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Vision-based motion primitives for reactive walking

Mauricio Garcia1,2 and Olivier Stasse2 and Jean-Bernard Hayet1 and Claudia Esteves3 and Jean-Paul Laumond2

Abstract— This paper presents a method for reactive walking
allowing visual servoing and adaptation of footsteps trajectories
in real-time. This is done by building upon recent advances in
the fields of optimal control for a walking pattern generator
[1] and planning for a nonholomic robot with field-of-view
constraints [2]. Herdt et al. [1] provided a controller where a
humanoid robot is driven by its Center-of-Mass (CoM) velocity.
A natural extension, proposed in [3], is to control a humanoid
robot directly by using vision-based control techniques. How-
ever, the trajectories realized by the robot in that case are
generated to minimize the distance in the image feature space
and might create unnecessary motion in the space of the
footprints. This paper aims at solving this problem by making
the CoM follow a convenient space of trajectories for which the
robot behaves overall better. The motion primitives obtained
in [2] provide the space of trajectories used in this work.

I. INTRODUCTION

A. Motivation and related work

In the last few decades, significant advances have been

made on the real-time generation of stable locomotion

sequences for humanoid robots (e.g. [1], [4]). Parallely,

research has been led towards planning trajectories that

are appropriate for humanoid robots walking in cluttered

environments, with different types of restrictions (e.g. [5],

[6]). From the seminal work of [5], a main trend of research

in footstep planning has been to consider a limited set of

known actions (quite often footsteps) and transitions, and

to find an optimal path over them. The use of a fixed-

set-of-actions approach can be limiting, as it may produce

unnecessary motions near the obstacles [7], while not usually

dealing with the problem of robust perturbation rejection.

A vast amount of work exist to lessen the amount of

movements generated around the obstacles. Chestnutt et al.

proposed in [8] an adaptation mechanism to search around

the set of transitions. More recently, Hornung et al. [9], pro-

posed a method to deal with highly dynamical environments

by keeping both, accurate short-term goals and rough long-

term goals. As doing this may lead to local optima, the author

propose a method to automatically adapt the set of actions

according to the environment traversability characteristics.

Regarding the problem of robust perturbation rejection,

several advances have also been done. They can be divided
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Fig. 1. Vector fields generated by optimal trajectories planned with
visibility constraints for a non-holonomic robot [2]. To each color is
associated a family of global paths that reach the goal (at (−3, 0)) according
to the current configuration of the robot while keeping the landmark (yellow
disk) visible at all times. The footsteps, CoM and CoP trajectories for the
humanoid robot are all depicted as indicated in the upper box.

into three strategies: (1) ankle-foot stabilization, (2) whole-

body stabilization, and (3) footstep generation. Using the

capture-point or the Center-of-Pressure (CoP) as an indi-

cator of stability, one can switch between a Finite-State-

Machine strategy [10] and a learned strategy [11]. A recent

methodology proposed by Herdt et al. [1] is to automatically

find the CoM and CoP trajectories and footstep positions

simultaneously. This result is fed to a whole-body controller

to deal coherently with the three cases. Here, the notion of

footsteps disappears, allowing the user to provide a reference

velocity as input to the pattern generator. Moreover, because

the range of footsteps is explored by a guided search in the

space of the whole-body controller transitions, a large set of

possible footsteps is available in real-time.

From an application perspective, however, it is very dif-

ficult to decouple planning and control from each other.

Planning is needed to avoid local optima, and control is

needed to reject disturbances and adapt to modeling errors.

Some planning methods try to account for the motion and

control capabilities of the humanoid robot by using inverse

kinematics [12]. Despite real-time implementation [13], this

method suffers from local minima in planning footsteps. As



in [14], we propose in this paper to use a planning approach

integrating a constraint given by a task (e.g. visual-servoing).

However, here, we modify the walking controller in such a

way to use the planner as a generator of a full vector field that

provides new local solutions from any given configuration

and not only as a provider of single reference trajectories.

B. Contribution

Our contribution in this work is two-fold: (1) we propose

to adapt a classical pattern generator algorithm to include vis-

ibility constraints and global planning data from an external

motion planner; and (2), more broadly, we make a step to-

wards filling in the gap between traditional motion planning

approaches and on-line locomotion generation algorithms.

