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Abstract

In this paper, the stabilizability of discrete-time linearswitched systems is considered. Several sufficient conditions for stabilizability
are proposed in the literature, but no necessary and sufficient. The main contributions are the necessary and sufficient conditions for
stabilizability based on set-theory and the characterization of a universal class of Lyapunov functions. An algorithmfor computing the
Lyapunov functions and a procedure to design the stabilizing switching control law are provided, based on such conditions. Moreover
a sufficient condition for non-stabilizability for switched system is presented. Several academic examples are given to illustrate the
efficiency of the proposed results. In particular, a Lyapunov function is obtained for a system for which the Lyapunov-Metzler condition
for stabilizability does not hold.
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1 Introduction

Switched systems are systems for which the current time-
varying dynamics, specified by the so-called switching law,
belongs to a finite set of modes (see [18]). In the last decades,
a large literature has been devoted to study switched sys-
tems for practical reasons, as they model complex systems
like embedded ones, and for theoretical ones, since their be-
havior and stability properties are not intuitive nor trivial,
[19]. Depending on the assumptions on the switching law,
different frameworks have risen. The switching law is often
considered as a perturbation or as a part of the control inputs.

When the switching law is a perturbation, that is an arbitrary
function, sufficient and conservative conditions to ensurethe
stability have been provided (see for overviews [22, 23, 27]).
Several refinements have been proposed to obtain neces-
sary and sufficient conditions for stability of switched sys-
tems. Among these conditions, one can cite the joint spec-
tral radius approach [1, 21, 14]; the polyhedral Lyapunov
functions [24] and the path-dependent switched Lyapunov
ones [17]. Specific necessary and sufficient conditions exist

⋆ Corresponding author M. Fiacchini.

for two-dimensional systems [8] or positive ones [13].

In case the switching law is a part of the control inputs,
sufficient conditions for stabilizability have been provided,
mainly by using amin-switchingpolicy [18, Chapter 3] in-
troduced in [28], developed in [16] via BMI and leading
to Lyapunov-Metzler inequalities [11]. Based on the set-
induced Lyapunov functions introduced in [4], sufficient
conditions for uniform ultimate boundedness have been pro-
posed for uncertain switched linear systems in [20]. Never-
theless to the best knowledge of the authors, necessary and
sufficient conditions for the stabilizability and for the non-
stabilizability of discrete-time switched linear systemsdo
not exist in the literature.

The proposed approach is based on set-theory and invari-
ance for control and analysis. A seminal work dealing with
the characterization of invariance is [2]. More recently, the
works [12, 15, 5] lay the basis of set-theoretic methods and
invariance in control. The relation between contractivityand
polyhedral Lyapunov functions is presented in [3]. In [24, 4],
it is proved that the existence of a contractive polytope is
a necessary and sufficient condition for exponential stabil-
ity and that polyhedral functions form a universal class of
Lyapunov functions for linear parametric uncertain systems.
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See [6] for a detailed review on the topic.

This paper provides new necessary and sufficient conditions
for stabilizability and sufficient ones for non-stabilizability
of discrete-time linear switched systems. A family of non-
convex, homogeneous functions is proved to be a universal
class of Lyapunov functions for switched linear systems. The
key idea is to use the set-theory offering numerically sound
algorithms to check the stabilizability (and providing thesta-
bilizing switching law) or the non-stabilizability. The paper
extends the results presented in the preliminary work [9].

The outline of the paper is as follows. In Section 2, pre-
liminaries and set-theory tools are presented. Section 3 is
devoted to the new necessary and sufficient conditions for
stabilizability. Section 4 provides the stabilizing switching
control law. Section 5 presents sufficient conditions for non-
stabilizability. Links with the Lyapunov-Metzler approach
are discussed in Section 6. The results are illustrated by ex-
amples in Section 7, before concluding remarks in Section 8.

Notation: Define Nn = {x ∈ N : 1 ≤ x ≤ n} with n ∈ N.
Given D,E ⊆ Rn, α ∈ R and M ∈ Rm×n, defineD+E =
{z= x+ y∈ Rn : x∈ D, y ∈ E}, the scalar multipleαD =
{αx∈ Rn : x∈ D} andMD = {Mx∈ Rm : x∈ D}. Given a
setD ⊆ Rn, int(D) is its interior and∂D its boundary. The
setBn is the unit euclidean ball inRn. The i-th element of a
finite set of matrices is denoted asAi , of a set of sets asΩi .

2 Preliminaries

Consider the discrete-time switched system

xk+1 = Aσ(k)xk, (1)

wherexk ∈ Rn is the state at timek∈ N andσ : N→ Nq is
the switching law that, at any instant, selects the transition
matrix among the finite set{Ai}i∈Nq, with Ai ∈Rn×n for all
i ∈ Nq. Given the initial statex0 and a switching lawσ(·),
we denote withxσ

N(x0) the state of the system (1) at time
N starting fromx0 by applying the switching lawσ(·). In
some casesσ can be a function of the state, for instance in
the case of switching control law, as shown later.

