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GAUSSIAN TYPE LOWER BOUNDS FOR THE DENSITY OF
SOLUTIONS OF SDES DRIVEN BY FRACTIONAL BROWNIAN

MOTIONS

M. BESALÚ, A. KOHATSU-HIGA, S. TINDEL

Abstract. In this paper we obtain Gaussian type lower bounds for the density of solutions
to stochastic differential equations (sde’s) driven by a fractional Brownian motion with Hurst
parameter H . In the one dimensional case with additive noise, our study encompasses all
parameters H ∈ (0, 1), while the other cases are restricted to the case H > 1/2. We rely on
a mix of pathwise methods for stochastic differential equations and stochastic analysis tools.
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1. Introduction

Let B = (B1, . . . , Bd) be a d dimensional fractional Brownian motion (fBm in the sequel)
defined on a complete probability space (Ω,F ,P), with Hurst parameter H ∈ (0, 1). Recall
that this means that B is a centered Gaussian process indexed by R+, whose coordinate
processes are independent and their covariance structure is defined by

R (t, s) := E
[

Bj
s B

j
t

]

=
1

2

(

s2H + t2H − |t− s|2H
)

, for s, t ∈ [0, 1] and j = 1, . . . , d. (1)

This implies that the variance of an increment is given by

E

[

(

Bj
t −Bj

s

)2
]

= |t− s|2H , for s, t ∈ R+. (2)

In particular, this process is γ-Hölder continuous a.s. for any γ < H and is an H-self similar
process. This converts fBm into a very natural generalization of Brownian motion and explains
the fact that it is used in applications [14, 21, 23].

We are concerned here with the following class of stochastic differential equations (sde’s)
in R

m driven by B on the time interval [0, 1]:

Xt = a+

∫ t

0

V0(Xs)ds+

d
∑

i=1

∫ t

0

Vi(Xs)dB
i
s, (3)

where a ∈ R
m is a generic initial condition and {Vi; 0 ≤ i ≤ d} is a collection of smooth

and bounded vector fields of Rm. Though equation (3) can be solved thanks to rough paths
methods in the general case H > 1/4, d ≥ 1, we shall consider in the sequel three situations
which can be handled without recurring to this kind of technique:

(1) The one-dimensional case with additive noise, which can be treated via simple ODE
techniques.

(2) The one-dimensional situation, namely m = d = 1, where the equation can be solved
thanks to a Doss-Sussman type methodology as mentioned in [15].

(3) The case of a Hurst exponent H > 1/2, for which Young integration methods are
available (see e.g [11, 19, 25]).

Hence, we always understand the solution to equation (3) according to the settings mentioned
above. We shall see however that rough path type arguments shall be involved in some of our
proofs.

The process defined as the solution of (3) is obviously worth studying, and a natural step
in this direction is to analyze the density of the random variable Xt for a fixed t > 0. To this
respect, the following results are available in our cases of interest:

(1) For m = d = 1, the existence of density for L(Xt) has been examined in [15].
(2) Whenever H > 1/2 and in a multidimensional setting, the existence of density is

established in [20], while smoothness under elliptic assumptions is handled in [12].

Let us also mention that for a multidimensional equation (3) and H ∈ (1/4, 1/2), rough paths
techniques also enable the study of densities of the solution. We refer to [6, 7] for existence
and [5] for smoothness results for L(Xt). However, the only Gaussian type estimate for the
density we are aware of is the one contained in [3], which relies heavily on a skew-symmetric
assumption for the vector fields V1, . . . , Vd.
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The current article is thus dedicated to give Gaussian type lower bounds for the density of
Xt. More specifically, we work under the following assumptions on the coefficients of equation
(3):

Hypothesis 1.1. The coefficients V0, . . . , Vd of equation (3) satisfy the following conditions:

(1) If m = d = 1, then V0, V1 ∈ C3
b and we also assume λ ≤ |V1| ≤ Λ.

(2) In the multidimensional case, the vector fields V0, . . . , Vd belong to the space C∞
b of

smooth functions bounded together with all their derivatives. Furthermore, if V (x)
denotes the matrix (V1(x), . . . , Vd(x)) ∈ R

m×d for all x ∈ R
m, then we assume the

following uniform elliptic condition:

λ Idm ≤ V (x)V ∗(x) ≤ Λ Idm, for all x ∈ R
m, (4)

where the inequalities are understood in the matrix sense and where λ,Λ are two given
strictly positive constants which are independent of x.

With these hypotheses in hand, our main goal is to prove the following result:

Theorem 1.2. Consider equation (3), under the following three specific situations:

I. m = d = 1, H ∈ (0, 1), V0 ∈ C1
b and the noise is additive (i.e., V1 is a non vanishing

real constant).
II. m = d = 1, H ∈ (1/2, 1) and Hypothesis 1.1(1) is satisfied for V0, V1.

III. Arbitrary m, d ∈ N, H ∈ (1/2, 1) and V0 . . . Vd satisfying Hypothesis 1.1 (2).

Then, the solution Xt of equation (3) possesses a density pt(x) such that for every x ∈ R
m

and t ∈ (0, 1] we have:

pt(x) ≥
c1
tmH

exp

(

−c2 |x− a|2
t2H

)

, (5)

for some constants c1, c2 only depending on d,m and V0, . . . , Vd.

As mentioned above, this is (to the best of our knowledge) the first Gaussian lower bounds
obtained for equations driven by fBm in a general setting. It should also be mentioned that
the lower bound (5) can be complemented by a similar upper bound contained in [4].

