2) using algorithm (2), that is,

Cn+1 = Cn +hnΦ f1+ f2(tn,Cn,hn), (3)

we propose areaction-agent versionof this algorithm :

C⋆ = Cn +hnΦ f1(tn,Cn,hn)
Cn+1 = C⋆ +hnΦ f2(tn,C⋆,hn)

(4)

or, equiprobably,
C⋆ = Cn +hnΦ f2(tn,Cn,hn)

Cn+1 = C⋆ +hnΦ f1(tn,C⋆,hn)
(5)

Thus, in a single time-step, the algorithm is here applied two times : once for each re-
action. Each application takes into account the state of thesystem at the current time.
In order to avoid bias, at each time step a random arrangementof reaction-agents oper-
ations is performed.

3 Formalization and principal results

We now give the mathematical formalization of our reaction-agent model, and the val-
idating results we have obtained. The natural integers ring is calledN, R is the reals
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field, andSm the permutations of orderm group [Ca1]. For the sake of simplicity we
only consider differential systems of a single equation; however definitions and results
are easily generalizable. More details about numerical resolution of ordinary differen-
tial equations can be found in [HN1].

Remark 1.We have also adapted this autonomous agents point of view forclassical
multiple steps methods, or for implicits methods [HN2] : we develop this point in sec-
tion 4. Convergence and stability features are better for these methods than for single
step methods. However these methods not only conflict with principles of multi agents
systems whose behaviour is markovian; but moreover they ruleout the ability to modify
the number of agents at runtime.

3.1 General definition

Definition 1. Let
yn+1 = yn +hnΦ f (tn,yn,hn) (6)

be a one step method for Cauchy problem resolution
{

y(t0) = y0

y′(t) = f (t,y(t)).
(7)

Let m∈ N
∗. We callreaction-agent version of method (6), for resolution of problem

{

y′(t) = ( f1 + f2 + · · ·+ fm)(t,y(t))
y(t0) = y0

(8)

the method given by
yn+1 = yn +hnΦσn(tn,yn,hn) (9)

defined by an equiprobable choice, at each time step n→ n+ 1, of σn ∈ Sm, and by
relations

y⋆1 = yn +hnΦ fσn(1)
(tn,yn,hn)

∀i, 1≤ i ≤ m−1,

y⋆i+1 = y⋆i +hnΦ fσn(i+1)
(tn,y⋆i ,hn)

yn+1 = y⋆m

(10)

Example 1.We remind the reader that for Cauchy problem resolution (7),order 2
Runge-Kutta method is given by

yn+1 = yn +hnΦ f (tn,yn,hn)

where

Φ f (t,y,h) = f (t +
h
2
,y+

h
2

f (t,y)).

The matching reaction-agent version for resolution of problem (8) is given by definition
1, where∀i, 1≤ i ≤ m,

Φ fi (t,y,h) = fi(t +
h
2
,y+

h
2

f (t,y)).
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For instance, two reaction-agents case leads to

yn+1 = yn +hnΦσn(tn,yn,hn)

with, equiprobably,

Φσn(t,y,h)

= f1(t + h
2,y+ h

2 f1(t,y))

+ f2
(

t + h
2,y+h f1(t + h

2,y+ h
2 f1(t,y))

+ h
2 f2(t,y+h f1(t + h

2,y+ h
2 f1(t,y)))

)

if σn = Id

or
Φσn(t,y,h)

= f2(t + h
2,y+ h

2 f2(t,y))

+ f1
(

t + h
2,y+h f2(t + h

2,y+ h
2 f2(t,y))

+ h
2 f1(t,y+h f2(t + h

2,y+ h
2 f2(t,y)))

)

if σn(1) = 2.

3.2 Average order of a reaction-agent method

Acoording to definition 1, the computation ofyn+1 in function ofyn depends upon the
choice of the permutationσn. Thus we have to keep this in mind to characterize the
convergence. With the same notations as above, the average evolution on one step is
given by

yn+1 = yn + Φ̄(tn,yn,hn),

Φ̄ =
1
m! ∑

σn∈Sm

Φσn
(11)

Definition 2. The order (in the usual sense) of the method given by (11) is called the
average orderof the method given by definition 1.

