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Priority-based intersection management
with kinodynamic constraints

Jean Grégoire? Silvère Bonnabel? Arnaud de La Fortelle?†

Abstract— We consider the problem of coordinating a col-
lection of robots at an intersection area taking into account
dynamical constraints due to actuators’ limitations. We adopt
the coordination space approach, which is standard in multiple
robot motion planning. Assuming the priorities between robots
are assigned in advance, and assuming the existence of a
collision-free and deadlock-free trajectory satisfying those pri-
orities, we propose a provably safe trajectory planner satisfying
kinodynamic constraints. The algorithm is shown to run in
real time, to return safe (collision-free) trajectories, and to be
efficient enough, in the sense that the optimality gap remains
reasonable. Simulation results on synthetic data illustrate the
benefits of the approach. Although the paper is devoted to
centralized planning, this work opens some avenues for robust
distributed multiple robot motion control.

I. INTRODUCTION

A. Motivation

Human error is the sole cause in 57% of all road accidents
and is a contributing factor in over 90% [1], [2]. More-
over, traffic congestions motivate the research to improve
intersection traffic flow. Intelligent transportation systems are
expected to tackle both safety and efficiency issues in the
near future. Many systems have been proposed and they have
proved their ability to increase traffic efficiency – particularly
compared to traffic lights systems – and to reduce the risk
of road accidents [3], [4], [5], [6], [7], [8]. Furthermore,
more generally, automated conflict management opens new
perspectives to improve railway [9] and air transportation
systems [10] efficiency.

In transportation systems, safety is usually centralized
(e.g. air traffic control, rail management systems) or at least
managed locally in a centralized way (e.g. traffic lights). In
the future, we anticipate there will be locally full informa-
tion, e.g. through car-to-car communication being currently
standardized. Obviously there will be non-communicating
entities, sometimes delays or sensing errors, but our aim is
to go from a centralized system in full information down to
more reactive schemes, ensuring safety first. Therefore we
do not consider here the reactive approach used in lots of
distributed systems, not even a deliberative approach based
on consensus theory: we want first to plan safe trajectories
that are gridlock-free (every vehicles eventually exits the
intersection area) and then release some constraints while
keeping the safety and efficiency as much as possible.
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B. Related work

The standard approach to multi robot motion planning is to
decompose the problem into two parts, as initiated in [11].
As presented in [12], the first one consists of determining
fixed paths along which robots cross the intersection. The
second one consists of computing the velocity profile of each
robot along its path: this is a well-known problem studied
for applications in automated guided vehicles (AGVs) and
robots manipulators.

As first introduced in [13], [14], the path-velocity de-
composition enables to introduce an abstract space: the
coordination space. It is a standard approach to robot motion
planning [15], [16], and the motion planning problem in
the real space boils down to finding an optimal trajectory
in the coordination space that is collision-free with respect
to an obstacle region. The coordination space is a n-
dimensional space (where n denotes the number of robots
in the intersection) and the obstacle-region has a cylindrical
structure [17]. In [12], [18], we have revisited the notion
of priorities to propose a novel framework for automated
intersection management based on priority assignment. It is a
very intuitive notion: the priority graph indicates the relative
order of robots. Our framework enables to decompose the
motion planning problem problem in the coordination space
into a combinatorial problem: priority assignment and a
continuous problem: finding an optimal/efficient trajectory
with assigned priorities.

The ambition of this framework is to enable more robust-
ness and distribution in future automated intersection man-
agement systems. Indeed, existing intersection management
systems such as proposed in [6], [3], [8] plan the complete
trajectories of robots through the intersection and ensuring
safety requires robots to follow precisely the planned trajec-
tory. By contrast, if priorities only are planned, the priority
graph can be conserved even if some unpredictable event
requires a robot to slow down for some time. Moreover,
trajectory planning at every time-step can be distributed over
robots if every robot has knowledge of the assigned priorities.

It is now clear that the combinatorial problem of assigning
judicious priorities is inherently difficult, as noticed in [19]
and developed in the priority-based framework in [18]. As
a result, we will only consider in the present paper the
issue of planning ”good” trajectories for fixed in advance
priorities. When the robots can start and stop instantaneously,
it is relatively easy to define an optimal trajectory for fixed
priorities. This trajectory is referred to as the left-greedy
trajectory [19], [18]. However, replacing this with acceler-



ation (and higher derivatives) bounds turns the optimization
problem into a ”highly non-trivial” problem (as suggested
in the conclusion of the paper [19]). In the present paper,
we address the challenging problem of defining safe and
efficient (although suboptimal) trajectories that respect this
type of constraints. In [20], the problem is formulated as
a mixed integer nonlinear programming problem, and the
solution proposed is suitable only for a ”reasonable” and
fixed number of robots. Moreover, priority assignment and
trajectory planning are not decoupled. In the present paper,
we focus on a low complexity solution to the trajectory
planning problem with assigned priorities which is applicable
for a large and potentially varying number of robots.