Let us say a few words about the methodology we rely on in order to obtain our lower
bound (5). Generally speaking it is based on Malliavin calculus tools, but the three results
mentioned in Theorem 1.2 are proved in different ways:

(1) In the one dimensional additive case, we invoke a recent formula for densities introduced
in [16] which yields an easy way to estimate pt in the case of additive stochastic equations.
We thus include this study for didactical purposes, and also because we obtain (slightly non
optimal) Gaussian upper and lower bounds with elegant methods.

(2) The one dimensional case with multiplicative noise is based on the Doss-Sussmann’s
transform and Girsanov type arguments. It is rather easy to implement and yields results
when the criterion of [16] can not be applied.

(3) As far as the general case is concerned, it will be basically handled thanks to the decom-
position of random variables strategy introduced in [2, 13]. However, let us point out two
important differences between the fBm and the diffusion case:
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(i) In the case of the sde (3) without drift coefficient V0, the first step of the method imple-
mented (for a fixed t ∈ (0, 1]) in [2, 13] amounts to introduce a partition {tj; 0 ≤ j ≤ n} such
that t0 = 0 and tn = t, with n large enough, and then split Xt into small contributions of the
form

Xtj+1
−Xtj =

d
∑

i=1

Vi(Xtj )
[

Bi
tj+1

−Bi
tj

]

+

d
∑

i=1

∫ t

0

[

Vi(Xs)− Vi(Xtj )
]

dBi
s. (6)

Then a main conditionally Gaussian contribution Vi(Xtj )[B
i
tj+1

−Bi
tj
] is identified in the right

hand side of equation (6), while the other terms are a small remainder in the Malliavin
calculus sense in comparison with the first. Roughly speaking, the Gaussian lower bound (5)
is then obtained by adding those main contributions and proving that the remainder does not
significantly modify the estimate. However, let us highlight the fact that this general scheme
does not fit to the fractional Brownian motion setting.

Indeed, due to the fBm dependence structure, the main contributions to the variance of Xt

in the current situation come from the cross terms E[(Bi
tj+1

− Bi
tj
)(Bi

tk+1
− Bi

tk
)] for j 6= k.

We have thus decided to express equation (3) as an anticipative Stratonovich type equation
with respect to the Wiener process induced by B. This is known to be an inefficient way to
solve the original equation, but turns out to be very useful in order to analyze the law of Xt.
We shall detail this strategy at Section 5.1.
(ii) In the case of an equation driven by usual Brownian motion, the Malliavin-Sobolev norms
involved in the computations give deterministic contributions after conditioning, due to the
independence of increments of the Wiener process. This is not true anymore in the fBm case,
and we thus need to add a proper localization to the arguments of [2, 13].

Our article is structured as follows: Section 2 is devoted to recall some useful facts on frac-
tional Brownian motion and stochastic differential equations. We handle the one dimensional
case with additive noise at Section 3 and the one dimensional case with multiplicative noise in
Section 4 with different methodologies. Finally, the bulk of our article focuses on the general
multidimensional case contained in Section 5. Some auxiliary results used in Section 5 dealing
with stochastic derivatives are given in an Appendix.

Notations: Throughout this paper, unless otherwise specified we use | · | for Euclidean norms
and ‖ · ‖Lp for the Lp(Ω) norm with respect to the underlying probability measure P. For a
random variable X, L(X) denotes its law and for a σ-field F , X ∈ F denotes the fact that
X is F -measurable.

Consider a finite-dimensional vector space V and a subset U ⊂ R
d. The space of V -valued

Hölder continuous functions defined on U , with k-derivatives which are γ- Hölder continuous
with γ ∈ (0, 1), will be denoted by Ck+γ(U ;V ), or just Cγ when U = [0, 1]. For a function
g ∈ Cγ(V ) and 0 ≤ s < t ≤ 1, we shall consider the semi-norms

‖g‖s,t,γ = sup
s≤u<v≤t

|gv − gu|V
|v − u|γ ,

The semi-norm ‖g‖0,1,γ will simply be denoted by ‖g‖γ. Similarly, for an open set U , C1
b (U ;V )

denotes the space of bounded continuously differentiable functions with bounded first deriva-
tive. For x, y ∈ R

m, we set 1{y≥x} :=
∏m

k=1 1{yk≥xk} . Vectors x ∈ R
m denote column vectors,

their j-th component is denoted by xj and the transpose of x is denoted by x∗. The identity
matrix of order m×m is denoted by Idm.
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Finally, let us mention that generic constants will be denoted by c, cH , cV , etc. indepen-
dently of their actual value which may change from one line to the next. This rule will also
apply for the constants M and M ′ which will appear as localization parameters, with the
following additional convention: each time a localization constant appears, it increases its
value by the addition of a fixed universal constant from the previous value. For a detailed
explanation, see (15).

2. Stochastic calculus for fractional Brownian motion

This section is devoted to give the basic elements of stochastic calculus with respect to
B which allow to understand the remainder of the paper. For some fixed H ∈ (0, 1), we
consider (Ω,F ,P) the canonical probability space associated with the fractional Brownian
motion (in short fBm) with Hurst parameter H . That is, Ω = C0([0, 1]) is the Banach space
of continuous functions vanishing at 0 equipped with the supremum norm, F is the Borel
sigma-algebra and P is the unique probability measure on Ω such that the canonical process
B = {Bt = (B1

t , . . . , B
d
t ), t ∈ [0, 1]} is a fractional Brownian motion with Hurst parameter

H . In this context, let us recall that B is a d-dimensional centered Gaussian process, whose
covariance structure is induced by equation (2).

2.1. Malliavin calculus tools. Gaussian techniques are obviously essential in the analysis
of fBm driven differential equations like (3), and we proceed here to introduce some of them
(see Chapter 5 in [17] for further details).