Remark 1 Two main cases have to be discriminated de-
pending on the assumptions on the switching law. Ifσ(·) is
supposed to be an arbitrary function of time, that is acting
as a perturbation, then the problem of asymptotic stability
of the system under every possible switching law is usually
considered. For this case necessary and sufficient conditions
for stability exist. Whenσ(·) is considered as a manipulable
signal, then the problem of asymptotic stabilizability (sim-
ply denoted as stabilizability in what follows) is addressed,
that consists in the existence and the characterization of the
switching laws that yield asymptotic stability if applied.This
is the problem considered in the paper.

A concept widely employed in the context of set-theory and
invariance is the C-set, see [4, 6]. A C-set is a compact,
convex set with 0∈ int(Ω). We define an analogous concept
useful for our purpose. For this, we first recall that a setΩ is
a star-convex set if there existsx0 ∈Ω such that every convex
combination ofx andx0 belongs toΩ for everyx∈ Ω.

Definition 1 A setΩ ⊆Rn is a C∗-set if it is compact, star-
convex with respect to the origin and0∈ int(Ω).

We define the analogous of the gauge function of a C∗-set as

ΨΩ(x) = min
α≥0

{α ∈ R : x∈ αΩ}, (2)

for the C∗-set Ω ⊆ Rn. In what follows, we will refer to
ΨΩ(x) as the Minkowski function ofΩ at x, with a slight
abuse since it is usually defined for C-sets (or symmetric
C-sets), [25, 26, 6]. Some basic properties of the C∗-sets
and their Minkowski functions are listed below. The proof
is avoided, since they follow directly from the definition.

Property 1 Any C-set is a C∗-set. Given a C∗-setΩ ⊆ Rn,
we have thatαΩ ⊆ Ω for all α ∈ [0,1], and the Minkowski
function ΨΩ(·) is: homogeneous of degree one, i.e.
ΨΩ(αx) = αΨΩ(x) for all α ≥ 0 and x∈ Rn; positive
definite; defined onRn and radially unbounded.

The Minkowski functions induced by C-sets have been used
in literature as Lyapunov functions candidates, see [3]. In
particular, it has been proved that they provide a universal
class of Lyapunov functions for linear parametric uncertain
systems, [24, 4], and switched systems with arbitrary switch-
ing, [22]. In this paper we prove that the Minkowski func-
tions induced by C∗-sets form a universal class of Lyapunov
function for switched systems with switching control law.
For this, we provide a definition of Lyapunov function for
the particular context, in analogy with the definition given
in [4] for linear parametric uncertain systems.

Definition 2 A positive definite continuous function
V : Rn → R is a global Lyapunov function for the system
(1) if there exist a positive N∈ N and a switching law
σ(·), defined onRn, such that V is non-increasing along
the trajectories xσk (x) and decreasing after N steps, i.e.
V(xσ

1 (x))≤V(x) and V(xσ
N(x))<V(x), for all x∈ Rn.

The Definition 2 is a standard definition of global Lyapunov
function (or, better, global control Lyapunov function) ex-
cept for theN-steps decreasing requirement. On the other
hand, such a function implies the convergence of every sub-
sequence inj ∈N of the trajectory, i.e.xσ

i+ jN(x) for all i <N,
then also the convergence of the trajectory itself. This, with
the stability assured byV(xσ

1 (x)) ≤ V(x), ensures global
asymptotic stabilizability of the switched system.
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3 Stabilizability of switched systems

It is proved in [24] that for an autonomous linear switched
system, the origin is asymptotically stable if and only if
there exists a polyhedral Lyapunov function, see also [4, 22].
Our main objective is to prove that analogous results can be
stated in the case that the switching sequence is a properly
chosen selection, that is considering it as a control law.

The system (1) is asymptotically stabilizable if there exists
a switching law and a Lyapunov function for the resulting
time-varying system. The switching law will belong to the
class of state-dependent one, that isσ(k) = g(xk), where
g : Rn →Nq. We define, with a slight abuse of notation, the
state-dependent switching law asσ(k) = σ(xk).

Assumption 1 The matrices Ai , with i ∈Nq, are nonsingu-
lar.

Remark 2 Assumption 1 is not restrictive. In fact, the sta-
ble eigenvalues of the matrices Ai are beneficial from the
stability point of view of the switched systems and poles in
zero are related to the most contractive dynamics. Moreover,
the results presented in the following can be extended to the
general case with appropriate considerations. Finally, re-
call that sampled linear systems do not present poles in the
origin and then real systems satisfy Assumption 1.

Consider the following algorithm:

Algorithm 1 Computation of a contractive C∗-set for the
system (1) satisfying Assumption 1.

• Initialization: given the C∗-set Ω ⊆ Rn, defineΩ0 = Ω
and k= 0;

• Iteration for k≥ 0:

Ωi
k+1 = A−1

i Ωk, ∀i ∈ Nq,

Ωk+1 =
⋃

i∈Nq

Ωi
k+1; (3)

• Stop if Ω ⊆ int
(

⋃

j∈Nk+1

Ω j

)

; denoteŇ = k+1 and

Ω̌ =
⋃

j∈NŇ

Ω j . (4)

From the geometrical point of view,Ωi
k+1 is the set ofx

mapped inΩk throughAi . Then Ωk+1 are thex ∈ Rn for
which there exists a selectioni(x)∈Nq such thatAi(x)x∈Ωk.
Thus,Ωk is the set ofx that can be driven inΩ in at mostk
steps and hencěΩ the set of those which can reachΩ in Ň
or less steps, by an adequate switching law.

