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Abstract

In this paper, the stabilizability of discrete-time lineswitched systems is considered. Several sufficient camditfor stabilizability
are proposed in the literature, but no necessary and sufficldie main contributions are the necessary and sufficientlitons for
stabilizability based on set-theory and the charactédmadf a universal class of Lyapunov functions. An algoritfion computing the
Lyapunov functions and a procedure to design the stahbijisinitching control law are provided, based on such conuitioMoreover
a sufficient condition for non-stabilizability for switctiesystem is presented. Several academic examples are gividlnstrate the
efficiency of the proposed results. In particular, a Lyapufumction is obtained for a system for which the Lyapunovtiller condition
for stabilizability does not hold.

Key words: Switched linear systems; set-theory; stabilizabilitwanance.

1 Introduction for two-dimensional systems [8] or positive ones [13].

In case the switching law is a part of the control inputs,

Switched systems are systems for which the current time- fici giti : bilizability h b !
varying dynamics, specified by the so-called switching law, sufticient conditions for stabilizability have peen pro&nﬂ_
mainly by using amin-switchingpolicy [18, Chapter 3] in-

belongsto a finite set of modes (see [18]). In the last de¢ades _ . ; .
a large literature has been devoted to study switched sys-roduced in [28], developed in [16] via BMI and leading

tems for practical reasons, as they model complex systemsIO Lyapunov-Metzler inequalities [11]. Based on the set-

like embedded ones, and for theoretical ones, since their be Nduced Lyapunov functions introduced in [4], sufficient
havior and stability properties are not intuitive nor taivi conditions for uniform ultimate boundedness have been pro-

[19]. Depending on the assumptions on the switching law, posed for uncertain switched linear systems in [20]. Never-
different frameworks have risen. The switching law is often theless to the best knowledge of the authors, necessary and

considered as a perturbation or as a part of the controlsnput suffi(;!ent _cpnditior_15 for th_e stabil!zability.and for themo
stabilizability of discrete-time switched linear systens

o : . . . not exist in the literature.
When the switching law is a perturbation, that is an arbjtrar otexistin the literature

function, sufficient and conservative conditions to enslee . . .
Lo : . The proposed approach is based on set-theory and invari-
stability have been provided (see for overviews [22, 23).27] anceﬁ‘orpcontrol grﬁ)d analysis. A seminal work d>(/ealing with
Several refinements have been proposed to obtain N€C€Sihe characterization of invariance is [2]. More recenthg t
sary and sufficient conditions for stability of switched sys 5 <115 15, 5] |ay the basis of set-theoretic methods and
:rez;nfégumsogg;?(?;shcﬁndﬂonlj]p?ﬁecsg]l;gg dtr:\el Eg:)jﬁg\? invariance in control. The relation between contractiaityl
functions [24] and the path-dependent switched Lyapunov polyhedral Lyapunov functions is presented in [3]. In [2H, 4

ones [17]. Specific necessary and sufficient conditiong exis itis proved that the existence of a contractive polytope is
- 9P y a necessary and sufficient condition for exponential stabil

- ity and that polyhedral functions form a universal class of
* Corresponding author M. Fiacchini. Lyapunov functions for linear parametric uncertain system
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See [6] for a detailed review on the topic.

A concept widely employed in the context of set-theory and
invariance is the C-set, see [4, 6]. A C-set is a compact,

This paper provides new necessary and sufficient conditionsconvex set with @& int(Q). We define an analogous concept

for stabilizability and sufficient ones for non-stabilizigtly
of discrete-time linear switched systems. A family of non-

useful for our purpose. For this, we first recall that aG3és$
a star-convex set if there existse Q such that every convex

SE S, _ e 5
convex, homogeneous functions is proved to be a universalcombination ofx andx” belongs toQ for everyx € Q.

class of Lyapunov functions for switched linear system® Th

key idea is to use the set-theory offering numerically sound pefinition 1 A setQ € R"is a C-set if it is compact, star-

algorithms to check the stabilizability (and providing sta-
bilizing switching law) or the non-stabilizability. The par
extends the results presented in the preliminary work [9].