2.1.1. Wiener space associated to fBm. Let E be the space of R
d-valued step functions on

[0, 1], and H the closure of E under the distance defined by through the scalar product:

〈(1[0,t1], · · · , 1[0,td]), (1[0,s1], · · · , 1[0,sd])〉H =

d
∑

i=1

R(ti, si).

The space H is isometric to the reproducing kernel Hilbert space associated to R.

Furthermore, if (e1, . . . , ed) designates the canonical basis of Rd, one constructs an isometry
K∗ ≡ K∗

H,1 : H → L2([0, 1];Rd) such that K∗(1[0,t] ei) = 1[0,t] KH(t, ·) ei, where the kernel
K = KH is given by

K(t, s) = cH s
1
2
−H

∫ t

s

(u− s)H− 3
2uH− 1

2 du, H >
1

2
, (7)

K(t, s) = cH,1

(s

t

)1/2−H

(t− s)H−1/2 + cH,2 s
1/2−H

∫ t

s

(u− s)H− 1
2uH− 3

2 du, H <
1

2
,

for 0 ≤ s ≤ t and some explicit universal constants cH , cH,1, cH,2. With a slight abuse of
notation we will denote the associated integral operator by Kf(x) =

∫ x

0
f(s)K(x, s)ds. Note

that we have that R(s, t) =
∫ s∧t

0
K(t, r)K(s, r) dr. Moreover, let us observe that K∗ ≡ K∗

1

can be represented in the following form: for H ∈ (1/2, 1) we have

[K∗ϕ]t =

∫ 1

t

ϕr ∂rK(r, t) dr
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while for H ∈ (0, 1/2) it holds that

[K∗ϕ]t = K(1, t)ϕt +

∫ 1

t

(ϕr − ϕt) ∂rK(r, t) dr.

When H ∈ (1/2, 1) it can be shown that L1/H([0, 1],Rd) ⊂ H, and when H ∈ (0, 1/2) one has
Cγ ⊂ H ⊂ L2([0, 1]) for all γ > 1

2
−H . We shall also use the following representations of the

inner product in H:

(i) For H ∈ (1/2, 1) and φ, ψ ∈ H we have

〈K∗φ,K∗ψ〉L2([0,1]) = 〈φ, ψ〉H = cH

∫ 1

0

∫ 1

0

|s− t|2H−2 〈φs, ψt〉Rd dsdt . (8)

(ii) For H ∈ (0, 1/2), consider any family of partitions π = (tj) of [0, 1], and set Qjk =
∑d

i=1E[∆
i
j(B)∆i

k(B)] with ∆i
j(B) = Bi

tj
−Bi

tj−1
. Then, for φ, ψ ∈ H we have

〈φ, ψ〉H = lim
|π|→0

∑

j,k

〈φtj−1
, ψtk−1

〉Rd Qjk. (9)

Let us also recall that there exists a d-dimensional Wiener process W defined on (Ω,F ,P)
such that B can be expressed as

Bt =

∫ t

0

K(t, r) dWr, t ∈ [0, T ]. (10)

This formula will be referred to as Volterra’s representation of fBm. Formula (10) has various
important implications. For example, it is readily checked that Ft ≡ σ{Bs; 0 ≤ s ≤ t} =
σ{Ws; 0 ≤ s ≤ t}. This filtration will appear in the sequel.

2.1.2. Malliavin calculus for B. Isometry arguments allow to define the Wiener integral
B(h) =

∫ 1

0
〈hs, dBs〉 for any element h ∈ H, such that it satisfies E[B(h1) B(h2)] = 〈h1, h2〉H

for any h1, h2 ∈ H. A F -measurable real valued random variable F is then said to be cylin-
drical if it can be written, for a given n ≥ 1, as

F = f
(

B(h1), . . . , B(hn)
)

= f
(

∫ 1

0

〈h1s, dBs〉, . . . ,
∫ 1

0

〈hns , dBs〉
)

,

where hi ∈ H and f : Rn → R is a C∞ bounded function with bounded derivatives. The set
of cylindrical random variables is denoted by S.

The Malliavin derivative with respect to B is defined as follows: for F ∈ S, the derivative
of F is the R

d valued stochastic process (DtF )0≤t≤1 given by

DtF =
n
∑

i=1

hit
∂f

∂xi

(

B(h1), . . . , B(hn)
)

.

More generally, we can introduce iterated derivatives. If F ∈ S, we set

D
k
t1,...,tk

F = Dt1 . . .DtkF.
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For any p ≥ 1, it can be checked that the operator D
k is closable from S into Lp(Ω;H⊗k).

We denote by DDDk,p the closure of the class of cylindrical random variables with respect to the
norm

‖‖‖F‖‖‖k,p =
(

E [F p] +

k
∑

j=1

E
[
∥

∥D
jF
∥

∥

p

H⊗j

]

)

1
p

,

for k ≥ 0 and p ≥ 1. In particular, ‖‖‖F‖‖‖0,p ≡ ‖‖‖F‖‖‖p = (E [F p])1/p. The dual operator of D
is denoted by δδδ, which corresponds to the Skorohod integral with respect to the fBm B on
the interval [0, 1]. The set of smooth integrands is defined as DDD∞ = ∩k,p≥1DDD

k,p(H), the set of
smooth processes is LLLk,p(H) and the Malliavin covariance matrix of F is denoted by ΓF .

As mentioned in the introduction, our lower bound (5) will be obtained by considering
equation (3) as an equation driven by the underlying Wiener process W defined in (10),
meaning that we shall also use stochastic analysis estimates with respect to W . We refer to
Chapter 1 in [17] for this classical setting, and just mention here a few notations: we denote
by D the differentiation operator with respect to W and by δ the corresponding dual operator
(Skorohod integral). The respective norms in the Sobolev spaces Dk,p(L2([0, 1])) are denoted
by ‖ · ‖k,p and the space of smooth integrands by Lk,p. The following simple relation between
D and D is then shown in [17], Proposition 5.2.1 :

Proposition 2.1. Let D1,2 is the Malliavin-Sobolev space corresponding to the Wiener process
W . Then DDD1,2 = (K∗)−1D1,2 and for any F ∈ D1,2 we have DF = K∗

DF whenever both
members of the relation are well defined.