Proposition 1 The setsΩi
k andΩk with i ∈ Nq and for all

k≥ 0 are C∗-sets.

Proof: Clearly Ω0 is a C∗-set. It is sufficient to prove
that A−1D and D∪E are C∗-sets, for all nonsingularA ∈
Rn×n and every C∗-setsD and E to prove the results by
induction. By definitionαx∈ D for all x∈ D andα ∈ [0,1].
Then givenα ∈ (0,1] we have

αA−1D = {αx∈ Rn : Ax∈ D}= {y∈ Rn : Ay∈ αD}
⊆ {x∈ Rn : Ax∈ D}= A−1D,

sinceD is a C∗-set. Forα = 0, αA−1D = {0} ⊆ A−1D, triv-
ially. ThenA−1D is a star-convex set and it is also compact
from Assumption 1. It contains the origin in its interior since
A−1

i are continuous operators under Assumption 1. Then
A−1D is a C∗-set. The property on the union follows from
the definition of C∗-set.

Algorithm 1 provides a C∗-set Ω̌ contractive inŇ steps,
for every initial C∗-setΩ ∈ Rn, if and only if the switched
system (1) is stabilizable. Such a necessary and sufficient
condition, which is the main contribution of the paper, is
stated in the theorem below.

Theorem 1 There exists a Lyapunov function for the
switched system (1) if and only if Algorithm 1 ends with
finite Ň.

Proof: Sufficiency follows from the fact that, if the
algorithm ends in finite time, theňΩ induces a Lyapunov
function. Indeed,Ω̌ being a C∗-set from Proposition 1, its
Minkowski function is defined. Moreover, considering

λ̌ = λ̌ (Ω) = min
λ

{λ ≥ 0 : Ω ⊆ λ Ω̌}, (5)

we have thaťλ <1, sinceΩ⊆ int(Ω̌) andΩ̌ is a C∗-set. Since
Ω̌ is the set ofx such thatxσ

k (x) are inΩ for k= k(x)≤ Ň,
and for an appropriate switching sequence, then

xσ
k(x)(x) ∈ Ω ⊆ λ̌ Ω̌, (6)

for all x∈ Ω̌ and in particular forx∈ ∂ Ω̌. This means that
there exists a switchingσ(x) andk(x)≤ Ň such that

ΨΩ̌(x
σ
k(x)(x)) ≤ λ̌ ΨΩ̌(x), (7)

for all x∈ ∂ Ω̌. Then the Minkowski function decreases after
k(x) step, for allx on the boundary. Moreover, it does not
increase, for allj ≤ k(x). In fact, givenx∈ ∂ Ω̌, the elements
xσ

j (x) can be stirred inΩ in k(x)− j steps for all j ≤ k(x),
being elements of the same sequence whose last element is
in Ω. This means thatxσ

j (x) ∈ Ω̌ and then

ΨΩ̌(x
σ
j (x))≤ ΨΩ̌(x), ∀ j ∈Nk(x), (8)
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for all x∈ ∂ Ω̌. Then for everyx∈ ∂ Ω̌ there exists a switching
sequence of lengthk(x) such that theΨΩ̌ is not increasing
for the first k(x)− 1 steps and it decreases of at least a
proportional valuěλ at the instantk(x), from (7) and (8).
Since everyx is on the boundary of a level set ofΨΩ̌(x),
in particularx∈ ∂

(

ΨΩ̌(x)Ω̌
)

, and from the homogeneity of
the Minkowski function and the linearity of the switched
system, we have that (7) and (8) hold for everyx∈Rn. Thus
from (7) and (8) valid on the wholeRn, we have

ΨΩ̌(x
σ
Ň(x))≤ λ̌ ΨΩ̌(x), (9)

for all x∈Rn which proves thatΨΩ̌ is a Lyapunov function.
Then, if Algorithm 1 ends with finitěN, a Lyapunov function
exists, in particularΨΩ̌(x).

To prove necessity, suppose that there exists a Lyapunov
function for the switched system (1). We demonstrate that
this implies finite termination of Algorithm 1. From Defini-
tion 2, there is a switching lawσ(·), a positive valueN ∈N
and a continuous positive definite functionV : Rn →R such
that for everyx we haveV(xσ

N(x))<V(x). Consider the set

ΩV = {x∈ Rn : V(x)≤ 1}, (10)

which is closed from continuity ofV and bounded from
its radially unboundedness. HenceΩV is compact and 0∈
int(ΩV), sinceV is continuous and positive definite. Thus
for every C∗-setΓ, there existsε > 0 such that the C∗-setεΓ
satisfiesεΓ ∈ int(ΩV). PosingΩ = εΓ in Algorithm 1, we
haveΩ ⊆ int(ΩV). From the globally asymptotic stability of
the system (1), there exists a switching lawσ(x) defined on
Rn and a finiteNV ∈ N such that for allx∈ ΩV there exists
k(x) ≤ NV for which xσ

k(x)(x) ∈ Ω. ConsiderΩNV obtained
by applying Algorithm 1 withΩ defined above, supposing
that the stop condition has not been satisfied, otherwise the
result would be directly proved. Since the setΩ j is the set of
states that can be stirred inΩ in at most j steps, thenΩV ⊆
⋃

j∈NNV
Ω j and then we haveΩ⊆ int(ΩV)⊆ int

(

⋃

j∈NNV
Ω j

)

,
that contradicts the fact that the stop condition has not be
satisfied. Then Algorithm 1 terminates witȟN ≤ NV .

