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Point defect modeling in materials: coupling ab initio and elasticity approaches

Céline Varvenne, Fabien Bruneval, Mihai-Cosmin Marinica, and Emmanuel Clouet*
CFEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette, France
(Dated: October 21, 2013)

Modeling point defects at an atomic scale requires to take special care of the long range atomic
relaxations. This elastic field can strongly affect point defect properties calculated in atomistic
simulations, because of the finite size of the system under study. This is an important restriction
for ab initio methods which are limited to a few hundred atoms. We propose an original approach
coupling ab initio calculations and linear elasticity theory to obtain the properties of the isolated
point defect for reduced supercell sizes. The reliability and benefit of our approach are demonstrated
for three problematic cases: the self-interstitial in zirconium, clusters of self-interstitials in iron, and

the neutral vacancy in silicon.
I. INTRODUCTION

Point defects in crystalline solids play a crucial role
in controlling material properties and their kinetic evo-
lution. This is true both for intrinsic defects, such as
vacancies, self-interstitials and their small clusters, and
extrinsic defects, such as impurities and dopants. As a
consequence, a proper understanding and modeling of
material properties often require a precise knowledge of
point defect characteristics, in particular their formation
and migration energies. To this end, ab initio calculations
based on the Density Functional Theory (DFT) have ap-
peared as a valuable tool. They are now able to predict
point defect energetics from which one can build quan-
titative models of material macroscopic behaviors. Such
modeling approaches have been successful in answering
a large variety of experimental questions, ranging from
diffusion processes,’? phase transformations,® or recov-
ery of irradiated metals®® for instance. They have also
allowed one to predict unsuspected structures of defect
clusters, at sizes where experimental evidence is difficult
to obtain.6-8

Ab initio calculations of point defects are currently
performed with the supercell approach where periodic
boundary conditions are applied. The structure and en-
ergy of the point defect are obtained after relaxation of
the atomic positions, possibly under various constraints.
As ab initio methods are technically limited to a few hun-
dred atoms, the question of the interaction of the defect
with its periodic images merits some consideration. If
long-range interactions are involved, the convergence of
the results with the supercell size - and consequently the
ability to obtain the properties of isolated defects - can
be out of reach. This problem is well-known for charged
defects, where the long-range Coulomb interaction is in-
volved. Corrective approaches”!? are now commonly ap-
plied to improve the convergence of these charged defects
calculations. But even neutral defects lead to long range
interactions because of their elastic field. In the case of
linear defects such as dislocations, some specific model-
ing techniques have been developed to circumvent this
problem and obtain dislocation intrinsic properties.!315
But this problem seems to have been overlooked for point

defects.

A point defect in a bulk material induces a long-range
elastic field: the magnitude of the associated displace-
ments decays like 1/R? with R the distance to the defect.
No characteristic length can be associated with such a
decrease and the properties obtained by ab initio calcu-
lations are therefore those of a periodic arrangement of
interacting defects. The commonly applied technique to
minimize this artifact is simply to increase the supercell
size, but the sizes necessary to obtain reasonably con-
verged values are sometimes too large to be handled by
ab initio calculations. This is the case for defects lead-
ing to strong elastic fields, like interstitials or small de-
fect clusters, or for materials where a complex treatment
of electronic interactions is required (hybrid functionals,
GW methods, ...).

In this article, we propose to couple elasticity theory
and ab initio calculations to study point defects. We use
elasticity theory to model the interaction of the point
defect with its periodic images so as to withdraw this in-
teraction from the ab initio calculations and thus obtain
the properties of the isolated defect. The benefit of this
approach is demonstrated for three different systems, the
self-interstitial in zirconium, clusters of self-interstitials
in iron, and the vacancy in silicon. These systems differ
not only by the nature and the size of the point defect
but also by the character of the chemical bonding, either
metallic or covalent, and the structure of the crystal, ei-
ther hexagonal-closed-packed (hep), body-centered-cubic
(bee), or diamond. In all cases, our coupling approach
improves the convergence with respect to the supercell
size, thus allowing a more accurate description of point
defects than could be achieved with a simple ab initio
calculation.