In fact the above proposition says that the derivatives DDD and D are somewhat interchange-
able. Indeed, using formula (5.14) in [17] which gives an explicit formula for (K∗)−1 one
obtains such a property. In particular, we will use that for F ∈ Ft with F ∈ Dk,p and for
u = (u1, . . . , uk) ∈ [0, 1]k we have

|Dk
u1,...,uk

F | ≤ ess supui≤ri; i=1,...,k|Dk
r1,...,rk

F |K(t, u1)...K(t, uk). (11)

For the proof of (11) and other needed properties see Appendix 6.

Some of our computations in Section 5 will rely on some conditional Malliavin calculus
arguments, for which some definitions need to be recalled. First, for a given t ∈ [0, 1] and
F ∈ L2(Ω), we shorten notations and write

Et[F ] := E[F | Ft],

and also set Pt for the respective conditional probability and Covt(G) for the conditional
covariance matrix of a Gaussian vector G. We shall only use conditional Malliavin calculus
with respect to the underlying Wiener process W , for which we recall the following definitions:
For a random variable F and t ∈ [0, 1], let ‖F‖k,p,t and ΓF,t be the quantities defined (for
k ≥ 0, p > 0) by:

‖F‖k,p,t =
(

Et [F
p] +

k
∑

j=1

Et

[

∥

∥DjF
∥

∥

p

(L2
t )

⊗j

]

)

1
p

, and ΓF,t =
(

〈DF i,DF j〉L2
t

)

1≤i, j≤d
, (12)

where we have set L2
t ≡ L2([t, 1]).
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With this notation in hand, we give a conditional version of the integration by parts formula
with respect to the Wiener process W borrowed from [17, Proposition 2.1.4].

Proposition 2.2. Fix n ≥ 1. Let F, Zs, G ∈ (D∞)d be three random vectors where Zs ∈ Fs-
measurable and (detΓF+Zs

)−1 has finite moments of all orders. Let g ∈ C∞
p (Rd). Then, for any

multi-index α = (α1, . . . , αn) ∈ {1, . . . , d}n, there exists a r.v. Hs
α(F,G) ∈ ∩p≥1 ∩m≥0 D

m,p

such that

E [(∂αg)(F + Zs)G|Fs] = E [g(F + Zs)H
s
α(F,G)|Fs] , (13)

where Hs
α(F,G) is recursively defined by

Hs
(i)(F,G) =

d
∑

j=1

δs

(

G
(

Γ−1
F,s

)

ij
DF j

)

, Hs
α(F,G) = Hs

(αn)(F,H
s
(α1, ..., αn−1)

(F,G)).

Here δs denotes the Skorohod integral with respect to the Wiener process W on the interval
[s, 1]. Furthermore, the following norm estimates with 1

p
= 1

q1
+ 1

q2
+ 1

q3
hold true:

‖Hs
α(F,G)‖p,s ≤ c‖ det(ΓF,s)

−1‖n2n−1q1,s
‖F‖2(dn+1)

n+2,2nq2,s
‖G‖n,q3,s.

We will also resort to a localized version of the above bounds. Namely, we introduce a
family of functions ΦM,ǫ : R+ → R+ indexed by M, ǫ > 0, which are regularizations of
1{x≤M}. Specifically, we define a function φǫ = ǫ−1φ : R → R with

φ(x) := cφ exp

(

− 1

1− x2

)

1{|x|<1},

where cφ is a normalization constant chosen in order to have
∫

R
φ(x) dx = 1. Then, we define

ΦM,ǫ(y) := 1−
∫ y

−∞

φǫ (x−M) dx. (14)

It is then readily checked that ΦM,ǫ(z) = 0 for |z| > M + ǫ, ΦM(z) = 1 on [0,M − ǫ] and
ΦM,ǫ ∈ C∞

b . We will use the above localization function in two situations: one for M >> 1,
ǫ = 1 and in that case we simplify the notation using ΦM ≡ ΦM,1. In a second case M will
not be a large quantity and therefore we will have to choose ǫ accordingly.

Consider now Z ∈ D∞. Under the same conditions as for Proposition 2.2 we get a con-
ditional integration by parts formula of the form (13) localized by Z, with the following
modification on the estimation of the norms of Hs

α:

‖Hs
α(F,GΦM(Z))‖p,s ≤ c‖ det(ΓF,s)

−1ΦM ′(Z)‖k3p3,s‖F ΦM ′(Z)‖k4k2,p2,s‖GΦM ′(Z)‖k1,p1,s, (15)

for some appropriate positive integers k1, p1, k2, p2, k3, p3, k4, and where we recall our conven-
tion on increasing constants M ′ > M . Notice that (15) is valid for localizations of the form
ΦM,ǫ(Z) as well.

2.2. Differential equations driven by fBm. Recall that X is the solution of (3), and
that our working assumptions are summarized in Hypothesis 1.1. We have distinguished 3
situations:

(1) The one dimensional additive case, for which equation (3) can be reduced to an ordi-
nary differential equation by considering the process Z = X − B.
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(2) The one dimensional multiplicative case, handled thanks to the Doss-Sussman trans-
form (see e.g [15]).

(3) The multidimensional case with H ∈ (1/2, 1), solved in a pathwise way by interpreting
stochastic integrals as generalized Riemann-Stieljes type integrals.

In this section we give a brief account on the known results in the last situation.