Then finite termination of Algorithm 1 is a necessary and
sufficient condition for the global asymptotic stabilizability
of the switched system (1). An alternative formulation of
such a necessary and sufficient condition is presented below.

Theorem 2 There exists a Lyapunov function for the
switched system (1) if and only if there exists a C∗-set whose
Minkowski function is a Lyapunov function for the system.

Proof: The result follows directly from the proof of
Theorem 1, where the Minkowski function ofΩ̌ is proved
to be a Lyapunov function for the switched systems.

Theorem 2 states the main theoretical contribution of the
paper, namely that the existence of a Lyapunov function in-
duced by a C∗-set is a necessary and sufficient condition for

stabilizability of switched systems. Hence, such functions,
nonconvex and homogeneous of degree one, form a class
of universal Lyapunov functions for the switched systems.
Such result is in line with the fact that the existence of con-
vex Lyapunov functions is sufficient but not necessary for
the stabilizability of a switched system, as proved in [7].

Remark 3 The Algorithm 1 terminates after a finite number
of iterations only if the switched system is stabilizable, then
there is no guarantee of finite termination in general (which
means it is a semi-algorithm, to be exact, as noticed by
a reviewer). In Section 5 below, a sufficient condition for
non-stabilizability is provided that could be used to exclude
the existence of a Lyapunov function and then to terminate
the (semi-)algorithm. Nevertheless, there are cases in which
stabilizability cannot be assessed nor excluded by means of
a proper algorithm, i.e. after a finite number of iterations.
This is not surprising as in the nonlinear context the problem
of the existence a Lyapunov function is often undecidable.
In our case, we proved that a Lyapunov function exists and
is computable if the switched system is stabilizable.

3.1 Duality robustness-control of switched systems

In this section, we recall some results from the literature
on the stability of a switched linear system with arbitrary
switching lawσ(·). Our purpose is to highlight the evident
analogies with the approach proposed in this paper concern-
ing stabilizability of switched linear systems.

Consider the linear switched system (1) and assume that the
switching law is arbitrary. This would mean that the switch-
ing law might be regarded as a parametric uncertainty and
the results in [24, 3, 4] on robust stability apply with minor
adaptations, see also [22]. The following algorithm provides
a polytopic contractive set, and then an induced polyhedral
Lyapunov function, for this class of systems, see [6].

Algorithm 2 Computation of aλ -contractive C-set for the
system (1) with arbitrary switching law.

• Initialization: given the C-setΓ ⊆Rn andλ ∈ [0,1), de-
fineΓ0 = Γ and k= 0;

• Iteration for k≥ 0:

Γ i
k+1 = λ A−1

i Γk, ∀i ∈ Nq,

Γk+1 = Γ ∩ ⋂

i∈Nq

Γ i
k+1; (11)

• Stop if Γk ⊆ Γk+1; denoteN̂ = k andΓ̂ = Γk.

The setΓ̂ is the maximalλ -contractive set inΓ for the
switched system with arbitrary switching law. Provided the
Algorithm 2 terminates with finitêN, it can be proved that
the system is globally exponentially stable, see [4].

Remark 4 Notice the analogies between the Algorithms 1
and 2: they share the same iterative structure and they both
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generate contractive sets which induce Lyapunov functions
provided they terminate in a finite number of steps. The
main substantial difference consists in the use of intersec-
tion/union operators and in the family of sets generated,
C∗-sets by Algorithm 1 and C-sets by Algorithm 2. Interest-
ingly, the C-sets are closed under the intersection operation
whereas C∗-sets are closed under the union. The C∗-sets
have for switched systems with switching control law the
role that C-sets have for the case of arbitrary switching law.

We finally recall that, for linear parametric uncertain sys-
tems, the existence of a polyhedral Lyapunov function is a
necessary and sufficient condition for asymptotic stability.

Theorem 3 ([24, 4]) There exists a Lyapunov function for
a linear parametric uncertain system if and only if there
exists a polyhedral Lyapunov function for the system.

The result in Theorem 3 holds for general parametric uncer-
tainty and applies also for switched systems with arbitrary
switching law, as remarked in [22].

Remark 5 As for the duality of the Algorithms 1 and 2
highlighted in Remark 4, evident conceptual analogies
hold between Theorem 2 and Theorem 3. Then the class
of Minkowski functions induced by C∗-sets is universal for
linear switched systems with switching control law, in anal-
ogy with the class of polyhedral functions (i.e. induced by
C-sets) for the case of arbitrary switching law, [3, 4].