II. MODELING APPROACH

Let us consider a supercell with fixed periodicity vec-
tors A1, As and Aj containing one point defect. After
relaxation of the atomic positions, the energy of the su-
percell as supplied by the ab initio calculation, ED ), is



given by:

£

1
By = Ex + 5B, (1)

where EY is the energy of the isolated defect and E? . the
interaction energy of the defect with its periodic images.
The factor 1/2 arises because one half of this interaction
is devoted to the defect itself, and the other goes to its pe-
riodic images. We use continuous linear elasticity theory
to evaluate EP .. Within this theory, a point defect can
be modeled by an equilibrated distribution of forces,'6:17
i.e. a distribution with no net force nor torque. If we only
retain the first moment of this distribution, the defect is
fully characterized by its elastic dipole P;;. The interac-
tion energy EP. of Eq. (1) is then evaluated by consid-

ering the interaction energy of the point defect with the

strain sfj created by its periodic images:!'®
Eiliqt = —Pi]f%, (2)
/
with 5% = — Z Gik,jt(Rnmp) P (3)

n,m,p

Rimp = nA1 + mAy 4 pAs, with n, m and p € Z, cor-
responds to the position of the defect periodic images
and the term n = m = p = 0 has been excluded from
the sum in Eq. (3) (no self-interaction term as indicated
by the prime sign). Gy ji(x) is the second derivative of
the anisotropic elastic Green’s function with respect to
the Cartesian coordinates x; and z;. Knowing the elas-
tic constants Cjyjp; of the perfect crystal, it is calculated
with the numerical scheme proposed by Barnett.'® Due
to the 1/R3 decrease of Gy ji(R), the lattice summation
required in Eq. 3 is conditionally convergent. To regu-
larize the summation, we use the procedure introduced
by Cai et al.,2° which is based on the fact that the dis-
placement and strain fields are necessarily periodic with
the same periodicity as the supercell. Therefore, once
the dipole tensor F;; is identified, the interaction energy
EP . of the point defect with its periodic images can be
numerically evaluated thanks to Eqgs. (2) and (3).

As previously shown in Ref. 21, the elastic dipole P;;
can be directly extracted from the atomistic calculations.
It is linked to the homogeneous stress o;; of a periodic
simulation cell of volume V' containing one point defect
through the equation:

Pij =V (Cijrier — 0ij) (4)

where ¢;; is the homogeneous strain applied on the su-
percell. In particular, the elastic dipole is proportional to
the homogeneous stress in the case of atomistic calcula-
tions with fixed periodicity vectors (¢ = 0). Compared to
other methods where the elastic dipole is either obtained
from a fitting of the displacement fields?? or from the cal-
culation of the Kanzaki forces,?> 25 Eq. (4) presents the
advantage of being straightforward and simple to use.
To summaries our approach, once point defects ener-
gies have been calculated with ab initio methods, they
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FIG. 1. Structures of the stable SIA configurations in hcp
Zr: Octahedral (O), basal octahedral (BO), split dumbell
(S), basal split dumbell (BS), crowdion (C) and buckled basal
crowdion (BC’). PS and PS’ are obtained by a rotation of an-
gle ¢ = 30° and 50° of S in the prismatic plane.?®

are corrected by subtracting %Eﬁlt, the spurious interac-
tion energy arising from periodic boundary conditions,
to obtain the properties of isolated defects (Eq. (1)). Af-
ter correction, these properties are expected to be weakly
sensitive to the supercell size and shape. The evaluation
of the interaction energy does not involve any fitting pro-
cedure, but is a fast post-treatment, which only requires
the knowledge of the elastic constants of the perfect crys-
tal and the residual stress of the supercell containing the
defect.

III. SELF-INTERSTITIAL IN HCP ZIRCONIUM
A. Formation energy

We apply this modeling approach to study the self-
interstitial atom (SIA) in hep zirconium. This point de-
fect appears under irradiation and its fast diffusion in the
basal planes of the hcp lattice is often assumed to explain
the self-organization of the microstructure observed in ir-
radiated zirconium,?”-?8 as well as the breakaway growth
visible for high irradiation doses.?”?? Recent ab initio
calculations?%:2® have enlightened that SIAs in zirconium
can adopt different configurations nearly degenerated in
energy. These configurations are sketched in Fig. 1. Be-
cause of the strong elastic field created by the point de-
fect, the associated formation energies vary with the su-
percell size, making it hard to get a clear view of the STA
energy landscape.26-28