The outline of the paper is as follows. In Section 2, pre-

liminaries and set-theory tools are presented. Section 3 is
devoted to the new necessary and sufficient conditions for

stabilizability. Section 4 provides the stabilizing svhitieg
control law. Section 5 presents sufficient conditions fan-no
stabilizability. Links with the Lyapunov-Metzler apprdac

convex with respect to the origin afids int(Q).
We define the analogous of the gauge function of &€t as

LpQ(x):QLig{GERZXE aQ}, (2

for the C-setQ C R". In what follows, we will refer to
Wo(x) as the Minkowski function of2 at x, with a slight

amples in Section 7, before concluding remarks in Section 8. c_sets), [25, 26, 6]. Some basic properties of theséts

Notation: DefineN, ={xe N:1<x<n} with ne N.
GivenD,ECR", a ¢ R andM € R™" defineD+E =
{z=x+yeR":xeD, ye E}, the scalar multiplexD =
{axeR":xe D} andMD = {Mx e R™: x € D}. Given a
setD C R", int(D) is its interior anddD its boundary. The
setB" is the unit euclidean ball iR". Thei-th element of a
finite set of matrices is denoted As of a set of sets aQ'.

2 Preliminaries

Consider the discrete-time switched system

X1 = Ag (k) Xk (1)
wherex, € R" is the state at tim&e N ando : N — Ny is
the switching law that, at any instant, selects the traositi
matrix among the finite setA; }icx,, with Ay € R™" for all

i € Ng. Given the initial statexp and a switching lawo(-),
we denote withxg (Xo) the state of the system (1) at time
N starting fromxg by applying the switching lavo (). In
some cases can be a function of the state, for instance in
the case of switching control law, as shown later.

Remark 1 Two main cases have to be discriminated de-
pending on the assumptions on the switching lawi(H is

supposed to be an arbitrary function of time, that is acting
as a perturbation, then the problem of asymptotic stability

and their Minkowski functions are listed below. The proof
is avoided, since they follow directly from the definition.

Property 1 Any C-set is a Gset. Given a GsetQ C R",

we have thatrQ C Q for all o € [0,1], and the Minkowski
function Wq(-) is: homogeneous of degree one, i.e.
Wo(ax) = aWq(x) for all a > 0 and xe R"; positive
definite; defined oR" and radially unbounded.

The Minkowski functions induced by C-sets have been used
in literature as Lyapunov functions candidates, see [3]. In
particular, it has been proved that they provide a universal
class of Lyapunov functions for linear parametric uncertai
systems, [24, 4], and switched systems with arbitrary $witc
ing, [22]. In this paper we prove that the Minkowski func-
tions induced by Gsets form a universal class of Lyapunov
function for switched systems with switching control law.
For this, we provide a definition of Lyapunov function for
the particular context, in analogy with the definition given
in [4] for linear parametric uncertain systems.

Definition 2 A positive definite continuous function
V:R"— R is a global Lyapunov function for the system
(1) if there exist a positive N N and a switching law
o(-), defined onR", such that V is non-increasing along
the trajectories £(x) and decreasing after N steps, i.e.
V(x{(x)) <V(x) and V(x5 (X)) < V(x), for all x € R".

of the system under every possible switching law is usually The Definition 2 is a standard definition of global Lyapunov

considered. For this case necessary and sufficient comgitio
for stability exist. Whew (-) is considered as a manipulable
signal, then the problem of asymptotic stabilizabilityn{si
ply denoted as stabilizability in what follows) is addratse
that consists in the existence and the characterizatiohef t
switching laws that yield asymptotic stability if appli@dhis

is the problem considered in the paper.

function (or, better, global control Lyapunov function)-ex
cept for theN-steps decreasing requirement. On the other
hand, such a function implies the convergence of every sub-
sequence in € N of the trajectory, i.ex?, jy (X) foralli <N,

then also the convergence of the trajectory itself. Thighwi
the stability assured by (x{(x)) < V(x), ensures global
asymptotic stabilizability of the switched system.
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3 Stabilizability of switched systems Proof: Clearly Qg is a C'-set. It is sufficient to prove
that A='D andDUE are C-sets, for all nonsingulah €

It is proved in [24] that for an autonomous linear switched K" and every C-setsD andE to prove the results by
system, the origin is asymptotically stable if and only if induction. By definitionax € D for all x€ D anda € [0,1].
there exists a polyhedral Lyapunov function, see also [, 22 Then givena € (0,1] we have
Our main objective is to prove that analogous results can be
stated in the case that the switching sequence is a properly 4a-1p — {ax€R": Axe D} = {ye R": Aye aD}
chosen selection, that is considering it as a control law.