Remark 2.This definition is consistent, for during the execution of reaction-agent al-
gorithm, all elements ofSm intervene with the same probability, even though only one
of these elements is chosen at each time step. As we consider theaverage ofm! algo-
rithms, each one bound to one permutation, a reaction-agentmethod of average order
p will in fact be less efficient than a method of orderp in the classical sense. Actually,
we prove that its efficiency is intermediate between two methods of orderp−1 andp,
respectively. Example in section 5 illustrates this fact.

3.3 Main results

We enounciate here our main results about convergence of reaction-agent methods. We
just provide the main ideas of the proofs, detailed ones can be asked to first author.

Theorem 1. 1. Reaction-agent version of Euler’s method is convergent ofaverage
order1.
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2. Reaction-agent version of order2 Runge-Kutta method is convergent of average
order2.

3. Consider a one step method, convergent of order p≥ 3. Thus its reaction-agent
version is convergent of average order2.

Theorem 1 claims in substance that there is no point in using reaction-agent’s version
of a Runge-Kutta method of order≥ 3.

One can regret that the efficiency of our reaction-agent modelis not better. However,
we stress again the point that it is the only model -to our knowledge- that enablesin
virtuo experimentation.

Proof. We now give a few elements about the proof of theorem 1, which comprises two
parts : we first prove the stability of a given reaction-agent method, then we evaluate
the consistency error. We keep the same notations as in definitions 1 and 2.

1. Stability.
We suppose that functionsΦ fi are lipschitzian iny. Thus there are(λ1,λ2, . . . ,λm)∈
R

m such that :
|Φ fi (t,y2,h)−Φ fi (t,y1,h)| ≤ λi |y2−y1| (12)

This implies the following lemma, proved by induction :

|Φσn(t,y2,h)−Φσn(t,y1,h)|
≤ ∑m

i=1λi |y2−y1|
+h∑m

i< j λiλ j |y2−y1|

+ · · ·
+hm−1λ1λ2 · · ·λm|y2−y1|.

(13)

As Φσn is lipschitzian, the stability is proved for reaction-agent version of any clas-
sical method.

2. Consistency.
According to the following lemma :

Lemma 1. The algorithm

y(t0) = y0, yn+1 = yn +hnΦ f (tn,yn,hn) (14)

is consistent of order p if and only if

Φ f (t,y,h) =
p

∑
k=1

hk−1

k!
f [k−1](t,y)+O(hp),

where f [n](t,z(t)) =
dn

dtn

(

f (t,z(t))
)

.

(15)

Thus, we end by establishing the following equality :

1
m! ∑

σn∈Sm

Φσn(t,y,h)

=
p

∑
k=1

hk−1

k!
(

m

∑
i=1

fi)
[k−1](t,y)+O(hp),

(16)

which is true if and only ifp≤ 2.

⊓⊔
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4 Multistep and implicit methods

Simulation of systems submitted to constant perturbationsa priori empeaches the use
of implicit or multistep methods [HN1,HN2], since the number of constituants of the
system can change from one time step to the other. However, in the case where, during
the simulation, the system is stable, involving for instance a constant number of chemi-
cal reactions, we wish to keep the efficiency of such methods. Wecan keep the point of
view of autonomous agents and use implicit and multisteps methods in this case, where
reaction-agent model is unprofitable.

4.1 Description

Recall that if we want to solve the Cauchy problem (1), Adamsk+ 1-step classical
methods [HN1] are based on algorithms like :

Cn+1 = Cn +hn

k−1

∑
i=−1

βi( f1 + · · ·+ fm)(tn−i ,Cn−i), (17)

where the sumβi( f1 + · · ·+ fm)(tn−i ,Cn−i) is the interpolation polynomial of function
f1+ · · ·+ fm at points(tl ,Cl ), n−k+1≤ l ≤ n+1. Or, this can also be written, for any
permutationσn in Sm,

C⋆1 = Cn +hn∑k−1
i=−1 βi fσn(1)(tn−i,Cn−i)

C⋆2 = C⋆1 +hn∑k−1
i=−1βi fσn(2)(tn−i ,Cn−i)

...
C⋆m = C⋆(m−1) +hn∑k−1

i=−1 βi fσn(m)(tn−i ,Cn−i)
Cn+1 = C⋆m.