4 Switching control law

Besides a Lyapunov function, Algorithm 1 provides a stabi-
lizing switching control law or, better, a family of stabilizing
control laws for system (1), if it terminates in finite time.

Proposition 2 If Algorithm 1 ends with finitěN thenΨΩ̌ :
Rn →R is a Lyapunov function for the switched system (1)
and given the set valued map

Σ̌(x) = argmin
(i,k)

{ΨΩi
k
(x) : i ∈Nq, k∈NŇ} ⊆Nq×NŇ, (12)

any switching law defined as

(σ̌(x), ǩ(x)) ∈ Σ̌(x), (13)

is a stabilizing switching law and such that

ΨΩ̌(x
σ̌
ǩ(x)

(x)) ≤ λ̌ ΨΩ̌(x),

ΨΩ̌(x
σ̌
j (x))≤ ΨΩ̌(x), ∀ j ∈ Nǩ(x),

with λ̌ as in (5).

Proof: The fact thatΨΩ̌(·) is a Lyapunov function
has been proved in the proof of Theorem 1. Denoteα =

ΨΩ̌(x), to simplify the notation. Thenx∈ ∂ (α Ω̌) by defini-
tion. Moreover, from definition of̌Ω, there are some values
(i,k) ∈Nq×NŇ such thatx∈ ∂ (αΩi

k), sinceΩ̌ is the union
of Ωi

k for all i ∈ Nq andk ∈ NŇ. Concerning the(i,k) for
which x∈ ∂ (αΩi

k) is not satisfied, we have thatx /∈ (αΩi
k)

and thenΨΩi
k
(x)> α . This is due to the fact thatx is either

on the boundary or in the complement of everyαΩi
k, for all

i ∈ Nq andk ∈ NŇ, otherwiseα would not be the minimal
value such thatx∈ α Ω̌. Then for everyi ∈ Nq andk ∈ NŇ
we have two possibilities: eitherΨΩi

k
(x) = α , if x∈ ∂ (αΩi

k),

or ΨΩi
k
(x)> α , if x /∈ (αΩi

k). By construction,Ωi
k is the set

that can be stirred inΩ, and then also in the contracted set
λ̌ Ω̌, in k steps by means of a sequence of modes whose first
element isi. Moreover, the Minkowski function does not in-
crease along the firstk−1 elements of the generated trajec-
tory, see the proof of Theorem 1. Then from homogeneity
of the Minkowski functions, the setΣ(x) is composed by
the (i,k) wherei is the first element of a control sequence
σ(x) that leads to havexσ

k (x) ∈ λ̌ α Ω̌ andxσ
j (x) ∈ α Ω̌ for

all j ∈Nk. As (σ̌(x), ǩ(x)) is a selection of the setΣ(x), the
result follows.

It could be reasonable, to speed up the convergence of the
trajectory of the system to origin, to select among the ele-
ments ofΣ(x), those whosek is minimal.

Corollary 1 If Algorithm 1 ends with finiteŇ then the
switching law defined by (12) and (13) is such that

ΨΩ̌(x
σ̌
pŇ(x))≤ λ̌ pΨΩ̌(x), (14)

for every p∈ N and all x∈ Rn.

Proof: From Proposition 2 we have that, if Algorithm 1
ends with finiteŇ, then there exists a switching law̌σ(x)
and the relateďk(x)≤ Ň such that the Minkowski function
of Ω̌ does not increase fork ≤ ǩ(x) and it decreases of a
proportional value of̌λ afterǩ(x) steps, for allx∈Rn. Since
ǩ(x) ≤ Ň, then the value ofΨΩ̌(x) decreases at least once
within the nextŇ steps, that means that

ΨΩ̌(x
σ̌
Ň(x))≤ λ̌ ΨΩ̌(x),

that implies (14) as the property applies on the wholeRn.

Remark 6 If the system is asymptotically stabilizable, then
the algorithm ends with finitěN for all initial C∗-set Ω.
Clearly, the value ofŇ and the complexity of the seťΩ
depend on the choice ofΩ. In particular, if Ω is the euclidean
norm ball (or the union of ellipsoids), the setsΩi

k and Ωk,
with i ∈ Nq and k∈ NŇ, are unions of ellipsoids, and so is
Ω̌. Then, the switching law computation reduces to check
the minimal value among xTPjx with j∈ M̌, where{Pj} j∈M̌

are theM̌ positive definite matrices that defineΩ̌, with M̌ =
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q+ · · ·+qŇ = (qŇ+1−q)/(q−1), for q> 1 andM̌ = Ň for
q= 1. Moreover, ifΩ is a polytope (or a union of polytopes),
alsoΩi

k, Ωk, with i ∈ Nq and k∈ NŇ, andΩ̌ are so. In this
case, the switching law is obtained by evaluating the linear
inequalities defining those polytopes.

5 Non-stabilizable switched system

In this section, conditions ensuring that there is not a switch-
ing law such that the system (1) converges to the origin are
given. We will refer to this case as non-stabilizability of the
switched system. First, a sufficient condition is provided.