In the case H ∈ (1/2, 1), (3) is solved thanks to a fixed point argument, after interpreting
the stochastic integral in the (pathwise) Young sense (see e.g. [11]). Let us recall that Young’s
integral can be defined in the following way:

Proposition 2.3. Let f ∈ Cγ, g ∈ Cκ with γ + κ > 1, and 0 ≤ s ≤ t ≤ 1. Then the integral
∫ t

s
gξ dfξ is well-defined as a Riemann-Stieltjes integral. Moreover, the following estimation is

fulfilled:
∣

∣

∣

∣

∫ t

s

gξ dfξ

∣

∣

∣

∣

≤ C‖f‖γ‖g‖κ|t− s|γ,

where the constant C only depends on γ and κ.

With this definition in mind and under Hypothesis 1.1, we can solve (3). Specifically, it is
proven in [19] that equation (3) driven by B admits a unique γ-Hölder continuous solution
X, for any 1

2
< γ < H . Moreover, the following moments bounds are shown in [12]:

Proposition 2.4. Let H ∈ (1/2, 1) and assume that V0, . . . , Vd satisfy Hypothesis 1.1. Then
for t ∈ [0, 1] and 1

2
< γ < H, we have

‖X‖0,t,∞ ≤ |a|+ cV ‖B‖1/γ0,t,γ. (16)

Moreover Xt ∈DDD∞ and for all n ≥ 1, i1, . . . , in ∈ {1, . . . , d}n and 0 ≤ s < t ≤ 1 the following
bound holds true:

sup
s≤u, r1...rn≤t

|Di1...in
r1...rnXu| ≤ CV,n exp

(

cV,n‖B‖1/γs,t,γ

)

. (17)

We remark here that due to Proposition 5.3 (iii), the good definition of the supremum
in (17) can be justified. Furthermore, a bound for γ-Hölder norms with 1

2
< γ < H is

provided by [8, Eq.(10.15)] for X together with its Malliavin derivatives:

Proposition 2.5. Under the same assumptions as for Proposition 2.4 we have

‖X‖s,t,γ ≤ c1,V

(

‖B‖s,t,γ ∨ ‖B‖
1
γ

s,t,γ

)

, ‖Di1...in
r1...rn

Xu‖s,t,γ ≤ c2,V,n exp

(

c3,V,n‖B‖
1
γ

s,t,γ

)

.

3. One dimensional additive case

This section is devoted to prove our main Theorem 1.2 in the particular case m = d = 1
with additive noise. In this context, one can take advantage of the results obtained by Nourdin
and Viens in [16] in order to derive Gaussian type upper and lower bounds for pt. Let us then
first recall what those results are.
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3.1. General bounds on densities of one-dimensional random variables. Recall that
we denote the Malliavin-Sobolev spaces with respect to the fBm B by DDDk,p, and consider a
real-valued centered random variable F ∈DDD1,2. We define a function g on R by:

g(z) := E
[〈

DF,−DL
−1F

〉

H
|F = z

]

,

where the operator L is the Ornstein-Uhlenbeck operator associated to the fBm B (see [17]
for further details), which can be defined using the chaos expansion by the formula L =
−
∑∞

n=0 nJn. Based on the function g, the following simple criterion for Gaussian type bounds
has been obtained in [16]:

Proposition 3.1. Let F ∈DDD1,2 with E[F ] = 0. If there exist c1, c2 > 0 such that

c1 ≤ g(F ) ≤ c2, P− a.s,

then the law of F has a density ρ satisfying, for almost all z ∈ R,

E[|F |]
2c2

exp

(

− z2

2c1

)

≤ ρ(z) ≤ E[|F |]
2c1

exp

(

− z2

2c2

)

.

Interestingly enough, [16, Proposition 3.7] also gives an alternative formula for g(F ) which
is suitable for computational purposes. Indeed, if we write DF = ΦF (B), where ΦF : RH → H
is a measurable mapping, then the following relation holds true:

g(F ) =

∫ ∞

0

e−θ
E

[〈

ΦF (B),ΦF (e
−θB +

√

1− e−2θB′)
〉

H

∣

∣

∣
F
]

dθ, (18)

where B′ stands for an independent copy of B, and is such that B and B′ are defined on the
product probability space (Ω × Ω′,F ⊗ F ′,P × P

′). Here we abuse the notation by letting
E be the mathematical expectation with respect to P × P

′, while E
′ is the mathematical

expectation with respect to P
′ only. One can thus recast relation (18) as

g(F ) =

∫ ∞

0

E

[

E
′
[〈

DF,DF θ
〉

H

]

∣

∣

∣
F
]

dθ, (19)

where, for any random variable X defined in (Ω,F ,P), Xθ denotes the following shifted
random variable in Ω× Ω′:

Xθ(ω, ω′) = X
(

e−θω +
√

1− e−2θω′
)

, ω ∈ Ω, ω′ ∈ Ω′.

3.2. Main result in the additive one-dimensional case. Before stating our result let us
point out that we assume through this subsection V1 ≡ σ. That is, X is the solution of

Xt = x+

∫ t

0

V0(Xs)ds+ σ Bt, t ∈ [0, 1] (20)

where σ > 0 is a strictly positive constant, V0 satisfies ‖V ′
0‖∞ ≤M for some constant M > 0

and B is a fBm with H ∈ (0, 1). Under this setting, we are able to get the following bounds:

Theorem 3.2. Assume that V0 satisfies that ‖V ′
0‖∞ ≤ M , for some constant M > 0, σ > 0

and H ∈ (0, 1). Then, for all t ∈ (0, 1], Xt possesses a density pt and there exist some
constants c1 and c2 depending only on M and H such that for all z ∈ R
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E[|Xt −m|]
c1σ2t2H

exp

(

−(z −m)2

c2σ2t2H

)

≤ pt(z) ≤
E[|Xt −m|]
c2σ2t2H

exp

(

−(z −m)2

c1σ2t2H

)

, (21)

where m := E[Xt].