As a result of our approach, a footprint trajectory for a hu-

manoid looking at the point (0, 0), with initial configuration

at the upper-right side corner, is depicted in Fig. 11.

This paper is organized as follows. In Section II, we give a

summary of the global planner we use to produce paths that

ensure the visibility of an object of interest in the plane. In

Section III, we show how to use the optimal paths synthesis

inside the pattern generation optimization, given an objective

to reach and an object of interest to keep in sight. As the

initial outputs from the planner are non-holonomic paths that

may include in-site rotations, we propose in Section IV a

strategy to utilize, when possible, the holonomic capabilities

of the robot. In Section V, we present extensive simulation

results of our approach and we conclude in Section VI.

II. GLOBAL PLANNING WITH VISIBILITY CONSTRAINTS

For visual servoing, localization, surveillance, or any

robotic task based on the observation of visual cues, it is

important to ensure that the robot under control does not lose

sight of the landmark(s) used as a visual reference. Hence,

several works have been proposed to provide motion planners

that guarantee landmark visibility, mainly for wheeled robots.

With this concern in mind, we borrow one such global

planner, described in [6], as a base tool for generating paths

that guarantee to enforce the required visual constraints while

giving locally optimal trajectories in distance. This base

planner for humanoid robots uses as an underlying model

of motion, a disk-shaped non-holonomic Differential Drive

Robot (DDR). In [6], if a solution path is found for the DDR,

it is converted into a solution path for the humanoid robot by

generating a footprints sequence coherent with the humanoid

dimensions. A nice property inherited from using the DDR

model of motion is that the global planner is complete, i.e.

if a solution exists, it will give one, otherwise, it will say so.

However, even if, locally, the used motion primitives are

optimal in distance, this approach does not necessarily give

globally optimal trajectories. We will not detail the complete

methodology here, but we recall the basic results hereafter.

The aforementioned algorithm takes as an input a 2D map

of the environment, with its obstacles and visual landmarks,

an initial configuration of the robot, (xA, yA, θA), and a final

1Most figures in this paper are best appreciated in color.

(goal) configuration, (xB , yB , θB). The visibility constraint

on (x, y, θ) is written

θ = α− φ+ (2k + 1)π, k ∈ Z,

φ− ≤ φ ≤ φ+, (1)

where φ−, φ+ are the angle sensor limits and α the

configuration polar angle.

Its output is a set of footprints to be followed by the robot.

The building of this path follows a recursive strategy: A

roadmap is built over the free space, which includes both,

points free of collision with the obstacles in the environment

and points that are not within the shadows cast by the

landmarks. Then, initial and final configurations are tested, to

check whether the optimal primitives of [2] can connect them

without colliding forbidden regions. If the computed path

is safe, then the algorithm ends, otherwise the holonomic

shortest path on the roadmap from the initial configuration

to the final (if it exists) is divided in two at its middle point,

and the process is repeated on the two sub-parts.

The resulting path is made of several parts, each one

corresponding to a locally optimal path given from [2] (made

of a combination of straight lines, logarithmic spirals and in-

site rotations). This allows to define a set of S sub-segments

to be performed by the robot along locally optimal paths,

which will be referred to as (ps, qs), for s = 1 . . . S :

ps = (xs
p, y

s
p, θ

s
p)

T ; qs = (xs
q, y

s
q , θ

s
q)

T ,

with ps, qs the initial and final configurations. The path is

executed by reaching the successive sub-goals qs.

III. DEFINING A LOCAL REFERENCE TRAJECTORY

Let us focus on each sub-path s. Suppose that we start

with the robot at some configuration close to ps (see Fig. 2),

because localization may not be perfect, and that we want

to reach the sub-goal qs, as determined in [6].