C{xeR": Axe D} =AD,
The system (1) is asymptotically stabilizable if there &xis
a switching law and a Lyapunov function for the resulting sinceD is a C-set. Fora = 0, aA~1D = {0} C A~1D, triv-
time-varying system. The switching law will belong to the a1y, ThenA~1D is a star-convex set and it is also compact
class of state-dependent one, thaioitk) = g(x), where — fom Assumption 1. It contains the origin in its interior s
g: R" — Ng. We define, with a slight abuse of notation, the Ai—l are continuous operators under Assumption 1. Then

state-dependent switching law agk) = 0 (X)- A1D is a C-set. The property on the union follows from

Assumption 1 The matrices A with i € Ng, are nonsingu- the definition of C-set. u

lar. . .
Algorithm 1 provides a GsetQ contractive inN steps,

for every initial C'-setQ € R", if and only if the switched
system (1) is stabilizable. Such a necessary and sufficient
condition, which is the main contribution of the paper, is
stated in the theorem below.

Remark 2 Assumption 1 is not restrictive. In fact, the sta-
ble eigenvalues of the matrices &re beneficial from the
stability point of view of the switched systems and poles in
zero are related to the most contractive dynamics. Moreover
the results presented in the following can be extended to the ) )
general case with appropriate considerations. Finally;, re Theorem 1 There exists a Lyapunov function for the
call that sampled linear systems do not present poles in the Switched system (1) if and only if Algorithm 1 ends with
origin and then real systems satisfy Assumption 1. finite N.

Consider the following algorithm: Proof: Sufficiency follows from the fact that, if the
algorithm ends in finite time, the@ induces a Lyapunov
Algorithm 1 Computation of a contractive "Cset for the function. IndeedQ being a C-set from Proposition 1, its

system (1) satisfying Assumption 1. Minkowski function is defined. Moreover, considering
e Initialization: given the C-setQ C R", defineQg = Q A=A (Q)=min{fA >0:QCAQ} (5)
and k=0; h 2 S ;

e |teration for k > O:
we have thak < 1, sinceQ C int(Q) andQ is a C'-set. Since
Ql., =AQy, VieN, Q is the set ofk such that? (x) are inQ for k = k(x) <N,
_ P 3) and for an appropriate switching sequence, then
Qi1 = U Qs
iENg v oy
X (X) €QCAQ, (6)
e Stop ingint( U Qj);denoteN:k+1and 3 3
jeNki1 for all xe Q and in particular foix € Q. This means that
there exists a switching(x) andk(x) < N such that

Q=9 (4) . .
jENN LIJ() (Xk(x) (X)) S )\ qu) (X)a (7)
From the geometrical point of view,  , is the sert] ofx for all x € dQ. Then the Minkowski function decreases after
mapped inQ throughA. Then Q.4 are thex € R" for k(x) step, for allx on the boundary. Moreover, it does not

which there exists a selectiofx) € Ng such thaiy,)x € Qy.
Thus,Qy is the set ok that can be driven if in at mostk
steps and henc@ the set of those which can reathin N
or less steps, by an adequate switching law.

increase, for alf < k(x). In fact, givenx € dQ, the elements

X7 (x) can be stirred irQ2 in k(x) — j steps for allj < k(x),

being elements of the same sequence whose last element is
in Q. This means that{ (x) € Q and then

Proposition 1 The set} and Qx with i € Ng and for all
k>0 are C-sets. Wo(X] (X)) < We(x), Vje Ny, (8)
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forallx € Q. Then for everxe 9Q there exists aswitching  stabilizability of switched systems. Hence, such funaijon
sequence of lengtk(x) such that théVy is not increasing nonconvex and homogeneous of degree one, form a class
for the firstk(x) — 1 steps and it decreases of at least a of universal Lyapunov functions for the switched systems.
proportional value\ at the instank(x), from (7) and (8). Such resultis in Iing With.the fa_c'g that the existence of con-
Since everyx is on the boundary of a level set 8 (x), vex Lyapunov functions is sufficient but not necessary for
in particularx d(wé(x)f)), and from the homogeneity of the stabilizability of a switched system, as proved in [7].

the Minkowski function and the linearity of the switched
system, we have that (7) and (8) hold for everyR". Thus
from (7) and (8) valid on the wholR", we have

Remark 3 The Algorithm 1 terminates after a finite number
of iterations only if the switched system is stabilizabient
there is no guarantee of finite termination in general (which
means it is a semi-algorithm, to be exact, as noticed by
a reviewer). In Section 5 below, a sufficient condition for
h w , non-stabilizability is provided that could be used to exeu

for all >.<e R V,Vh'Ch proves t,ha“_JQ ISa Lyapunov functpn. the existence of a Lyapunov function and then to terminate
Then, if Algorithm 1 ends with finit&l, a Lyapunov function  {he (semi-)algorithm. Nevertheless, there are cases igtwhi
exists, in particulaky (x). stabilizability cannot be assessed nor excluded by means of

a proper algorithm, i.e. after a finite number of iterations.