Remark 3.3. The advantage of the Nourdin-Viens method of estimating densities is that upper
and lower bounds are obtained with similar proofs. The drawback is the restriction to one
dimensional additive situations. Also notice that the exponents in equation (21) are optimal
if one can prove that E[|Xt −m|] ≍ σ tH . This easy step is left to the reader for the sake of
conciseness.

Strategy of the proof. Obviously, we shall mainly rely on Proposition 3.1. We thus define
F = Xt − E[Xt], where Xt is the solution of (20). We get a centered random variable, and
we shall prove that there exists two constants 0 < K1 < K2 such that

K1σ
2t2H ≤ g(F ) ≤ K2σ

2t2H . (22)

Notice first that in the present case, it is easily seen that for any t > 0 we have Xt ∈ D
1,2

(this is a particular case of [20]). Furthermore, the Malliavin derivative of Xt satisfies the
following equation for r ≤ t:

DrXt =

∫ t

r

V ′
0(Xs)DrXsds+ σ.

This equation can be solved explicitly, and we obtain

DrXt = σe
∫ t
r V ′

0(Xs)ds. (23)

We shall now bound g(F ) according to this explicit expression, and we separate the cases
H ∈ (1/2, 1) and H ∈ (0, 1/2). Notice that the Brownian case, i.e. H = 1/2, is well known
and it is thus omitted here for the sake of conciseness. �

3.3. Case H > 1

2
. Recall that we wish to prove (22), for which we can use the explicit ex-

pression of DrXt obtained in (23). Furthermore, owing to expression (8) for the inner product
in H we can write g(F ) as

g(F ) = cH

∫ ∞

0

E

[

E
′

(
∫ t

0

∫ t

0

DuXtDvX
θ
t |u− v|2H−2dudv

)

∣

∣

∣
F

]

dθ (24)

= cHσ
2

∫ ∞

0

e−θ
E

[

E
′

(
∫ t

0

∫ t

0

e
∫ t
u V ′

0(Xs)dse
∫ t
v V ′

0(X
θ
s )ds|u− v|2H−2dudv

)

∣

∣

∣
F

]

dθ.

The lower and upper bounds follow from applying

e−M ≤ e
∫ t
u
V ′
0(X

θ
s )ds ≤ eM , for any 0 ≤ u ≤ t ≤ 1.
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3.4. Case 0 < H < 1

2
. As in the case H > 1

2
, we prove (22). We thus go back to equation (19)

and we observe that we can reduce the problem to the existence of two constants 0 < c1 < c2
such that

c1t
2H ≤

〈

DXt,DX
θ
t

〉

H
≤ c2t

2H . (25)

The proof of these inequalities will rely on the following quadratic programming lemma, which
is a slight variation of [5, Lemma 6.2]:

Lemma 3.4. Let Q ∈ R
n⊗R

n be a strictly positive symmetric matrix such that
∑n

j=1Qij ≥ 0

for all i = 1, . . . , n. For two positive constants a and b, consider the sets A = [a,∞)n and
B = [b,∞)n. Then

inf {x∗Qx̃; x̃ ∈ A, x ∈ B} = ab
n
∑

i,j=1

Qij.

Proof. Set a = a1 ∈ R
n and b = b1 ∈ R

n. The Lagrangian of our quadratic programming
problem is a function L : Rn × R

n × R
n
+ × R

n
+ → R defined as

L(x, x̃, λ1, λ2) = x∗Qx̃− λ∗1 (x− b)− λ∗2 (x̃− a) .

It is readily checked that ∇xL(x, x̃, λ1, λ2) = Qx̃−λ1 and ∇x̃L(x, x̃, λ1, λ2) = Qx−λ2, which
vanishes for x = Q−1λ2 and x̃ = Q−1λ1. Therefore,

inf {L(x, x̃, λ1, λ2); x, x̃ ∈ R
n} = L

(

Q−1λ2, Q
−1λ1, λ1, λ2

)

= −λ∗1Q−1λ2 + λ∗1b+ λ∗2a =: G(λ1, λ2).

We have thus obtained a dual problem of the form

max
{

G(λ1, λ2);λ1, λ2 ∈ R
n
+

}

. (26)

Let us now solve Problem (26). We first maximize G without positivity constraints on
λ1 and λ2: we get ∇λ1G(λ1, λ2) = −Q−1λ2 + b and ∇λ2G(λ1, λ2) = −λ∗1Q−1 + a, which
vanishes for λ◦1 = Qa and λ◦2 = Qb . Observe now that our assumption

∑n
j=1Qij ≥ 0 for all

i = 1, . . . , n implies λ◦1, λ
◦
2 ≥ 0, so that λ◦1 and λ◦2 are feasible for the dual problem. Hence

max
{

G(λ1, λ2);λ1, λ2 ∈ R
n
+

}

= G(λ◦1, λ
◦
2) = ab

n
∑

i,j=1

Qij,

which finishes the proof. �

Importantly enough, Lemma 3.4 can be applied in order to get a lower bound on H norms:

Proposition 3.5. Let B be a 1-dimensional fBm on [0, τ ], let H ≡ Hτ be the associated

reproducing kernel Hilbert space and f, f̃ ∈ H such that fu ≥ b and f̃u ≥ a for any u ∈ [0, τ ].

Then 〈f, f̃〉H ≥ a b τ 2H .