A. Adapting the reference trajectory for the MPC

Without loss of generality, we suppose that the object

of interest is located at L
s = (0, 0). In all the following,

x, y, θ refer to coordinates w.r.t a global frame centered at

this origin. It is noteworthy that, given the sub-goal qs =
(xs

q, y
s
q , θ

s
q)

T to reach, and the landmark it is associated to,

the work of [2] gives us a full synthesis of optimal paths in

free space. This synthesis is represented as a mapping σ:

σ : R
2 7→ S

1 × R
2

(x, y) → (θ∗(x, y), v∗(x, y), ω∗(x, y))

where θ∗(x, y) is the orientation the robot (viewed as a

nonholonomic cart) should have in order to start walking

along the shortest path to qs, from its current position

(x, y) [2]. The pair (v∗(x, y), ω∗(x, y)) are the instantaneous

(reference) velocities needed to follow the shortest paths.

From the aforementioned work, we know that these paths are

either in-site rotations, or straight lines, or spiral segments.

Without loss of generality, we can suppose that v∗(x, y) = 0
(for in-site rotations) or v∗(x, y) = ±1 (elsewhere). Given
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Fig. 2. From a configuration (x, y, θ) and its corresponding position (x, y),
and a sub-goal qs = (xs

q , y
s
q , θ

s
q) to reach, the optimal path (dashed line)

is the one we want the humanoid robot to follow. For that, we use the
tangent orientation θ∗(x, y) to this path. Because of the errors in control
or localization, this optimal path may be different from the shortest path
(solid line) computed from the first configuration ps = (xs

p, y
s
p, θ

s
p).

the linear velocity v∗(x, y), ω∗(x, y) is defined in function

of the nature of the path segment,
{

ω∗(x, y) = 0 (straight line)

= ± sin(φ+)√
x2+y2

(spiral),

where φ+ is the maximal bearing angle possible for the

landmark, given the sensor and robot characteristics.

Our claim is that the knowledge of optimal policies at

each point allows some flexibility when generating a walking

pattern, by optimizing the footprint positions and the CoM

trajectory “around” the nominal path output from the planner,

by using these policies within the pattern generation.

In pattern generation algorithms such as [1], the cost

function within the Model Predictive Control (MPC) window

uses the CoM configurations. Here, focusing on the (x, y, θ)
CoM coordinates, we handle as an input of the algorithm

a reference trajectory to be followed, and a synthesis of

shortest paths leading to a given objective, as a direct output

from [2]. As depicted in Fig. 2, at each configuration eval-

uated within the MPC, two forces should apply through the

optimization scheme: one driving the robot to the “correct”

orientation θ∗(x, y), and one making the velocities follow

the shortest path, (v(x, y), ω(x, y)). Also, a strong visibility

constraint should apply, to ensure the object of interest to

stay visible. In Fig. 3(a), we give an illustration of the

shortest paths synthesis from [2], displayed through the local

orientations of optimal paths at each point of the plane, given

the objective to reach (“end point”) and the landmark.

B. Quadratic programming MPC

Since the work of [4], walking pattern generation al-

gorithms have focused on determining constant-height (at

height h) trajectories of the CoM with piecewise-constant

jerks time profiles. These profiles are computed by a MPC

scheme for time intervals of length T , under a simplified cart-

plane mechanical model simulated for a near time horizon,

within N time intervals. In this paper, we follow a similar

approach and will refer to the time interval indices as k.

To produce balanced and stable movements, [4] formulates

the dynamics of the CoM, axis per axis, as

{

x̂k+1 = Ax̂k + J
...
xk

ξxk = Zx̂k
(2)

for the example of the x axis, where vectors x̂k =
(xk, ẋk, ẍk)

⊤
stack the position, velocity and acceleration of

the CoM along the x-axis and ξxk is the CoP x−coordinate,

both at time k. The matrices A, J , Z are defined as

A =





1 T 1
2T

2

0 1 T

0 0 1



 , J =





1
6T

3

1
2T

2

T



 and Z =
(

1 0 h
g

)

,

where g is the gravity. To predict the CoM trajectories

within the next N intervals, the dynamics is applied recur-

sively, starting from the initial position x̂k, in terms of the

jerk values to be applied,
...
C

x
= (

...
xk,

...
xk+1, ...,

...
xk+N−1)

⊤,

where Pps and Ppu are constant matrices,

Cx
k+1

def

=
(

xk+1 . . . xk+N

)⊤
= Ppsx̂k + Ppu

...
C

x

k. (3)

Similar expressions can be obtained for the y component

and for the velocity and acceleration of the CoM.