]:I'o p'fovef ne%essny, iu%pose thatlthe\;\? %X'Sts a Lyapur?ov-rhis is not surprising as in the nonlinear context the prafle
unction for the switched system ( )'. e demonstrate that ¢ e existence a Lyapunov function is often undecidable.
this implies finite termination of Algorithm 1. From Defini- | our case, we proved that a Lyapunov function exists and

tion 2, ther_e IS a swnc_hmg 'aW(:% a positive nvalueN €N is computable if the switched system is stabilizable.
and a continuous positive definite functidn R" — R such

that for everyx we haveV (x{ (X)) < V(x). Consider the set

We (3 (X)) < AWy (x), 9)

3.1 Duality robustness-control of switched systems
\% n.

Q7 = {xeRT:V(x) <1}, (10) In this section, we recall some results from the literature

on the stability of a switched linear system with arbitrary

switching lawo (-). Our purpose is to highlight the evident

analogies with the approach proposed in this paper concern-

ing stabilizability of switched linear systems.

which is closed from continuity of and bounded from
its radially unboundedness. Hen@¥ is compact and &
int(QY), sinceV is continuous and positive definite. Thus
for every C-setrl, t\r/\ere existg > 0 such that the Gsetel’
satisfiesel" € int(QY). PosingQ = €I" in Algorithm 1, we . . .
haveQ C int(QV)(. Fr)om the globally asymptotic stability of Consider the linear switched system (1) and assume that the

the system (1), there exists a switching Ia\@ defined on  SWitching law is arbitrary. This would mean that the switch-
R" and a finitef\lv € N such that for alk € QV there exists ing law might be regarded as a parametric uncertainty and

< i~h %O _ ; i the results in [24, 3, 4] on robust stability apply with minor
K(x) < Nv for which X, (x) € Q. ConsiderQy, obtained adaptations, see also [22]. The following algorithm pregid

a polytopic contractive set, and then an induced polyhedral
eLyapunov function, for this class of systems, see [6].

by applying Algorithm 1 withQ defined above, supposing
that the stop condition has not been satisfied, otherwise th
result would be directly proved. Since the Shtis the set of

states that can be stirredhin at mostj steps, therf2" C Algorithm 2 Computation of a-contractive C-set for the
Ujeny, Qj andthenwe have Cint(QY) Cint(Ujeny Qj). system (1) with arbitrary switching law.

that contradicts the fact that the stop condition has not be

satisfied. Then Algorithm 1 terminates with<< Ny . [ | e Initialization: given the C-sef CR" andA € [0,1), de-

finelp =T and k=0;
Then finite termination of Algorithm 1 is a necessary and e Iteration for k > O:
sufficient condition for the global asymptotic stabilizlili
of the switched system (1). An alternative formulation of Mo —AA .. VieN
such a necessary and sufficient condition is presented below k+1 AT _ @
Mk =0 N Mg

Theorem 2 There exists a Lyapunov function for the i€Ng
switched system (1) if and only if there exists*asgét whose _ ~ .
Minkowski function is a Lyapunov function for the system. e Stop if [y C ['y;q; denoteN =k andl” =T.

(11)

Proof: The result follows directly from the proof of  The setl is the maximalA-contractive set in~ for the
Theorem 1, where the Minkowski function €f is proved switched system with arbitrary switching law. Provided the
to be a Lyapunov function for the switched systems. B Algorithm 2 terminates with finitdN, it can be proved that

the system is globally exponentially stable, see [4].
Theorem 2 states the main theoretical contribution of the
paper, namely that the existence of a Lyapunov function in- Remark 4 Notice the analogies between the Algorithms 1
duced by a C-set is a necessary and sufficient condition for and 2: they share the same iterative structure and they both
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generate contractive sets which induce Lyapunov functions W (x), to simplify the notation. Ther € (3(0(2) by defini-

provided they terminate in a finite number of steps. The tion. Moreover, from definition of), there are some values
main substantial difference consists in the use of intersec (j k) e Ng x Ny, such thai € a(aQik), sinceQ is the union
tion/union operators and in the family of sets generated, ¢ Qik for all i € Nq andk € Ny. Concerning thei, k) for
C*-sets by Algorithm 1 and C-sets by Algorithm 2. Interest- which x € d(aQ‘k) is not satisfied, we have that? (O’Qik)

ingly, the C-sets are closed under the intersection openati \ g 7
whereas C-sets are closed under the union. Thé-€ets and theerL(X) > a. This is due to the fact thatis either