C. Contributions

We introduce a theoretical tool: the braking trajectory,
which is a virtual trajectory obtained letting all robots
slowing down as much as possible to stop. The key idea
of the paper is to ensure that at every time-step, the (virtual)
braking trajectory is collision-free. To this respect, it can
be related to the approach of [7]. However, in the present
paper, the notion of priorities is a geometric concept taking
advantage of the topology of the coordination space (see
[18]). It is more general than and quite different from the
relation between robots of [7] for the following reasons. First
of all, the relation of [7] is an order whereas the priority
relation is not necessarily an order [18]. Secondly, in [7],
the trajectory of the robots and the priority assignment policy
are both maximally aggressive. At high traffic density, it is
not necessarily efficient because priorities should be assigned
considering queues upstream the intersection. By contrast, in
this paper, the priority assignment policy can be of any kind.
Moreover, the dynamic constraints considered presently are
more general than bounded acceleration and we just assume
in our work that the set of reachable positions from any state
of the system is bounded. Finally, the decomposition of the
problem using the priority graph highlights that the efficiency
of the priority assignment policy should be distinguished
from the efficiency of the trajectory planning with assigned
priorities.

With the proposed planner, robots are maximally aggres-
sive, i.e. always maximize the distance travelled at every
time-step. However, they do not accelerate if the virtual
braking trajectory becomes unsafe or violates a priority, i.e.
they ensure the existence of a failsafe maneuver for the
system of robots at any time. We present a trajectory planner
with assigned priorities that consists of just-in-time braking.
The proposed algorithm does not return an optimal trajectory,
in terms of averaged travel time over robots. However, we
provide a theoretical result highlighting that the optimality
gap is due to (positive) acceleration constraints and is of
the order of the time necessary to go from stop to full
speed. Finally, simulation results confirm the safety and the
efficiency of the approach.

Section II and III present the modelling assumptions and
recall the basics of the priority-based framework of [12],
[18]. Section IV introduces the motion planner algorithm

along with its safety and efficiency guarantees. Finally,
simulation results of Section V illustrate the efficiency of
the approach.

II. MODELLING ASSUMPTIONS

A. Fixed paths assumption and the coordination space

We assume that robots are constrained to follow prede-
fined paths to go through the intersection. The paths are
not necessarily straight lines: robots are just considered as
driving along fixed tracks. This can be achieved by a low-
level controller. This standard assumption [13], [21], [22],
[23], [7] fits well intersections in a road network, where
robots travel along lanes.

Assumption 1 (Path following). Every robot i follows a
particular path γi and we denote xi ∈ R its curvilinear
coordinate along the path. The configuration of the system of
robots is x = (xi)i∈{1...n} and we denote x(t) the evolution
of x through time t ∈ [0, T ].

Figure 1 illustrates the path following assumption.
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Fig. 1. The path following assumption. All robots in the same lane
(depicted with the same color) travel along the same geometric path with
independent velocity profiles.

The curvilinear coordinates are normalized, so that x ∈
χ = [0, 1]n where n denotes the number of robots going
through the intersection (possibly changing through time).
The configuration space χ is known as the coordination space
[24], [17], [13]. In the rest of the paper, {ei}1≤i≤n denotes
the canonical basis of χ.

B. The obstacle region

The use of the coordination space and the results of this
paragraph are standard [17]. As every robot occupies a non-
empty geometric region, some states must be excluded to
avoid collisions between robots.

Definition 1 (Obstacle region, Obstacle-free region). The
obstacle region χobs is the open set of all collision con-
figurations. χfree = χ\χobs denotes the obstacle-free space.

A collision occurs when two robots occupy a common
region of space, so that:

Property 1 (Cylindrical structure). The obstacle region can
be described as the union of n(n−1)/2 open cylinders χij

obs

corresponding to as many collision pairs: χobs = ∪i>jχ
ij
obs.



Figure 2 displays the obstacle region and a collision
configuration for a two-path intersection.
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Fig. 2. The left drawing depicts two robots in collision in a 2-path-
intersection. The right drawing depicts the corresponding configuration in
the coordination space that belongs to the obstacle region.