As an evolution of the original work of Kajita [4], where

the footsteps positions (and, correspondingly, the CoP po-

sitions) are fed to the pattern generation, the work of [1]

introduced automatic footstep planning, and reduced the

necessary input to a simple stack of reference velocities

(Ẋref
k+1, Ẏ

ref
k+1). This leads to the optimization problem:

min
Uk

α

2

∥

∥

∥

...
C

x

k

∥

∥

∥

2
+

β

2

∥

∥

∥
Ċ

x
k+1 − Ẋ

ref

k+1

∥

∥

∥

2
+

γ

2

∥

∥

∥
Z

x
k+1 − Z

xref

k+1

∥

∥

∥

2

+
α

2

∥

∥

∥

...
C

y

k

∥

∥

∥

2
+

β

2

∥

∥

∥
Ċ

y

k+1 − Ẏ
ref

k+1

∥

∥

∥

2
+

γ

2

∥

∥

∥
Z

y

k+1 − Z
yref

k+1

∥

∥

∥

2
(4)

with the variables to optimize kept in the vector Uk
def

=
(

(
...
C

x

k)
⊤, (Xf

k )
⊤, (

...
C

y

k)
⊤, (Y f

k )⊤
)⊤

. The ZMP references

Z
xref

k+1 , Z
yref

k+1 depend linearly on the variables X
f
k , Y

f
k which

are the position of the next footsteps in the horizon.

As the sequence of CoP positions Zx
k+1 =

[ξxk+1 · · · ξxk+N ] is linear in the variables to optimize

(from Eq. 2), the problem is a Quadratic Program (QP)

min
Uk

1

2
U⊤

k QkUk + p⊤k Uk, (5)

under linear constraints arising, among others, from the

inclusion of the CoP inside the support polygon [1].

C. Using the optimal path synthesis within the MPC

Instead of utilizing in the Equation 4, a single, constant

reference trajectory, defined by the plan computed from ps

to qs, and from which (Ẋref
k+1, Ẏ

ref
k+1) would be evaluated,

our idea is to use explicitly the mapping σ described above.

This way, we can adapt the path execution and find the

shortest path to the next sub-goal from any point, not just

from ps. As explained above, one can associate to any x, y

the tangent θ∗(x, y) to the shortest path. One way to enforce

the tracking of these shortest paths is to set as a reference

velocity (supposing we are following a piece of curve with

v = 1) defined in the time horizon (l > k, where k is the

current time index):

ẋ
ref
l = cos(θ∗(xl, yl)) ẏ

ref
l = sin(θ∗(xl, yl))



(a) Motion direction field resulting from the synthesis of [2]. (b) Motion direction field with lateral motions.

Fig. 3. Visualization of optimal motion directions θ∗(x, y). Both figures indicate the nature of optimal paths with the filling colors, and the tangent
direction to the optimal curve all over a grid defined around the final point. In Fig. (a), the field is computed directly from the primitives of [2]. The locus
of in-site rotations is identifiable at the dark blue zone border. In Fig. (b), the non-holonomy behavior close to this locus is replaced by lateral motions.

that depends (non-linearly) on xl, yl. The idea is to use

these – variable – reference velocities inside the terms of the

pattern generator QP. However, as this mapping is non-linear,

a direct use would make us lose the QP form, that allows

an efficient resolution of the problem. Because the mapping

θ∗(x, y) has not always an analytic form we evaluate it

numerically on a fine scale grid inside the zone of operation

of the robot, as pre-computed values, and we also estimate

numerically the partial derivatives
∂θ∗(x,y)

∂x
,
∂θ∗(x,y)

∂y
.

This way, we can approximate each of these reference

velocities, at time position l within the optimization time

window, by performing a linearization of θ∗ around a refer-

ence position (x0, y0), i.e.,

θ∗(xl, yl) ≈ θ∗(x0
l , y

0
l )

+∂θ∗(x0,y0)
∂x

(xl − x0) + ∂θ∗(x0,y0)
∂y

(yl − y0).