have for switched systems with switching control law the on the boundary or in the complement of ever®,, for all
role that C-sets have for the case of arbitrary switching.law i € Ng andk € Ny, otherwisea would not be the minimal
value such thak € aQ. Then for everyi € Ng andk € Ny
We finally recall that, for linear parametric uncertain sys- we have two possibilities: eith&#; (x) = a, if x€ d(aQ}),
tems, the existence of a polyhedral Lyapunov function is a : i k . P
necessary and sufficient condition for asymptotic stabilit or LPQL(X) > a, if x¢ (a€y). By construction(; is the set
that can be stirred i, and then also in the contracted set
Theorem 3 ([24, 4]) There exists a Lyapunov function for A<, in k steps by means of a sequence of modes whose first
a linear parametric uncertain system if and 0n|y if there elementid. Moreo_ver, the Minkowski function does not_ln-
exists a polyhedral Lyapunov function for the system. crease along the firkt— 1 elements of the generated trajec-
tory, see the proof of Theorem 1. Then from homogeneity
The result in Theorem 3 holds for general parametric uncer- of the Minkowski functions, the sef(x) is composed by
tainty and applies also for switched systems with arbitrary the (i,k) wherei is the first element of a control sequence

switching law, as remarked in [22]. o(x) that leads to have (x) € AaQ and X7 (x) € aQ for
. . all j € Ny. As (5(x),k(x)) is a selection of the sét(x), the
Remark 5 As for the duality of the Algorithms 1 and 2 result follows. m

highlighted in Remark 4, evident conceptual analogies

hold between Theorem 2 and Theorem 3. Then the classit could be reasonable, to speed up the convergence of the

of Minkowski functions induced by*Gets is universal for  trajectory of the system to origin, to select among the ele-
linear switched systems with switching control law, in anal  ments ofz(x), those whosé is minimal.

ogy with the class of polyhedral fupcti_ons (i.e. induced by
C-sets) for the case of arbitrary switching law, [3, 4]. Corollary 1 If Algorithm 1 ends with finiteN then the
switching law defined by (12) and (13) is such that

4 Switching control law 5 .
Wa (5 (X)) < APWg (x), (14)
Besides a Lyapunov function, Algorithm 1 provides a stabi-
lizing switching control law or, better, a family of stalziing for every pe N and all xe R".
control laws for system (1), if it terminates in finite time.

Proof: From Proposition 2 we have that, if Algorithm 1

Proposition 2 If Algorithm 1 ends with finitdl thenWs, : ends with finiteN, then there exists a switching lagi(x)
R" — R is a Lyapunov function for the switched system (1) and the related(x) < N such that the Minkowski function
and given the set valued map of Q does not increase fdt < k(x) and it decreases of a

. , . proportional value of afterk(x) steps, for alk € R". Since
2(x) =arg (rmn{wgi((x) 11€Ng ke Ny} € Nox Ny, (12) k(x) <N, then the value of¥s(x) decreases at least once
within the nextN steps, that means that
any switching law defined as

Wy (x4 (X)) < AWg (),

Z<«Q¢

(0(%),k(x)) € 2(x), (13)
that implies (14) as the property applies on the wiitle m
is a stabilizing switching law and such that
Remark 6 If the system is asymptotically stabilizable, then

wé(xg(x) (X)) S/V\LIJQ(X), the algorithm ends with finité\ for all |n|_t|aI Cr-set Q.
< _ Clearly, the value ofN and the complexity of the sé
We (XJQ(X)) <Wg(x), Vje NR(X), depend on the choice & In particular, if Q is the euclidean
norm ball (or the union of ellipsoids), the se® and Qy,
with A as in (5). with i € Ng and ke N, are unions of ellipsoids, and so is

Q. Then, the switching law computation reduces to check

Proof: The fact thatWs(:) is a Lyapunov function the minivmal value among"®x with j& M, Whvere{Pj}leM
has been proved in the proof of Theorem 1. Denmte: are theM positive definite matrices that defife withM =
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q+---+q¥ = ("1 —q)/(q—1), for g> 1 andM = N for

q= 1. Moreover, ifQ is a polytope (or a union of polytopes),
also Q, Qy, with i € Ng and ke Ny, andQ are so. In this
case, the switching law is obtained by evaluating the linear
inequalities defining those polytopes.

5 Non-stabilizable switched system

In this section, conditions ensuring that there is not agwit

switching sequence. We introduce an algorithm whose finite
termination is related to the existence of such a set and then
to the non-stabilizability of the switched linear systen (1

Algorithm 3 Test of non-stabilizability for the system (1)
such that Assumption 1 holds.

e |nitialization: given the C-setQ C R", defineQq = Qo=
Q and k=0; _
e Iteration for k> 0 computeQ, ., and Q1 as in (3) and

ing law such that the system (1) converges to the origin are  define

given. We will refer to this case as non-stabilizability bét
switched system. First, a sufficient condition is provided.