Assumption 2 (Cylinders convexity). Each cylinder χij
obs

has an open bounded convex cross-section (in the plane
generated by ei and ej).

C. Kinodynamic constraints

To perform motion planning optimization, we need to
make hypothesis on the technical constraints of the robots.
These include kinematic constraints (maximum velocity,
maximum curve radius, etc.) and dynamic constraints (lim-
ited acceleration, adherence, jerk, etc.).

Definition 2 (Robots constraints). Let p denote the de-
gree of the constraints and n the number of robots. Let
s(t) = (x x′ · · ·x(p))(t) ∈ Rn×(p+1) denote the state of the
system. We let x(t) = π(s(t)) denote the first column of the
state s(t), that is the position of all robots.

We say a trajectory x respects the kinodynamic constraints
C if: ∀i ∈ {1...n}, ∀t ∈ [0, T ] such that xi(t) ∈ (0, 1), we
have si(t) ∈ Ci with Ci ⊂ Rp+1 representing the constraints
for robot i and C =

∏
i∈{1...n} Ci ⊂ Rn×(p+1).

Note that because of the boundedness condition on χ, the
constraints must be respected for any time t such that x(t)
is not at the boundary of χ (i.e. xi(t) ∈ (0, 1)). This ensures
that x can be artificially stopped at the boundary of χ to
stay inside χ. Note also that every robot can have different
constraints Ci, and Ci can not necessarily be expressed in a
product form (for example, the constraint on the acceleration
can depend on the velocity).

Assumption 3 (Boundedness and continuity of reachable
positions). The set of reachable positions from state s0 in
a time-length t:

χreach(s0, t) =

{
x(t)

∣∣∣∣ x respects the constraints C
s(0) = s0

}
(1)

is continuous with respect to s0 and is a bounded hypercube
of x0 + Rn

+.

Note that, the above assumptions imply in particular that:
1) robots cannot travel backwards in the intersection,

2) and from a given state s0, the set of reachable positions
in finite time is bounded, and the bounds depend on the
state s0 of the robots (position, velocity, acceleration,
etc.).

III. THE PRIORITY-BASED FRAMEWORK

In this section, we recall the basics of priority-based
intersection management introduced in our previous work
[12], [18].

A. The priority relation

Consider the region χi�j
obs defined as follows and depicted

in Figure 3:

χi�j
obs = χij

obs − R+ei + R+ej (2)

xixi

xj

χobs

xi

xj

χobs
j>i

xi

xj

χobs
i>j

xi>j(t) 

xj

χobs

xj>i(t) 

xi>j(t) 

xj>i(t) 

Fig. 3. The top drawings represent in the plane (xi, xj) the obstacle region
χobs, a feasible trajectory xi�j respecting priority i � j and a feasible
trajectory xj�i respecting priority j � i. The bottom drawings depict χi�j

obs

and χj�i
obs .

We define a natural binary relation corresponding to pri-
ority relations between robots.

Definition 3 (Priority relation). An exit trajectory x induces
a binary relation � on the set {1...n} as follows. For i 6= j
s.t. χij

obs 6= ∅, i � j if x is collision-free with χi�j
obs .

B. The priority graph

The priority relation can be described by a graph G
with nodes {1...n}, where each edge represents the relative
priority of a pair of robots.

Definition 4 (Priority graph). Given a feasible trajectory x,
the priority graph is the oriented graph G whose vertices
are {1...n} and such that i G−→ j if i � j.

An example of a priority graph for 3 robots along 3 distinct
paths is described in Figure 4.
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Fig. 4. Two representations of priority relations. Robots along a path in
foreground have priority over robots along a path in background.

C. Problem formulation

The initial state of the robots is sinit, and the goal region
is χgoal = {1 = (1 · · · 1)} ⊂ χfree.

Definition 5 (Feasible trajectory, Exit trajectory). A feasible
trajectory for the considered problem is a trajectory x :
[0, T ]→ χfree respecting constraints C and such that s(0) =
sinit.

If x(T ) ∈ χgoal, x is an exit trajectory.

The optimality problem consists of finding an exit tra-
jectory x? that minimizes the average time spent in the
intersection, i.e. that minimizes the cost function c(x) defined
below.