Proposition 3 Given the switched system (1) and the C∗-set
Ω ⊆ Rn and denoting

Ω̄ =
⋃

i∈Nq

A−1
i Ω, (15)

if Ω̄ ⊆ Ω then

ΨΩ̄(Aix)≥ ΨΩ̄(x), ∀i ∈ Nq, (16)

for all x ∈Rn.

Proof: The setΩ̄ is a C∗-set from the proof of Propo-
sition 1. Consider firstx ∈ ∂ Ω̄, which impliesΨΩ̄(x) = 1.
From the definition ofΩ̄, in (15), for everyi ∈ Nq either
x∈ ∂ (A−1

i Ω) or x /∈ A−1
i Ω. In fact, otherwise, there would

be i(x) ∈ Nq such thatx∈ int(A−1
i(x)Ω)⊆ int(Ω̄), which con-

tradictsx∈ ∂ Ω̄. For everyi ∈Nq such thatx∈ ∂ (A−1
i Ω) one

have thatAix ∈ ∂Ω, while if i ∈ Nq is such thatx /∈ A−1
i Ω

thenAix /∈Ω. Thus it follows thatAix /∈ int(Ω) for all i ∈Nq,
and then, fromΩ̄⊆Ω, alsoAix /∈ int(Ω̄), for all i ∈Nq. Since
ΨΩ̄(y) ≥ 1 if and only if y /∈ int(Ω̄), then condition (16)
holds atx∈ ∂ Ω̄. Finally, since everyx∈Rn is on the bound-
ary of a scalar multiple of̄Ω and from the homogeneity of
the Minkowski function of a C∗-set, condition (16) is satis-
fied for everyx∈ Rn.

Proposition 3 states that the existence of a C∗-set Ω such
that Ω̄, defined in (15), is contained inΩ suffices to prove
non-stabilizability. Notice that̄Ω is the union of the pre-
images ofΩ throughAi for all i ∈ Nq. In case the C∗-set is
such thatΩ̄ ⊆ int(Ω), the Minkowski function increases at
any point of the state space, for every mode.

Corollary 2 Given the switched system (1) and the C∗-sets
Ω ⊆ Rn andΩ̄ ⊆ Rn as in (15), ifΩ̄ ⊆ int(Ω) then

ΨΩ̄(Aix)> ΨΩ̄(x), ∀i ∈ Nq, (17)

for all x ∈Rn.

Hence, the existence of a C∗-set Ω ⊆ Rn such thatΩ̄ as
in (15) satisfiesΩ̄ ⊆ Ω implies that there is not a stabilizing

switching sequence. We introduce an algorithm whose finite
termination is related to the existence of such a set and then
to the non-stabilizability of the switched linear system (1).

Algorithm 3 Test of non-stabilizability for the system (1)
such that Assumption 1 holds.

• Initialization: given the C∗-setΩ⊆Rn, defineΩ0 = Ω̂0 =
Ω and k= 0;

• Iteration for k≥ 0 computeΩi
k+1 andΩk+1 as in (3) and

define
Ω̂k+1 =

(
⋃

j∈Nk+1

Ω j
)

∪Ω. (18)

• Stop if Ωk+1 ⊆ Ω̂k; denoteN̂= k andΩ̂ = Ω̂N̂: the system
(1) is non-stabilizable.

The finite termination of Algorithm 3 is a sufficient condition
for non-stabilizability of the system (1), as proved below.

Theorem 4 If Algorithm 3 ends with finitêN then there is
no switching law stabilizing the switched system (1).

Proof: For everyk∈N, the set in (18) is a C∗-set from
Proposition 1 and the fact that the union of C∗-sets is a C∗-
set. Suppose that Algorithm 3 ends with finiteN̂ and define
Ω̄ =

⋃

i∈Nq
A−1

i Ω̂. For all nonsingular matrixA∈ Rn×n and

every C∗-setsD,E ⊆ Rn we have that also the setA−1(D∪
E) = (A−1D)∪ (A−1E) is a C∗-set. It follows that

Ω̄ =
⋃

i∈Nq

A−1
i

(

(

⋃

j∈NN̂

Ω j
)

∪Ω
)

=

= ΩN̂+1∪
(

⋃

j∈NN̂

Ω j
)

⊆
(

⋃

j∈NN̂

Ω j
)

∪Ω = Ω̂.

Then from Proposition 3, the Minkowski function of̄Ω is
non-decreasing for every mode and at every point of the
state space and the system is non-stabilizable.

Remark 7 Notice that the termination condition of Algo-
rithm 3 is equivalent tôΩk+1 ⊆ Ω̂k. In fact, we have that

Ω̂k+1 = Ωk+1∪
(
⋃

j∈Nk

Ω j
)

∪Ω = Ωk+1∪ Ω̂k ⊆ Ω̂k,

which holds if and only ifΩk+1 ⊆ Ω̂k andΩ̂k ⊆ Ω̂k, trivially
satisfied the latter.

A class of switched systems such that finite termination is
assured is characterized in the following theorem.

Theorem 5 If there is a continuous positive definite and
radially unbounded function̄V : Rn → R such that

V̄(Aix)> V̄(x), ∀i ∈ Nq, (19)

for all x ∈ Rn, then Algorithm 3 ends with finitêN and the
switched system (1) is non-stabilizable.