Proposition 3 Given the switched system (1) and theget
Q C R" and denoting

o= JA'e, (15)
ieNg
if Q C Q then
Wa(AX) > Wa(x), Vie Ng, (16)

for all x € R".

Proof: The setQ is a C'-set from the proof of Propo-
sition 1. Consider firsk € Q, which impliesWg(x) = 1.
From the definition ofQ, in (15), for everyi € Ny either
x € d(A1Q) or x ¢ A"1Q. In fact, otherwise, there would

bei(x) € Nq such thax int(x(xl)g) Cint(Q), which con-

tradictsx € 9Q. For everyi € Ng such thak € (A Q) one
have thatAix € dQ, while if i € Nq is such thak ¢ A 1Q
thenAix ¢ Q. Thus it follows thaidix ¢ int(Q) for all i € Ny,
and then, fronf2 C Q, alsoAix ¢ int(Q), for alli € Ng. Since
Wa(y) > 1 if and only if y ¢ int(Q), then condition (16)
holds atx € dQ. Finally, since everx € R" is on the bound-
ary of a scalar multiple of2 and from the homogeneity of
the Minkowski function of a C-set, condition (16) is satis-
fied for everyx € R". [ |

Proposition 3 states that the existence ofas€tQ such
that Q, defined in (15), is contained i suffices to prove
non-stabilizability. Notice thaf is the union of the pre-
images ofQ throughA; for all i € Ng. In case the Gset is
such thatQ C int(Q), the Minkowski function increases at
any point of the state space, for every mode.

Corollary 2 Given the switched system (1) and thiegets
QCR"andQ CR" as in (15), ifQ C int(Q) then

Wa(AX) > Wa(x), Vie N, (17)

for all x € R".

Hence, the existence of a*@etQ C R" such thatQ as
in (15) satisfieQ C Q implies that there is not a stabilizing

Qr=( | Q))uQ.
j€Nki1
e Stopif Q.1 C Qy; denoteN = k andQ = f),;,: the system
(1) is non-stabilizable.

(18)

The finite termination of Algorithm 3 is a sufficient conditio
for non-stabilizability of the system (1), as proved below.

Theorem 4 If Algorithm 3 ends with finité\ then there is
no switching law stabilizing the switched system (1).

Proof: For everyk € N, the set in (18) is a Gset from
Proposition 1 and the fact that the union df-§kts is a G
set. Suppose that Algorithm 3 ends with finNeand define
Q = Uieny, A1Q. For all nonsingular matriA € R™" and

every C-setsD,E C R" we have that also the satr'(DU
E)=(A"ID)U(AIE) is a C-set. It follows that

ﬁ:iglqpﬁfl((jglﬂgj)uﬁ)z A

= U(UQ)c(UQ)ua=4a.
JENR jeNg

Then from Proposition 3, the Minkowski function €f is
non-decreasing for every mode and at every point of the
state space and the system is non-stabilizable. ]

Remark 7 Notice that the termination condition of Algo-
rithm 3 is equivalent tdy 1 C Q. In fact, we have that

Oui1 =1V (JQ)) UQ = Qi U € O,
jeNg

which holds if and only if.1 € Qi andQy C Qy, trivially
satisfied the latter.

A class of switched systems such that finite termination is
assured is characterized in the following theorem.

Theorem 5 If there is a continuous positive definite and
radially unbounded functiok : R" — R such that
V(AX) >V (x), VieNg, (19)

for all x € R", then Algorithm 3 ends with finitd and the
switched system (1) is non-stabilizable.
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Proof: From (19) and Assumption 1, it follows that

V(A1) <V(x), VieNg, (20)

for all x € R". Consider the set defined

QY = {xeR": V(x) < 1}, (1)

which is compact and such thate(]nt(ﬁv), beingV con- Fio. 1. BallB2 in dashed and-+ and Q. solid line
tiq/upus, positive definite and radially unbounded, as the se 9 = ! ! Ukery, Qi solid fine.
Q% in (10). Then the C—set_(\% initializing Algorithm 3 can g 5 positive definite radially unbounded function incregsi
be chosen such thdd C QF, after an adequate scaling. along the trajectories, for every possible switching seqege

From (20), we have that there is a finec N such that see Theorem 5. There are cases in which the system (1) is