We calculate the formation energy of the STA differ-
ent configurations in the Generalized Gradient Approx-
imation (GGA PBE??) with an ultrasoft pseudopoten-
tial using the PwSCF code3! of the Quantum Espresso
package.?? Fig. 2 shows the variation with the supercell
size of the formation energies for the four most stable
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FIG. 2. Formation energies Ef of the four most stable SIAs
in Zr versus supercell size. Filled symbols refer to ab initio
uncorrected results and open symbols to the results corrected
by the elastic model. The periodicity vectors of the supercell
have been either kept fixed (square) or relaxed (triangles) in
the ab initio calculations.

configurations: three high symmetry configurations —
the octahedral (O), basal octahedral (BO) and basal split
dumbell (BS) — and one configuration with a lower sym-
metry that was identified in Ref. 26 — the buckled basal
crowdion (BC’). Like previous calculations,?%:28 our DFT
results, obtained at constant supercell volume and shape
(e = 0), show that the formation energies strongly de-
pend on the size and shape of the supercell. In view
of these variations, calculations with at least 361 atoms
are necessary to get converged values. In addition to
this quantitative aspect, the SIA properties are not cor-
rectly described, even qualitatively, if the supercell is too
small. Indeed, inversions of stability are observed when
the supercell size increases (Fig. 3a). For instance, the
O configuration is more stable than the BS configuration
below 201 atoms, whereas the opposite is true above.
Including now the elastic correction, we obtain an im-
proved convergence of the formation energies for all con-
figurations (Fig. 2, ¢ = 0 corr.). The deviation to the
converged values, between 120 and 300 meV for uncor-
rected DFT calculations at 97 atoms, is reduced to the
range between 40 and 150 meV when applying the elas-
tic model. With this correction, the relative stability of
the different defects configurations is well described for a
supercell containing no more than 201 atoms (Fig. 3b).
Considering now the full energy landscape of the STA
in hep Zr, four other stable configurations are found: a
split dumbell (S) along the ¢ axis, a crowdion (C), and
two dumbells (PS and PS’) resulting from a rigid rota-
tion of S in the prismatic plane.?6 These configurations
have a higher energy than the previous ones. The elastic
correction also helps improving their convergence with an
energy landscape still correctly described for 201 atoms.

100 200 300 100 200 300

Number of atoms Number of atoms

FIG. 3. Uncorrected (a) and corrected (b) Zr SIAs formation
energies Ef of the stable configurations versus the number of
atoms for ¢ = 0 calculations.

Our approach, coupling ab initio calculations and elas-
ticity theory, therefore allows a better picture of SIA en-
ergetics for reduced supercell sizes. A drift with the size
in the formation energies nevertheless remains. It prob-
ably arises from disturbed atomic forces, as these forces
are also modified by the presence of the periodic images.
As pointed by Puska et al.,?? this can disturb the relax-
ation process and thus the defect configuration, leading
to a variation in the formation energies.

B. Zero stress calculations

Instead of using fixed periodicity vectors in atomistic
calculations (¢ = 0), one can also minimize the energy
with respect to these vectors so as to obtain zero stress
(o = 0) at the end of the relaxation. Such conditions
are sometimes believed to give a better convergence than
the e = 0 conditions. As shown by Fig. 2, this is the
case for the different configurations of the STA in Zr, but
a variation of the formation energy with the supercell
size still remains. Surprisingly, these uncorrected ¢ = 0
calculations lead to the same energy variations as the
corrected € = 0 calculations. Before discussing this point,
it is worth seeing how the elastic modeling needs to be
adapted in order to add a correction also to these o =0
calculations, and maybe improve their convergence.

In this ¢ = 0 case, a homogeneous strain has been
applied to the simulation box. Eq. 1 therefore needs to
be complemented with the energy contribution of this
deformation:

AE. = %Oz’jkl&jf’:kl — Pijeq. (5)
We can still use Eq. (4) to link the elastic dipole P;; with
the homogeneous applied strain and the resulting stress.
In the o0 = 0 case, the elastic dipole is proportional to the
applied strain. We obtain that the energy of the supercell
containing one point defect is given by

Ipp L
2 int 2
where the elastic compliances of the bulk material S;;;
are the inverse tensor of the elastic constants Cljp.