Definition 6 (Cost function). Given an exit trajectory x, the
cost function c associates x with the real positive value c(x)
defined below:

c(x) =
1

n

n∑
i=1

Ti =
1

n

n∑
i=1

x−1i (1) (3)

with x−1i (x0i ) denoting the first date at which xi reaches x0i
and Ti = x−1i (1) being the exit time for robot i.

IV. MOTION PLANNER WITH ASSIGNED PRIORITIES

In this section, we focus on the solution of the problem
when priorities are assigned in advance. The key idea is
that if robots wait to be at the boundary of the collision
region to brake (as it is the case without dynamic constraints
in [12]), collisions will occur because robots cannot stop
instantly. That is why we need to anticipate the approach of
the collision region. This can be done introducing two virtual
trajectories as follows.

A. Introducing maximal and minimal trajectories

Definition 7. The minimal (resp. maximal) trajectory from
state s0, denoted x|s0 (resp. x|s0 ), are defined bellow:

x|s0(t) = minχreach(s0, t)

x|s0(t) = maxχreach(s0, t)

One can view the minimal trajectory as a braking trajec-
tory, and the maximal trajectory as an accelerating trajectory.

The concepts are illustrated by Figure 5 where the kinody-
namic constraints have the special following form:

Cacc
i =

{
(xi, x

′
i, x
′′
i )

∣∣∣∣ 0 ≤ x′i ≤ vmax
i

amin
i ≤ x′′i ≤ amax

i

}
(4)

x'i

x"i

vmax
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amin

Ci
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t

xi(t)

t0

xs(t0)(t-t0)
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Fig. 5. The left drawing depicts an example of kinodynamic constraints
where robots have uniform minimal/maximal velocity and acceleration along
their paths. The right drawing depicts the corresponding minimal/maximal
trajectories x

s(t0)
and x

s(t0)
.

Before proposing a motion planner based on those virtual
trajectories, a last natural assumption must be made: an early
braking (resp. acceleration) implies a delay (resp. advance)
that can never be caught up.

Assumption 4 (Benefit of early braking/acceleration). Say
t1 > t0 and assume that ∀t ∈ (t0, t1), x(t) > x|s(t0)(t).
Then, for t2 > t1, x|s(t1)(t

2) > x|s(t0)(t
2).

Similarly, assume that ∀t ∈ (t0, t1), x(t) < x|s(t0)(t).
Then, for t2 > t1, x|s(t1)(t2) < x|s(t0)(t

2).

B. The motion planner

The time t is first discretized, and the trajectory of the
robots x(t) is computed iteratively as described in the
following Algorithm 1. Indeed, at every time-step t, the
trajectory up to time t+ ∆T can be computed as follows:
• Cycling through all robots, we select a particular robot
i (line 5)

• we compute a trajectory s̃ defined letting this robot
accelerate as much as possible and letting all other
robots decelerate as much as possible (lines 6-11)

• we define a complete virtual trajectory χvirtual concate-
nating π(s̃) up to time t + ∆T , and then letting all
vehicles brake as much as possible at time t+∆T (line
13)

• If this virtual path is such that no collision and no
priority violation occurs, it means there exists a failsafe
maneuver such that robot i accelerates as much as
possible, and we let it do so. Otherwise, robot i must
brake (lines 14-18). Thus, at each time-step t, each robot
i exclusively follows its maximal xi|s(t) or minimal
trajectory xi|s(t) in the next time-step.

The defined trajectory thus appears as a natural extension
of the left-greedy trajectory introduced in [19], in the sense
that in the absence of kinodynamic constraints (p = 1), it
coincides with it. Indeed, in this case the robots can stop



Algorithm 1 The motion planner with assigned priorities
Input: sinit, feasible priority graph G

function MAXIMALLYAGRESSIVETRAJECTORY
T ← 0
s(0)← sinit

while x(T ) /∈ χgoal do
5: for i ∈ {1...n} do

for t ∈ [0,∆T ] do
for j 6= i do

s̃j(t)← sj |s(T )
(t)

end for
10: s̃i(t)← si|s(T )(t)

end for
sf = s̃(∆T )
χvirtual ← π(s̃([0,∆T ])) ∪ x|sf (R+)

if ∃j G−→ i s.t. χvirtual ∩ χj�i
obs 6= ∅ then

15: si(T + ∆T )← si|s(T )(∆T )
else

si(T + ∆T )← si|s(T )(∆T )
end if

end for
20: T ← T + ∆T

end while
return (x(t))t=0···T

end function

instantly and the block from Line 6 to Line 18 simply
consists of checking that maximum speed during the next
time-step is safe: if it is not the case the robot is stopped.
Note also that if the state s(t) is such that the braking
trajectory x|s(t) is collision-free, the state s(t) is not an
”Inevitable Collision State” (ICS), as defined in [25]. Indeed,
x|s(t) is a trajectory that enables to avoid any collision,
i.e. s(t) is not an ICS. Finally, note that the block from
Line 6 to Line 18 can be distributed over robots if they all
have knowledge of the priority graph and other robots’ state.
However, distributed control is not the focus of the present
paper.