1 — non-stabilizable but Algorithm 3 does not ends in finite time

r}\l AgXxeQ, WxeQb, (and Algorithm 1 neither, clearly).
keNN
and every sequence of modeki)fe Ngq with k € Ny, which 6 Lyapunov-Metzler approach
implies Qn C Q, being Q C QY. Then, sinceQ C f)N,
see (18), Algorithm 3 stops aftéf iterations at most. ® Conditions for the stabilizability of switching system are
_ . _ available in literature. Those based on the Lyapunov-Metz|

In the case that the functiov(-) is such thatV(Aix) > inequalities are among the less conservative. Such condi-

V(x), for all i € Ng, the finite termination of Algorithm 3 is  tions are given by nonlinear matrix inequalities whose so-
not ensured (nor excluded) by Theorem 5. In particular, if |ution is often numerically intractable, see [11, 10]. Ireth
stability is ensured by a functiovi(-) such thatv (Aix) = continuous-time context, it has been proved that the exis-
V(x), for alli € Ng and every € R", that does not guarantee tence of a stable convex combination of the matrides
convergence, the algorithm could terminate in finite time or with i ¢ Ny, is a sufficient condition (and also necessary
not, as shown in the following illustrative example. for g = 2) for the Lyapunov-Metzler inequalities to hold.
Such a condition on the convex combinations of the modes
is at the core of the stabilizing techniques in the literatur
Example 1 Consider the linear system given by (1) with see [18]. For discrete-time systems, such a relation iskess
gq=1 andA; = R(Bm), whereR(0) is the rotation matrix  ident and other available sufficient conditions are more con
of angle® and with € R\ Q such tha3 € (0, 0.5). The servative, see [11]. It is worth then to directly conside th
system is stable but not convergent to the origin, then a Lyapunov-Metzler condition to obtain an appropriate com-
Lyapunov function does not exist and Algorithm 1 has not parison, although its evaluation would require a computa-
a finite termination. Supg)ose that Algorithm 3 is applied tionally demanding approach. It has to be recalled, negerth
with initial setQ = {x € R?: ||| < 1}, which is a square less, that Lyapunov-Metzler conditions deal with noncon-
centered in the origin. The sequence of $itsvith k € N are vex Lyapunov functions, namely homogeneous ones whose
the square rotated of the anglkB rrwith k € N. We prove level sets are union of ellipsoids.
that for everym k € N with k > m, the set)y # Qn. In fact
otherwise we would have that the rotation is the same, except .
for a multiple ofr/2, since the square does not change only /  Numerical examples
if it is rotated ofdrr/2 with d € N. But this implies that,
for an adequatel € N, we havekm= mBm+dm/2 and Example 2 Consider the system (1) witth=4,n=2 and
thenf = d/2(k— m), which contradicts the fact thftis an
irrational number. Hence Algorithm 3 does not end in finite

time, sinceQy is the union ofQ; with j < k. Conversely, A= 150 1 ., A= 1.1R(%")
choosing the euclidean norm ball as initial condition, i.e. 0 -08

Q = B2, the algorithm stops at the first step. In fact, we _12 0
haveQ; = Qo = Q. Notice that the euclidean ball is the only Az = 1-05R(%Tr -1), A= [ ] .
C*-set whose Minkowski function does not increase (nor 1 13

decrease) along the trajectories. Furthermore, the seguen
Qi generated by Algorithm 3 initialized with the square The matricesh, with i € Ny, are not Schur, which implies

converges to the euclidean ball of radii@ for k — . that the system (1) is not stabilizable by any constant $witc
ing law. We apply Algorithm 1 withQ = B2. The sets)y,

The finite termination of Algorithm 3 is only a sufficient k<€ N are thus unions of ellipsoids. The result at the first step
condition for non-stabilizability of the system (1), seesth  is depicted in Figure 1, lefQ; is the union the four ellip-
orem 4. The finite termination is attained if and only if there soidsAjl]BZ, with j € Ny. Itis clear thafB? does not belong
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at the third step. Figure 4 shows tHat C iNt(Ukeng Q)-

The Lyapunov function and the switching law are given in
Figure 5. Notice that the Lyapunov function is not a decreas-
ing function, but only a non-increasing one which is styictl
decreasing at least once every three (the number of steps of
the algorithm) instants, as proved in the main result.