EP ,=ED + Sijk1Pij P, (6)
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FIG. 4. Migration pathways of Zr SIA calculated with the
NEB method, between the BO and BC’ configurations and
between the BS, BO and O configurations: (a), (c) uncor-
rected and (b), (d) corrected results.

Eq. (6) is now used in combination with Egs. (2) and
(4), to extract the energy of the isolated defect, EL from
these o = 0 simulations.

The corrected formation energies for e =0 and o = 0
simulations are superimposed (Fig. 2). This shows the
validity of our elastic modeling as the corrected formation
energies do not depend on the simulation conditions for
a given supercell size. As noticed before, the uncorrected
o = 0 corrections merge these corrected energies. This
means that the correction applied to the ¢ = 0 is null:
the spurious interaction energy 1/2 EP | is compensated
by the energy contribution of the homogeneous strain
applied to cancel the residual stress (last term in Eq. 6).
As we will see latter this compensation between different
energy contributions is specific to SIAs in zirconium.

As a consequence, o = 0 calculations appear unneces-
sary. For the same result, one can instead perform e = 0
calculations, where the periodicity vectors are kept fixed,
and then apply the elastic correction. We highlight the
importance of this point, since ¢ = 0 calculations neces-
sitate an increased number of self-consistent field steps.
Geometry optimizations at ¢ = 0 are usually a badly
preconditioned problem, so we propose to avoid them
systematically. Moreover, calculations of energy barriers
are routinely done with € = 0 conditions, whereas o = 0
conditions seem much more complicated. As we will see
below, our correction scheme can also be applied to these
barrier calculations, and then the ¢ = 0 calculations are
made useless.

C. Migration energy

Our approach, coupling elasticity and ab initio calcu-
lations, is not restricted to the modeling of stable con-
figurations. It can also be beneficial to study migration
pathways between these configurations. To illustrate this
point, we consider the migration between different config-
urations of the STA in Zr. The minimum energy pathways
are investigated using the Nudged Elastic Band method
(NEB),?* and the results are presented in Fig. 4 for sim-
ulation cells containing 97 and 201 atoms.

We fist focus on the migration between the two most
stable configurations of the SIA in Zr, namely BO and
BC’. Without the elastic correction (Fig. 4a), there is a
saddle point between these two configurations with a su-
percell containing 97 atoms. This saddle point almost
disappears with a 201 atom supercell, showing that the
transition from BC’ to BO is athermal. Consequently,
BC’ cannot be considered as a stable configuration: it
corresponds to an extended flat portion of the energy
surface with an unstable behavior leading to the basin of
the BO configuration. When the elastic correction is in-
cluded (Fig. 4b), the result with 97 atoms already shows
a reduced energy barrier, thus illustrating the accelera-
tion of the convergence with this correction.

We then examine two migration pathways important
for the diffusion: the transition BO-BS inside the basal
plane and the transition BO-O along the ¢ axis With-
out the elastic correction (Fig. 4¢) there is no significant
difference between these two migration barriers, even for
201 atoms NEB calculations. On the other hand, the cor-
rected barriers (Fig. 4d) lead to a migration easier in the
basal plane, with a difference of about 0.07¢eV in the mi-
gration energies. This could induce a diffusion anisotropy
of the STA at a macroscopic scale. This of course needs to
be confirmed by the calculations of all migration barriers,
and then the modeling of the diffusion coefficient.

Like for the BO-BC’ transition, the elastic correction
improves the convergence of the BO-O barrier. But the
situation is less clear for the migration from BO to BS.
In this last case, the uncorrected DFT calculation pro-
vides indeed superimposed barriers between 97 and 201
atoms, whereas the level of the BS energy changes on the
corrected curves. This can be understood by looking at
the formation energies of the BO and BS configurations
in Fig. 2. Without correction, the convergence rate is
the same. There is thus a compensation of errors when
considering the energy difference between these two con-
figurations, and also the migration energy between them.
As a consequence the barriers calculated for 97 and 201
atoms appear superimposed. Such an error compensation
does not occur for the corrected barrier, as the conver-
gence rate is not the same for the energies of the BO and
BS configurations, once corrected (Fig. 2).