C. Safety guarantees

The theorem below exhibits the safety guarantee provided
by the proposed motion planner.

Theorem 1 (Safety guarantees). Assume that there exists
some exit trajectory respecting priorities defined by G and
the initial state sinit is such that the initial braking trajectory
x|sinit is collision-free, Algorithm 1 terminates and returns a
collision-free exit trajectory, for sufficiently small ∆T .

Proof. It is assumed that that there exists some exit trajectory
respecting priorities defined by G, so that G is feasible as
defined in [18], and the trajectory cannot reach a deadlock
configuration (for sufficiently small ∆T ). Until χgoal is
reached, at any time there is at least one robot at a coordinate
xi0 < 1 moving forward. Indeed if this was not true it would
mean that the robots have reached a deadlock configuration.

There is thus a lower bound, say µ, for the distance travelled
by some of the robots in a time-length ∆T , depending on the
constraints. This implies x necessarily reaches χgoal in finite
time (of order at most O(n/µ)) and Algorithm 1 terminates.

Moreover, for any priority j G−→ i , the braking trajectory
from any state of the returned trajectory is collision-free with
respect to χj�i

obs by construction. At every time-step, there are
two options for the robot with lower priority:
• either i brakes as much as possible. The braking trajec-

tory is the worst-case scenario for collision with respect
to χj�i

obs because χj�i
obs + R+ei ⊂ χj�i

obs (see Fig. 3)
and χj�i

obs is a cylinder. Since the braking trajectory
is collision-free with respect to χj�i

obs , the returned
trajectory is necessarily also collision-free with respect
to χj�i

obs .
• or i accelerates as much as possible. For the same

reasons as previously, x̃ is the worst-case scenario for
collision with respect to χj�i

obs . Since x̃ is collision-
free with respect to χj�i

obs , the returned trajectory is also
collision-free with respect to χj�i

obs .
As a result, x is collision-free at every time-step and

reaches χgoal: it is a collision-free exit trajectory.

D. Discussion on efficiency

The motion planner presented in this paper does not
return an optimal trajectory with regards to the objective
(3), whose purpose is to minimize the average time spent in
the intersection, and finding an optimal trajectory remains a
challenging problem whenever dynamical constraints come
into play [19]. However, the following theorem allows to
approximately evaluate the optimality gap. Indeed, it shows
that suboptimality of the algorithm has two sources: first
some time is lost picking a trajectory such that at any time
the minimal trajectory is collision-free. This is not an issue,
as it endows the algorithm with robustness properties, since it
means that an emergency stop can occur at any time without
generating any collision. Then, some time is also lost during
the (positive) acceleration phases.

Theorem 2 (Efficiency guarantee). Assume that there ex-
ists some exit trajectory respecting priorities defined by G
and the initial state sinit is such that the initial braking
trajectory x|sinit is collision-free. Relaxing only the positive
acceleration constraints, assume robots can reach maximum
speed instantaneously at any time. This implies the maximal
trajectories originating from two initial states s0 and s1 with
the same position coincide:

π(s0)i = π(s1)i ⇒ si|s0 = si|s1 1 ≤ i ≤ n (5)

Define robust exit trajectories as exit trajectories x such that
for all t ∈ [0, T ] the braking trajectory from state s(t) is
collision-free. The collision-free exit trajectory returned by
Algorithm 1 is an optimal robust exit trajectory as ∆T → 0.

Proof. Let x? denote the trajectory returned by Algorithm
1 and x̃ a robust exit trajectory. Since robots can reach full



speed instantaneously, the trajectory x̃ can surpass x? at time
T 0 +∆T (i.e. for the first time, a component i of x̃ becomes
strictly greater than the same component of x?) if and only
if component i of x? is following the braking trajectory for
t ∈ [T 0, T 0 + ∆T ]. If the braking trajectory is followed, it
implies that the final configuration of the braking trajectory
from state s?(T 0 + ∆T ) is very close to some forbidden
region χj�i

obs , arbitrarily close to the frontier of the forbidden
region as ∆T → 0. As a consequence, surpassing x̃ would
result in a small increase in the final configuration of the
braking trajectory from state s̃(T 0+∆T ), the frontier would
be crossed and the braking trajectory would not be collision-
free. In conclusion, the collision-free exit trajectory returned
by Algorithm 1 is an optimal robust exit trajectory.