Proof. Recall that, owing to relation (9), we have 〈f, f̃〉H = lim|π|→0 Iπ(f, f̃), where π stands
for a generic partition {0 = t0 < · · · < tn = τ} and

Iπ(f, f̃) =

n
∑

i,j=1

fti−1
Qij f̃tj−1

, with Qij = E[∆i(B)∆j(B)],
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where we recall that ∆i(B) = Bti − Bti−1
. We assume for the moment that Q satisfies the

hypothesis of Lemma 3.4, and we get

Iπ(f, f̃) ≥ ab

n
∑

i,j=1

Qij = ab

n
∑

i,j=1

E [∆i(B)∆j(B)] = abE
[

B2
τ

]

= ab τ 2H ,

which is our claim.

Let us now prove that Q satisfies the hypothesis of Lemma 3.4. First, the strict positivity
of Q stems from the local non determinism of B (see e.g [24]). Indeed, for u ∈ R

n we have

u∗Qu = Var

(

n−1
∑

j=0

uj ∆j(B)

)

≥ cn

n
∑

j=1

u2j |tj − tj−1|2H ,

where the lower bound is the definition of local nondeterminism. Thus u∗Qu > 0 as long as
u 6= 0.

Let us now check that for a fixed i we have
∑n

j=1Qij ≥ 0. To this aim, write

n
∑

j=1

Qij = E [∆i(B)Bτ ] =

∫ ti+1

ti

∂uR(τ, u) du.

Going back to expression (1), it is now easily seen that for u < τ we have

∂uR(τ, u) = H
(

u2H−1 + (τ − u)2H−1
)

> 0,

which completes the proof. �

We can now go back to the proof of relation (25), which is divided again in two steps:

Step 1: Lower bound. Thanks to relation (23) and since ‖V ′
0‖∞ ≤ M , we have that

σe−tM ≤ DrXt.

Thus we just have to apply Proposition 3.5 to the Malliavin derivative in order to obtain
〈

DXt,DX
θ
t

〉

H
≥ σ2t2He−2M , (27)

which is our desired lower bound.

Step 2: Upper bound. In order to obtain an upper bound for g(F )we will use the representation
of H through fractional derivatives. Indeed, apply first Cauchy-Schwarz inequality in order
to get

〈

DXt,DX
θ
t

〉

H
≤ ‖DXt‖H ‖DXθ

t ‖H. (28)

We then invoke Lemma 6.1 to bound ‖DXθ
t ‖H. This boils down to estimate

a = sup
r∈[0,t]

|DrX
θ
t |, and b = sup

r,v∈[0,t]

DrX
θ
t −DvX

θ
t

(v − r)γ
,

with 1/2−H < γ < 1/2.

Now starting from expression (23) and owing to the fact that V ′
0 is uniformly bounded by

M , we trivially get a ≤ σ eM . As far as b is concerned, we write
∣

∣DrX
θ
t −DvX

θ
t

∣

∣ ≤ σ e
∫ t
v
V ′
0(X

θ
s )ds

∣

∣

∣
1− e

∫ v
u
V ′
0(X

θ
s )ds
∣

∣

∣
≤ σM e2M (v − r).
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We thus end up with the inequalities

a ≤ σ eM , and b ≤ σM e2M t1−γ .

We now apply Lemma 6.1 with constants a and b and we obtain

‖DXt‖H ≤ cH
(

σ eM tH + σM e2M t1+H
)

≤ cH σ e
M t2H ,

and hence
〈

DXt,DX
θ
t

〉

H
≤ cHσ

2M2 e4M t2H .

Finally, putting together the last bound and (27), we get (22) in the case H ∈ (0, 1/2), which
finishes the proof of Theorem 3.2.

4. One dimensional non-vanishing diffusion coefficient case

We turn now to the case m = d = 1, H ∈ (1
2
, 1) for a non constant elliptic coefficient σ.

Observe that this special case is treated in a separate section because: (i) The Gaussian bound
is obtained with weaker conditions on the coefficients than in the multidimensional case. (ii)
The proof is shorter due to specific one-dimensional techniques based on Doss-Sussman’s
transform and Girsanov’s theorem. This is detailed below.

4.1. Doss-Sussmann transformation. The idea of the method is to first consider a one
dimensional equation of Stratonovich type without drift and then apply Girsanov’s theorem
for fBm in order to obtain a characterization of the density.

In order to carry out this plan, we start by using an independent copy of (Ω,F ,P) called
(Ω′,F ′,P′) supporting a fBm denoted by B′. On (Ω′,F ′,P′), let Y be the unique solution to:

Yt = a+

∫ t

0

V1(Ys) ◦ dB′
s, (29)

where V1 ∈ C1(R;R), V1 6= 0 and H ∈ (1
2
, 1). We also call W ′ the underlying Wiener process

appearing in the Volterra type representation (10) for B′. We now recall here some details
from Doss and Sussmann’s classical computations adapted to our fBm context.

Indeed, as in [15], let us recall that the solution of equation (29) can be expressed as
Yt = F (B′

t, a), t > 0, where F : R2 → R is the flow associated to V1:

∂F

∂x
(x, y) = V1(F (x, y)), F (0, y) = y. (30)

We remark that if V1 is bounded then F satisfies |F (x, y)| ≤ c(1 + |x|+ |y|).
Next we relate the solution X of equation (3) to the process Y defined by (29). This step

is partially borrowed from [18], and we refer to that paper for further details. Indeed, thanks
to a Girsanov type transform, the following characterization of the law of the solution to (3)
is shown for m = d = 1: For any bounded measurable function U : R → R, one has

EP [U(Xt)] = EP′ [U (F (B′
t, a)) ξ] , (31)

where ξ ≡ ξt =
dP
dP′ is the random variable defined by

ξ = exp

(
∫ t

0

[

Ms dW
′
s −

1

2
M2

s ds

])

, (32)

where we have set M = K−1
H (
∫ ·

0
V0V

−1
1 (Yu)du).
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Notice that in definition (32), the operators K,K−1 are respectively defined (with a slight
abuse of notation), for H ≥ 1

2
and an appropriate function h, by:

[KHh](s) = I10+(s
H− 1

2 (I
H− 1

2

0+ (s
1
2
−Hh)))(s), and [K−1

H h](s) = sH− 1
2 (D

H− 1
2

0+ (s
1
2
−Hh′))(s).