IV. SIA CLUSTERS IN BCC IRON

We now look how our modeling approach performs in
a case where the point defect creates a stronger elastic
field than the one of a self interstitial atom (SIA). To do
so, we consider SIA clusters in bee iron. SIAs created
during irradiation in iron can migrate either to annihi-
late at sinks or to form clusters. These clusters adopt
different morphologies. Large enough clusters have a
two-dimensional shape corresponding to dislocation loops
with a 1/2 (111) Burgers vector.?> But a broader range of
morphologies®%7 is available to clusters containing a few
SIAs. In particular, it has been shown recently that some
clusters can have a three-dimensional structure with an
underlying crystal symmetry corresponding to the C15
Laves phase.” These C15 clusters are predicted to be
very stable at small sizes and highly immobile, in con-
trast with the (111) loop clusters which can easily glide
along the (111) direction, leading to a fast 1D diffusion.3?
Knowing the relative stability of the different configura-
tions that can adopt a SIA cluster in iron is of prime
importance to be able to model then the kinetic evolu-
tion. The stability of the C15 clusters is closely related
to the magnetic properties of iron,”3® which are out of
reach of empirical potentials. Therefore ab initio calcula-
tions are needed. This severely limits the size of the STA
cluster which can be simulated and makes our modeling
approach potentially attractive to push back this limit.

To illustrate this point, we consider a cluster contain-
ing eight STAs with two different configurations, a C15
aggregate and a planar configuration corresponding to
an aggregate of parallel-dumbells with a (111) orienta-
tion. The formation energies of both configurations have
been first calculated with the MO07 empirical potential”
for different sizes of the simulation cell (Fig. 5). With
fixed periodicity vectors of the simulation cell (¢ = 0),
one needs at least 2000 atoms for the C15 aggregate and
4000 atoms for the (111) planar configuration to get a
formation energy converged to a precision better than
0.1eV. The convergence is slightly faster for zero stress
calculations (¢ = 0) in the case of the C15 aggregate
(Fig. 5a), but the opposite is true in the case of the
(111) planar configuration (Fig. 5b). When we add the
elastic correction, the convergence is improved for both
cluster configurations. The corrected e = 0 and ¢ = 0
calculations lead then to the same formation energies,
except for the smallest simulation cell (128 lattice sites)
in the case of the (111) cluster. This deviation for the
smallest supercell is not surprising, since the (111) clus-
ter almost touch its periodic images in the simulation cell
containing 128 lattice sites. In this case, the interaction
between the cluster and its periodic images cannot be re-
duced only to an elastic interaction. The problem is not
present for C15 clusters which are more compact. It is
worth pointing that, contrary to the SIA in zirconium,
corrected energies are different and converge faster than
uncorrected energies calculated with the o = 0 condition.

These formation energies have been also obtained with
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FIG. 5. Formation energy of a SIA cluster containing eight
interstitials in bce iron calculated for fixed periodicity vectors
(e = 0) or at zero stress (o = 0) for different sizes of the sim-
ulation cell: (a) C15 aggregate and (b) parallel-dumbell con-
figuration with a (111) orientation. Atomistic simulations are
performed either with the M07 empirical potential” (EAM)
or with ab initio calculations (GGA). Filled symbols refer to
uncorrected results and open symbols to the results corrected
by the elastic model.

ab initio calculations using GGA PBE, a 2 x 2 x 2 k-point
grid and an ultrasoft pseudopotential®” for a simulation
cell containing 250 lattice sites (Fig. 5). Calculations
with fixed periodicity vectors (¢ = 0) lead to an energy
difference AE = —5.6eV between the C15 and the (111)
planar configuration, whereas this energy difference is
only AE = —0.6€V in zero stress calculations (o = 0).
In all cases, the C15 configuration is the most stable but
the energy difference varies a lot. Once the elastic correc-
tion added, this energy difference is AE = —3.3eV with
the € = 0 condition and AE = —3.7eV with the 0 = 0
condition. Although the size of the simulation cell may
appear small compared to the size of the defect, a good
precision is obtained with this approach coupling ab ini-
tio calculations and elasticity theory. We can conclude
that the C15 configuration is the most stable one with
an energy lower by 3.5 4+ 0.2eV than the (111) planar
configuration.