The fact that Algorithm 1 is not robust-optimal when
maximum speed can not be reached instantly is easy to
understand. Indeed, according to the algorithm, the robots
brake only when absolutely necessary to avoid a collision
or a priority violation. This leads some robots to stop and
restart, whereas they could have anticipated, and lowered
their speed a little so that the re-acceleration phase would be
shorter after having let the prioritary robots pass first. In the
presence of positive acceleration constraints as well, we thus
have an idea of the optimality gap which appears to be at
most of the order of the time necessary for the slowest robot
to go from stop to maximum speed. In particular, for p = 2
this implies the optimality gap is of order O(vmax/amax).

V. SIMULATIONS

The algorithms presented in this paper have been imple-
mented into a simulator coded in Java. Our algorithms have
proved their ability to run in real-time.

A. Setting and results

Only straight paths are implemented (for simplicity’s sake)
and all robots are supposed to be circle-shaped with a
common radius R. The kinodynamic constraints of the robots
concern only the maximal velocity and minimal/maximal
acceleration. Moreover, all robots are supposed to have
identical kinodynamic constraints.

∀i ∈ {1...n}, Cacc
i =

{
(xi, x

′
i, x
′′
i )

∣∣∣∣ 0 ≤ x′i ≤ vmax

amin ≤ x′′i ≤ amax

}
.

(6)
In the simulation results presented in this section, we

take as priority assignment policy the maximally aggressive
priority assignment policy that consists for every robot of
taking priority over another robot when it approaches the
conflicting region. This priority assignment policy can lead
to deadlock configurations (see [18]), but with a very small
probability in case of low traffic density as in the presented
simulations. This policy is used for the sake of simplicity, the
priority assignment policy not being the focus of this paper.

Simulations have been carried out for the 4-path-
intersection depicted in Figure 7. At full speed, the distance
travelled in one time-step is R and at full acceleration, 20
time-steps are required for the robots to reach full speed.

Figure 6 depicts the increase in travel time for different
traffic densities. The increase in travel time is the delay due
to coordination, i.e. the difference with the ideal travel time
which is the travel time of robots in the absence of other
robots. It is expressed in percentage of the ideal travel time.
The increase in travel time vanishes as the density approaches
0 since it becomes very unlikely that they need to coordinate
to avoid collisions. The traffic density in percentage is the
ratio between the actual traffic density and the maximum
traffic density (continuous flow of robots). The robots are
generated randomly at a constant rate over time. The video
of the simulation for a traffic density of 10% is available at
http://youtu.be/bJHdf3AbIlI.
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Fig. 6. Simulation results: plot of the averaged increase in travel time
against the traffic density for the intersection of Figure 7

Fig. 7. The 4-path-intersection used for simulations

B. Comments

First of all, our algorithm succeeds to work in real time,
and one can observe in simulations (notably on the video)
that collisions never occur. This confirms the fact that the
planner guarantees safety under dynamic constraints. One
can see in Figure 6 that at a traffic density of 10% on each
path, the increase in travel time due to coordination to avoid
other robots is less than 15% which seems a low price to
pay to ensure safe coordination. Note that we do not present
simulation results at higher traffic densities because it would
require to define a more complex priority assignment policy
(at least to avoid deadlocks), which is a challenge in itself,
and beyond the scope of the present paper.

http://youtu.be/bJHdf3AbIlI


VI. CONCLUSIONS AND DISCUSSION

The results presented in this paper prove that when
priorities are assigned, it is possible to plan a safe and
quite efficient trajectory respecting the priority graph and the
dynamic constraints of the robots. The use of the braking
trajectory enables to anticipate the need to brake just-in-
time, and as a byproduct provides robustness guarantees. The
returned trajectory is not optimal but the optimality gap is
of the order of the time required for a robot to go from stop
to full speed, which seems reasonable.

If robots have knowledge of the priority graph and other
robots’ state, the motion planner can be distributed over
robots. Moreover, if the robots drift from the planned tra-
jectory but if no priority has been violated, it is possible to
run the motion planner from a new initial state to get a new
exit trajectory respecting the assigned priorities. This opens
avenues for robust distributed multiple robot motion control.
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