<

or 3P

4l |

2 1t

=1 o

—4 =3
N
ab

Fig. 2. Ball B2 in dashed andJyen, Qk in solid line. Trajectory 2} ’/"
starting fromxg = (—3,3) in dotted line. S
to Q1. The next step of the algorithm leads to alggty, Q« —af
given by the union of the 4 42 = 20 ellipsoids at most, i.e. e R

A B2 with j € Ng andA;'AB?, for all (i, j) € Nax Ng.
SinceB? does not belong ke, Ok, see Figure 1 right, the
termination condition is not satisfied. The algorithm staps
the fifth iteration. Figure 2 emphasizes ti#t is included
in Ukens Q- A stabilizing switching law, satisfying (13) is
given in Figure 3 for the initial conditiory = (—3,3)". The

Fig. 4. Ball B2 in dashed andJyen, Qk in solid line. Trajectory
starting fromxg = (—3,3)" in dotted line.

X . 15
Lyapunov function converges to zero, see Figure 3.
++
UL R
X<
Q.
6 e
. 5 4+
+ s
b : 4 ++
= 4 0 i i il T T
5y + 0 5 10 15 20 25 30 35 40
B3 Time
2 +
s 25
+
0 i +T++++++4.;.4.4.4.4.4.4.4.4.+++++++++++++
0 5 10 15 20 25 30 35 40 2% L L L R R S 2 * % * * - x * * *-
Time
6 1.5
!
ar* * * L T O A L I LI TR T o
3t * Cw * R *w 05 i i i i i i
6* 0 5 10 15 20 25 30 35 40
20 % 4 Time k
R Ry T e A L T R T TR T )
i i | | i | i

o s o 15 20 2 30 % 4 Fig. 5. Lyapunov function and switching control law in time.
Time k

Fig. 3. Lyapunov function and switching control law in time. Example 4 As mentioned above, there are undecidable
cases for which neither Algorithm 1 nor Algorithm 3 are
finite. Consider

1.3 o] l1.4 o]
R), A= , (22)

Example 3 As a second example, consider fpe=n=2:

0 —1.01 0 —1.01 AL =
A= . A= .
1 -1 1 -05

0 09 0 08

with 8 = 0 for the moment. Matrice$y and A, are not
The Lyapunov-Metzler approach results in a set of linear Schur. Four steps are applied for each algorithm. The gesult
matrix inequalities once two parameters are fixed, both con- are drawn in Figure 6. Notice that= (1,0)" is related to
tained in [0, 1], see [11]. The LMI conditions have been an unstable eigenvalue for both modes, then Algorithm 1
checked on a grid of these parameters, with step@f.(No cannot be finite. Moreover in direction= (0,1)T, Uken, Qk
admissible solution was found, whereas our algorithm stopsis increasing with, then Algorithm 3 cannot be finite.

Preprint submitted to Automatica
Received September 20, 2013 01:46:40 PST



CONFIDENTIAL. Limited circulation. For review only

~= T~
1 A 7 Nl /7 g \\\
15f A 1 06r / \
1r 0.4t / \
/ \3 / \
0.5F / \ 4 02t \
/ \ I
X0 { l S0 I }
05 \ ,/ 02y \\ /
a —-0.4f \ //
st V J -0.6f \\ //
N
20 J -08f ~ 7
’ . . ' S~ ///
=3 -2 -1 XO 1 2 3 -1 -0.5 )(0 0.5 1
Fig. 6. BallB? in dashed andxen, Qx, for i € Ny in solid line. Fig. 8. BallB? in dashed antxen, Q in solid line.

Example 5 Consider the system given by (22) with= T,

which means that the first mode performs now a rotation of A; andA; are not Schur. The bal? is chosen as initial set.

’—g. Algorithm 1 stops after seven steps implying the stabi- Algorithm 1 ends at the third step. The Figure 9 depicts the
lizability of the system. The result is given in Figure 7. ball B3 and the setsken; Qk, With j € Na.

X' 0
al
Sl
Sl
—4r &
% ) 4 6
Fig. 7. BallB? in dashed andxen, Qx, for i € N7 in solid line.

Example 6 An example, leading to the finiteness of Algo-
rithm 3, is now proposed. We consider

. 3 . . . .
0101 0 -1.01 Fig. 9. BallB® in dark anduyen; Qx, for j € Ng, in light gray.
A= N :
1 -05

The stop criterion is attained for Algorithm 3 in only one Acknowledgements
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8 Conclusions

The issue of the stabilizability of discrete-time linear [14]

switched systems has been studied in this paper. Via a
set-theory approach, necessary and sufficient conditmms f
the stabilizability and sufficient ones for non-stabilitizp
have been provided. The family of nonconvex, homoge-
neous functions induced by & Set is proved to be a class
of universal Lyapunov functions for switched systems. In
addition, the stabilizing switching laws are charactetize
Our method allows moreover to stabilize counter-examples
for the Lyapunov-Metzler approach. Several academic il-
lustrations are proposed to strengthen the discussions anch?]
to emphasize the efficiency of our approach.
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