6

CONFIDENTIAL. Limited circulation. For review only

Preprint submitted to Automatica

Received September 20, 2013 01:46:40 PST



Proof: From (19) and Assumption 1, it follows that

V̄(A−1
i x)< V̄(x), ∀i ∈Nq, (20)

for all x∈ Rn. Consider the set defined

Ω̄V̄ = {x∈ Rn : V̄(x)≤ 1}, (21)

which is compact and such that 0∈ int(Ω̄V̄), beingV̄ con-
tinuous, positive definite and radially unbounded, as the set
ΩV in (10). Then the C∗-setΩ initializing Algorithm 3 can
be chosen such thatΩ ⊆ Ω̄V̄ , after an adequate scaling.
From (20), we have that there is a finiteN ∈ N such that

∏
k∈NN

A−1
i(k)x∈ Ω, ∀x∈ Ω̄V̄ ,

and every sequence of modesi(k) ∈Nq with k∈NN, which
implies ΩN ⊆ Ω, being Ω ⊆ Ω̄V̄ . Then, sinceΩ ⊆ Ω̂N,
see (18), Algorithm 3 stops afterN iterations at most.

In the case that the functionV(·) is such thatV̄(Aix) ≥
V̄(x), for all i ∈Nq, the finite termination of Algorithm 3 is
not ensured (nor excluded) by Theorem 5. In particular, if
stability is ensured by a functionV(·) such thatV̄(Aix) =
V̄(x), for all i ∈Nq and everyx∈Rn, that does not guarantee
convergence, the algorithm could terminate in finite time or
not, as shown in the following illustrative example.

Example 1 Consider the linear system given by (1) with
q= 1 andA1 = R(βπ), whereR(θ) is the rotation matrix
of angleθ and withβ ∈ R\Q such thatβ ∈ (0, 0.5). The
system is stable but not convergent to the origin, then a
Lyapunov function does not exist and Algorithm 1 has not
a finite termination. Suppose that Algorithm 3 is applied
with initial set Ω = {x∈ R2 : ‖x‖∞ ≤ 1}, which is a square
centered in the origin. The sequence of setsΩk with k∈N are
the squareΩ rotated of the anglekβπ with k∈N. We prove
that for everym,k∈N with k> m, the setsΩk 6= Ωm. In fact
otherwise we would have that the rotation is the same, except
for a multiple ofπ/2, since the square does not change only
if it is rotated of dπ/2 with d ∈ N. But this implies that,
for an adequated ∈ N, we havekβπ= mβπ+ dπ/2 and
thenβ = d/2(k−m), which contradicts the fact thatβ is an
irrational number. Hence Algorithm 3 does not end in finite
time, sinceΩ̂k is the union ofΩ j with j < k. Conversely,
choosing the euclidean norm ball as initial condition, i.e.
Ω = B2, the algorithm stops at the first step. In fact, we
haveΩ1 = Ω̂0 = Ω. Notice that the euclidean ball is the only
C∗-set whose Minkowski function does not increase (nor
decrease) along the trajectories. Furthermore, the sequence
Ω̂k generated by Algorithm 3 initialized with the square
converges to the euclidean ball of radius

√
2 for k→ ∞.

The finite termination of Algorithm 3 is only a sufficient
condition for non-stabilizability of the system (1), see The-
orem 4. The finite termination is attained if and only if there
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Fig. 1. BallB2 in dashed andΩ1 and
⋃

k∈N2
Ωk solid line.

is a positive definite radially unbounded function increasing
along the trajectories, for every possible switching sequence,
see Theorem 5. There are cases in which the system (1) is
non-stabilizable but Algorithm 3 does not ends in finite time
(and Algorithm 1 neither, clearly).

6 Lyapunov-Metzler approach

Conditions for the stabilizability of switching system are
available in literature. Those based on the Lyapunov-Metzler
inequalities are among the less conservative. Such condi-
tions are given by nonlinear matrix inequalities whose so-
lution is often numerically intractable, see [11, 10]. In the
continuous-time context, it has been proved that the exis-
tence of a stable convex combination of the matricesAi ,
with i ∈ Nq, is a sufficient condition (and also necessary
for q = 2) for the Lyapunov-Metzler inequalities to hold.
Such a condition on the convex combinations of the modes
is at the core of the stabilizing techniques in the literature,
see [18]. For discrete-time systems, such a relation is lessev-
ident and other available sufficient conditions are more con-
servative, see [11]. It is worth then to directly consider the
Lyapunov-Metzler condition to obtain an appropriate com-
parison, although its evaluation would require a computa-
tionally demanding approach. It has to be recalled, neverthe-
less, that Lyapunov-Metzler conditions deal with noncon-
vex Lyapunov functions, namely homogeneous ones whose
level sets are union of ellipsoids.

7 Numerical examples

Example 2 Consider the system (1) withq= 4, n= 2 and

A1 =

[

1.5 0

0 −0.8

]

, A2 = 1.1R(2π
5 )

A3 = 1.05R(2π
5 −1), A4 =

[

−1.2 0

1 1.3

]

.