Note that the linearization point (x0, y0) is cho-

sen in the aforementioned grid of pre-computed values

(θ∗(x, y), ∂θ∗(x,y)
∂x

,
∂θ∗(x,y)

∂y
), at the closest point to the first

(current) CoM position. This grid is depicted in the back-

ground of Figs. 1, 3, 4 among others. To simplify the

notation, let us write

θ0
def

= θ∗(x0, y0),
∂θ0

∂x

def

=
∂θ∗(x0, y0)

∂x
,
∂θ0

∂y

def

=
∂θ∗(x0, y0)

∂y
.

Then, we re-write the errors to the reference velocities at

each time step l > k, as a linear function of ẋl, ẏl, xl, yl






































ẋl − ẋ
ref
l = ẋl − v cos(θ0)

+v sin(θ0)∂θ
0

∂x
(xl − x0)

+v sin(θ0)∂θ
0

∂y
(yl − y0),

ẏl − ẏ
ref
l = ẏl − v sin(θ0l )

−v cos(θ0)∂θ
0

∂x
(xl − x0)

−v cos(θ0)∂θ
0

∂y
(yl − y0),

and by stacking the errors within the horizon window as

in Eq. 3, we get the following linear relations

Ċ
x
k+1 − Ẋ

ref

k+1
= Ċ

x
k+1 − Ċ

0,x

k+1
+A

x
0C

x
k+1 +B

x
0C

y

k+1
,

Ċ
y

k+1
− Ẏ

ref

k+1
= Ċ

y

k+1
− Ċ

0,y

k+1
+A

y
0C

x
k+1 +B

y
0C

y

k+1
,(6)

where Ax
0 , B

x
0 , A

y
0, B

y
0 are diagonal matrices collecting

the terms v sin(θ0l )
∂θ0

l

∂x
and alike. Then, the walking pattern

generation is formulated exactly as in Eq. 4, with the

reference velocities given by Eq. 6, and with the optimization

variable being Uk, leading to a canonical Quadratic Program

(QP) similar to Eq. 5.

The constraints arising from the CoP position to be in-

cluded in the support polygon being non-linear in the feet

orientation, we simply set the robot and feet orientations as

follows and include the computed values into the QP.

D. Control of the rotation angle

In order for the robot to be oriented with the tangent to

the optimal path, θ0, and to keep the QP form, we use a

decoupled approach for the control of the rotation angles

of the CoM and the feet [15]. Hence, in a first stage, we

optimize the orientations in the MPC time window by

min...
Cθ

k
,
...
F θ

k

β

2

∥

∥

∥
C

θ
k+1 − θ

0
∥

∥

∥

2

+
γ

2

∥

∥

∥
F

θ
k+1 − θ

0
∥

∥

∥

2

+
α

2

∥

∥

∥

...
C

θ

k

∥

∥

∥

2

+
α

2

∥

∥

∥

...
F

θ

k

∥

∥

∥

2

,

and then in a second stage, we introduce these angles as

constant in the main QP (Eq. 4). This approach gives us the

advantage of introducing constraints like maximum rotation

between both feet, between feet and trunk and also a rotation

limit to keep the visibility of the landmarks.

IV. INCLUDING HOLONOMIC BEHAVIOR

Handling holonomic and non-holonomic behaviors to-

gether during locomotion has been previously been discussed

in [16] in a context of motion planning.

One of the most visible disadvantages of the optimal non-

holonomic paths given from [6] is the presence of in-site

rotations, that are not efficient in terms of footsteps number.

One solution is to use a different formulation of the cost

function using weights according to the robot direction and

control the head. But including this vision based control in

Eq. 4 is incompatible with a QP formulation. A strategy we



propose here is to take advantage of the fact that the set

of points where in-site rotations occur is very well defined

geometrically in the plane, as a direct consequence of the

synthesis from [2]. As illustrated in Fig. 3(a), it is the outer

boundary of the partition zone where the shortest paths have

to be done as line segments followed by spirals, i.e. the dark

blue region of the figure. This curve is made of two parts [2],

one arc of circle and one piece of logarithmic spiral. Hence,

we propose to perform the following: for all points inside

the partition regions in contact with this locus, we evaluate

its distance in terms of the primitive to be done to reach this

locus and modify the reference velocities as follows.