V. VACANCY IN SILICON

We finally illustrate the usefulness of our approach by
considering another system, the vacancy in diamond sil-
icon. This point-defect experiences a strong Jahn-Teller
distortion®® (see inset in Fig. 6), leading to a long-range
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FIG. 6. Vacancy formation energy E' in silicon calculated
with the LDA and HSEO06 functionals, either for fixed period-
icity vectors (e = 0) or at zero stress (o = 0). Filled symbols
refer to the ab initio uncorrected results and open symbols to
the results corrected by the elastic model. The vacancy config-
uration is displayed in the inset: the white sphere corresponds
to the empty lattice site and the purple spheres represent its
first nearest neighbors.

elastic field which disturbs the convergence of ab initio
calculations. To correctly describe the properties of de-
fects in semiconductors, one needs to quantitatively pre-
dict the size of the band gap. Simple DFT approxima-
tions, like the Local Density Approximation (LDA) or the
GGA, do not correctly address this problem. We have to
turn to methods with a higher accuracy, like the random
phase approximation or hybrid functionals.?® The slow
convergence of the vacancy formation energy with respect
to the size of the supercell and the k-point sampling®4!
then becomes problematic, because the above mentioned
ab initio methods have a very poor scalability with the
system size.

Calculations of the vacancy formation energy within
LDA provide a validation of the elastic correction for this
defect (Fig. 6): 216 atom supercells are sufficient to get
converged values. One can precise that the Jahn-Teller
configuration is unstable for smaller systems with LDA.
Once corrected, both e = 0 and o = 0 calculations lead to
the same energies and converge faster than uncorrected
results. The little remaining drift in the corrected forma-
tion energy certainly arises from the fact that the tetrag-
onality ratio around the vacancy slightly varies with the
supercell size. As a consequence, we also obtain a small
variation of the elastic dipole. The relaxation process is
therefore slightly affected by the presence of the periodic
defect images, leading to the remaining energy variation.

DFT calculations with the hybrid HSEO06
functional®>43 stabilize and favor the Jahn-Teller
configuration, in agreement with experiments,® but
calculations beyond 216 atom supercells are compu-
tationally prohibitive. Note that a fine 2 x 2 x 2
k-point grid was necessary to ensure the appropriate

convergence. The HSEO6 calculation, once corrected,
predicts a converged value of 4.26 eV, which is consistent
with previously published values.**

VI. CONCLUSION AND PERSPECTIVES

In conclusion, we showed in this article that the cou-
pling of ab initio calculations with an elastic modeling
accelerates the convergence of point defect energetics.
The reliability of our approach has been demonstrated
on three very different point defects, a self-interstitial in
an hcp metal, a cluster of eight self-interstitials in a bcc
metal, and a vacancy in a diamond semiconductor. The
corrected results merge the ¢ = 0 ab initio calculations
for the interstitial in zirconium but converge faster both
for the interstitial clusters in iron and the vacancy in sil-
icon. This makes useless such ¢ = 0 calculations. The
elastic correction also applies to energy barriers, calcu-
lated with the NEB method for instance.

The proposed approach is general and can be directly
used for any ab initio study of point defects:*® once
known the elastic constants of the perfect crystal, the
associated post-processing uses one single piece of infor-
mation that is anyway calculated in any ab initio code,
namely the stress tensor in the defective supercell. This
will make possible the ab initio study of defects for which
a quantitative description would be out of reach other-
wise. This includes point defects creating a strong dis-
tortion of the host lattice, large interstitials or small clus-
ters for instance, as well as elements with many electrons,
like actinides. It becomes also conceivable to use ab ini-
tio methods giving a more accurate description of the
electronic structure (all electron methods, hybrid func-
tionals, ...), without a loss of precision induced by the
small size of the supercell.

Our elastic correction scheme can also be applied to
charged defects, where it will sum up with the standard
electrostatic correction.”™'2 However, the residual stress
used as input parameter needs before to be corrected
from any spurious electrostatic contribution, as discussed
in Ref. 46.

Finally, it is worth pointing out that our approach
could be extended to correct forces on atoms from dis-
turbances due to periodic boundary conditions. To do
so, one needs to consider the derivative, with respect to
atomic positions, of the interaction energy appearing in
the total energy (Eq. 1). With such an elastic correction
on the forces, it would be possible then to obtain a better
structural relaxation and to further improve the energy
convergence.
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