The matricesAi , with i ∈ N4, are not Schur, which implies
that the system (1) is not stabilizable by any constant switch-
ing law. We apply Algorithm 1 withΩ = B2. The setsΩk,
k∈N are thus unions of ellipsoids. The result at the first step
is depicted in Figure 1, left.Ω1 is the union the four ellip-
soidsA−1

j B2, with j ∈N4. It is clear thatB2 does not belong
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Fig. 2. Ball B2 in dashed and
⋃

k∈N5
Ωk in solid line. Trajectory

starting fromx0 = (−3,3)T in dotted line.

to Ω1. The next step of the algorithm leads to a set
⋃

k∈N2
Ωk

given by the union of the 4+42 = 20 ellipsoids at most, i.e.
A−1

j B2 with j ∈ N4 andA−1
j A−1

i B2, for all (i, j) ∈ N4×N4.

SinceB2 does not belong to
⋃

k∈N2
Ωk, see Figure 1 right, the

termination condition is not satisfied. The algorithm stopsat
the fifth iteration. Figure 2 emphasizes thatB2 is included
in

⋃

k∈N5
Ωk. A stabilizing switching law, satisfying (13) is

given in Figure 3 for the initial conditionx0 = (−3,3)T . The
Lyapunov function converges to zero, see Figure 3.
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Fig. 3. Lyapunov function and switching control law in time.

Example 3 As a second example, consider forq= n= 2:

A1 =

[

0 −1.01

1 −1

]

, A2 =

[

0 −1.01

1 −0.5

]

.

The Lyapunov-Metzler approach results in a set of linear
matrix inequalities once two parameters are fixed, both con-
tained in [0, 1], see [11]. The LMI conditions have been
checked on a grid of these parameters, with step of 0.01. No
admissible solution was found, whereas our algorithm stops

at the third step. Figure 4 shows thatB2 ⊆ int(
⋃

k∈N3
Ωk).

The Lyapunov function and the switching law are given in
Figure 5. Notice that the Lyapunov function is not a decreas-
ing function, but only a non-increasing one which is strictly
decreasing at least once every three (the number of steps of
the algorithm) instants, as proved in the main result.
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✟
1

�

2

Fig. 4. Ball B2 in dashed and
⋃

k∈N3
Ωk in solid line. Trajectory

starting fromx0 = (−3,3)T in dotted line.
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Fig. 5. Lyapunov function and switching control law in time.

Example 4 As mentioned above, there are undecidable
cases for which neither Algorithm 1 nor Algorithm 3 are
finite. Consider

A1 =

[

1.3 0

0 0.9

]

R(θ), A2 =

[

1.4 0

0 0.8

]

, (22)

with θ = 0 for the moment. MatricesA1 and A2 are not
Schur. Four steps are applied for each algorithm. The results
are drawn in Figure 6. Notice thatx= (1,0)T is related to
an unstable eigenvalue for both modes, then Algorithm 1
cannot be finite. Moreover in directionx= (0,1)T , ∪k∈Ni Ωk
is increasing withi, then Algorithm 3 cannot be finite.
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Fig. 6. BallB2 in dashed and∪k∈Ni
Ωk, for i ∈ N4 in solid line.

Example 5 Consider the system given by (22) withθ = π
5 ,

which means that the first mode performs now a rotation of
π
5 . Algorithm 1 stops after seven steps implying the stabi-
lizability of the system. The result is given in Figure 7.
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Fig. 7. BallB2 in dashed and∪k∈Ni
Ωk, for i ∈ N7 in solid line.

Example 6 An example, leading to the finiteness of Algo-
rithm 3, is now proposed. We consider

A1 = 2

[

0 −1.01

1 −1

]

, A2 = 2

[

0 −1.01

1 −0.5

]

.

The stop criterion is attained for Algorithm 3 in only one
step, as shown in Figure 8, then the system is not stabilizable.

Example 7 Considerq= 2 andn= 3 with

A1 =









1.2 0 0

−1 0.8 0

0 0 0.5









, A2 =









0.7 0 0

0 −0.6 −2

0 0 −1.2









.
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0.8

x
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x
2

Fig. 8. BallB2 in dashed and∪k∈N1Ωk in solid line.

A1 andA2 are not Schur. The ballB3 is chosen as initial set.
Algorithm 1 ends at the third step. The Figure 9 depicts the
ball B3 and the sets∪k∈N j Ωk, with j ∈ N3.

Fig. 9. BallB3 in dark and∪k∈N j
Ωk, for j ∈ N3, in light gray.
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8 Conclusions

The issue of the stabilizability of discrete-time linear
switched systems has been studied in this paper. Via a
set-theory approach, necessary and sufficient conditions for
the stabilizability and sufficient ones for non-stabilizability
have been provided. The family of nonconvex, homoge-
neous functions induced by a C∗-set is proved to be a class
of universal Lyapunov functions for switched systems. In
addition, the stabilizing switching laws are characterized.
Our method allows moreover to stabilize counter-examples
for the Lyapunov-Metzler approach. Several academic il-
lustrations are proposed to strengthen the discussions and
to emphasize the efficiency of our approach.
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