(18)

The algorithm described above enables one to keep the point of view of autonomous
agents carrying their own execution of implicit and multistep algorithm.

4.2 Simulation strategy

Hence, simulation of chemical kinetics phenomenons using reaction-agents can be sum-
marized the following way :

– If, during the simulation, the system is perturbed by a new phenomenon (e.g. a
new chemical reaction), a one step reaction-agent method isembraced, to take this
perturbation into account.

– During a long non-perturbation period, we embrace a multistepAdams method,
however keeping the autonomy principiæ for our multi-agent system.
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5 Example

Recall that our reaction-agent model is not intented to simulate chemical kinetics phe-
nomenons when the number of reactions is constant. However, in order to illustrate
results of section 3, we consider such a case.

We take, as an example of application of our method, the mathematical model of the
extrinsic pathway of blood coagulation published by [LB1],see figure 2. In their study,
they used a kinetic model based on ordinary differential equations in order to show that
factor IXa could be a major product of the extrinsic pathway. We have implemented
this model and solved it using either our reaction-agent (here denoted RA) methods,
either classical methods. When the system is solved using our reaction-agent methods,
a Euler or an order 2 Runge-Kutta or an order 4 Runge-Kutta method is embedded
in each reaction-agent. When the system is solved using classical methods, a euler or
an order 2 Runge-Kutta or an order 4 Runge-Kutta is used. We focus solely on factor
Xa generation (i.e. only on the solution of one equation). We have compared the local
error obtained on 6 points with each method (RA euler, RA rk2, RA rk4, ODE euler,
ODE rk2, ODE rk4) to the solution given when the system is solved using an adaptative
step size Runge-Kutta-Fehlberg method (here denoted ODE rk4 and supposed to be the
exact solution). Results are shown in table 1.

Table 1. Results. The set of ODE of the kinetic model is solved using either our reaction agent
(RA) method, either classical methods. Local errors (obtained with a constant step size of 1.0 s)
on 6 points are reported. We intentionally use a huge step size, in order to get a significant error.

time (s) RA euler RA rk2 RA rk4

50 2.77 % 0.30 % 0.54 %
100 3.26 % 0.33 % 0.62 %
150 3.67 % 0.41 % 0.68 %
200 4.10 % 0.50 % 0.58 %
250 4.75 % 0.55 % 0.47 %
300 5.65 % 0.86 % 0.48 %

time (s) ODE euler ODE rk2 ODE rk4
50 2.93 % 0.05 % 0.00 %
100 2.59 % 0.04 % 0.00 %
150 2.39 % 0.04 % 0.00 %
200 2.16 % 0.04 % 0.00 %
250 1.90 % 0.04 % 0.00 %
300 1.61 % 0.04 % 0.00 %

As expected, when classical methods are used, the higher the order of the method,
the smaller the local error. This table confirms that the local error obtained using the RA
Euler method is approximatively of the same order than the classical one. The RA order
2 Runge-Kutta method gives a smaller error than the Euler onebut the classical order 2
Runge-Kutta is a bit more precise. The RA order 4 Runge-Kuttamethod shows a local
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error similar to the RA order 2 Runge-Kutta one, which confirmsthat the precision of
the reaction-agent method could not exceed order 2.

TF·VIIa·AT
↑

AT
+

TF·VIIa + IX → TF·VIIa + IXa
+ +

TF·VIIa·Xa·TFPI X AT
↑↓ ↓ ↓

TF·VIIa TF·VIIa IXa·AT
+ +

Xa·TFPI ⇆ TFPI + Xa + AT→ Xa·AT

Fig. 2. Kinetic model of blood coagulation extrinsic pathway proposed by [LB1].

6 Conclusion

We have exposed the proof of efficiency of reaction-agent based methods for thein
virtuo simulation of biological chemical kinetics phenomenons. We have chosen to au-
tonomize reactions. This leads to a lesser convergence thanthe one obtained by one step
classical methods, since this order is at best quadratic, even if superior order classical
method is chosen. Nevertheless, as far as we know, reaction-agent model is the only one
which allowsin virtuo simulation of a true dynamic chemical kinetics, as can be found
only in life.
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