If the robot is far from the locus of in-site rotations,

then the path to follow is continuously derivable and goes

either forwards or backwards; in that case, we use the “non-

holonomic behavior” as described in Section III, with the

robot orientation controlled to stay close to θ∗(xl, yl),

ẋ
ref
l = cos(θ∗(xl, yl)) , ẏ

ref
l = sin(θ∗(xl, yl)),

and if the robot configuration is close to this locus, then

we use instead lateral motions, with orientation φ(xl, yl)+π,

where φ(xl, yl) = arctan yl

xl
is the polar angle of (xl, yl),

ẋ
ref
l = −ε sin(φ(xl, yl)) , ẏ

ref
l = ε cos(φ(xl, yl)),

where ε = ±1 in function of the relative position of the

goal to reach with respect to the evaluated point.

In Fig. 3(b), we illustrate this modification by drawing the

lateral motion field with blue arrows, together with the “non

holonomic” field “far” from the locus of in-site rotations.

V. RESULTS

In this section, we present three experiments. In the first

one, we test the performance of our approach in the absence

of localization uncertainty, and with only non-holonomic mo-

tion. In the second one, we introduce localization uncertainty.

In the last one, we present an improvement to the border

behavior with the possibility of holonomic motion. The three

experiments have the same set-up, with initial position in

(0.5, 2.5), landmark position in (0, 0) and final position in

(−3, 0). We chose this trajectory because it makes the robot

pass through several regions of the partition and illustrates

the border behavior which is one of the problems we found.

In Fig. 1, we depict the performance in perfect and

noiseless conditions. We see that using the planner vector

field for driving the robot to the goal produces smooth and

stable trajectories of the CoM. However, in real conditions,

the robot will not perform the control exactly e.g., because

of sliding with the floor. Moreover the robot needs a local-

ization system which will be inherently noisy. To model this

situation we perturbed the current position of the CoM with

white gaussian noise ∼ N (0, σ2) in each coordinate with

σ = 0.2 and with σ = 10 degrees for the orientation.

In Fig. 4, left, we show the behavior in that situation.

We can still appreciate a smooth trajectory in the regions

far from the border of the dark blue region of the partition,

where the vector field is smooth. We also notice the good

behavior of the orientation angle mainly because of the

QP formulation. The main problem of this approach also

appears: The discontinuities in the partition regions in which

an in-site rotation occurs. Hence, the robot may perform

unnecessary maneuvers, involving in-site rotations, which is

not optimal in the case of human walking (Fig. 4, right).

Moreover, in-site rotations cause high rotation speeds of the

feet (Fig. 5), not desirable from a balance point of view.
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Fig. 5. Velocities profile for the trajectory depicted in Fig. 4. The overshoots
in the angular velocity are caused by the in-site rotations at the border of
the dark blue region of the partition.

To address the aforementioned problem, we present the

results of the improvement introduced in Section IV. In Fig. 6

left, we perform the same trajectory but by introducing the

possibility of holonomic motion in the region where in-site

rotations would be necessary. The robot is not performing in-

site rotations anymore, but a mixture of holonomic and non-

holonomic motions, depending on its position with respect to

the border. We can appreciate better the transition between

non-holonomic and holonomic motions in Fig. 6, right.

VI. CONCLUSION

In most of the current literature, the link between planning

and locomotion control has been given by footsteps. In this

paper, we propose a novel approach that uses directly the

optimal motion synthesis derived from the planner to the

control system without going through footsteps but instead

by computing them within the Walking Pattern Generator.

With this approach, we can drive the robot to a desired goal

by using an external planner, not necessarily the one used in

this paper. We tested our approach simulating real situations

such a localization noise. We have also tried to make the

walking pattern more efficient by introducing the possibility

of using holonomic motion. Our next objective is to test the

approach introduced in this paper on the HRP-2 platform.
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