We also recall that in the last equation, Iα0+ and Dα
0+ denote the fractional integral and

fractional derivative, whose expressions are:

Iα0+f(x) =
1

Γ(α)

∫ x

a

(x− y)α−1f(y)dy,

and

Dα
0+f(x) =

1

Γ(1− α)

(

f(x)

xα
+ α

∫ x

a

f(x)− f(y)

(x− y)α+1
dy

)

.

Notice that in order for (31) to be satisfied it is required that
∫ ·

0
V0V

−1
1 (Yu)du ∈ I

H+ 1
2

0+ (L2[0, T ]).
This condition is satisfied due to the γ-Hölderianity of Y for any γ < H .

Actually one should prove that Novikov’s type conditions are satisfied for ξ in order to
apply Girsanov’s transform and get relation (31). This is achieved in the following lemma:

Lemma 4.1. Let ξ be the random variable defined by (32). Then

Ms ≤ cV βs, with βs := s
1
2
−H + ‖B′‖H− 1

2
. (33)

Furthermore EP′ [ξ] = 1, which justifies the Girsanov identity (31). That is, under P, B =
B′ +

∫ ·

0
V0V

−1
1 (Yu)du is a H-fBm.

Proof. According to the expression of K−1
H we have

Ms =
sH− 1

2

Γ(H − 1
2
)

(

s
1
2
−HV0V

−1
1 (Ys)

sH− 1
2

+

(

H − 1

2

)
∫ s

0

s
1
2
−HV0V

−1
1 (Ys)− u

1
2
−HV0V

−1
1 (Yu)

(s− u)H+ 1
2

du

)

.

We now invoke the uniform ellipticity of V1 and the regularity of V0 and V1, which yields

Ms ≤ cV

(

s
1
2
−H +

∫ s

0

|F (B′
s, a)− F (B′

u, a)|
(s− u)H+ 1

2

du

)

≤ cV β(s).

Now let us have a closer look at the process β: it is readily checked that ‖B′‖γ admits
quadratic exponential moments for any γ < H (see Theorem 3 in [18]). Hence there exists

λ > 0 such that the expected value E[exp(λ
∫ t

0
β2(s)ds)] is a finite quantity. Owing to a

version of Novikov’s condition stated in [9, Theorem 1.1] we deduce that E[ξ] = 1. This
concludes the proof. �
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4.2. Main result. As in the additive case of Section 3, we are able to get both upper and
lower Gaussian bounds in a one dimensional context:

Theorem 4.2. Assume that V0, V1 ∈ C1
b , λ ≤ |V1| ≤ Λ and H ∈ (1/2, 1). Then, there exist

constants C1 and C2 such that for all t ∈ (0, 1], the solution Xt to equation (29) possesses a
density pt satisfying for all x ∈ R:

1

C1

√
2πt2H

exp

(

−C1
(x− a)2

2t2H

)

≤ pt(x) ≤
1

C2

√
2πt2H

exp

(

−C2
(x− a)2

2t2H

)

. (34)

Proof. Step 1: Upper bound. We start from an equivalent of (31) for densities, which is
justified by [15] and a duality argument:

pt(x) = EP′ [δx (F (B
′
t, a)) ξ] , (35)

where ξ is the random variable defined in (32). We now integrate by parts in order to get

pt(x) = EP′

[

1{F (B′
t, a)≤x}H (F (B′

t, a), ξ)
]

,

with

H (F (B′
t, a), ξ) = δ

(

ξDF (B′
t, a)

‖DF (B′
t, a)‖2L2([0,t])

)

, (36)

where D, δ respectively stand (with a slight abuse of notation) for the Malliavin derivative
and divergence operator for the Brownian motion W ′ under P

′. Let us further simplify
the expression for the random variable H(F (B′

t, a), ξ): setting Kt(u) ≡ K(t, u)1[0,t](u), it is
readily checked that we have

DuF (B
′
t, a) = ∂xF (B

′
t, a)Kt(u) and ‖DF (B′

t, a)‖
2
L2([0,t]) = |∂xF (B′

t, a)|2 t2H .
Plugging this information into (36), and defining Z := ξ (∂xF (B

′
t, a))

−1, we end up with

H (F (B′
t, a), ξ) =

δ (Z Kt)

t2H
= K1 −K2,

where

K1 =
Z B′

t

t2H
, and K2 =

〈DZ, Kt〉L2([0,t])

t2H
.

We have thus obtained

pt(x) = EP′

[

1{F (B′
t, a)≥x}K1

]

−EP′

[

1{F (B′
t, a)≥x}K2

]

=: p1t (x)− p2t (x), (37)

and we shall upper bound these two terms separately.

The term p1t (x) can be bounded as follows: for q1, q2, q3 > 1 large enough and a parameter
1 < q4 = 1 + ε with an arbitrary small ε > 0 we have

p1t (x) ≤
E

1/q1
P′ [|B′

t|q1]
t2H

P
′1/q2 (F (B′

t, a) ≥ x) E
1/q3
P′ [|∂xF (B′

t, a)|q3] E
1/q4
P′ [ξq4] (38)

We now bound the right hand side of this inequality:

(i) We obviously have
E

1/q1
P′ [|B′

t|
q1 ]

t2H
≤ ct−H , since B′ is a P

′-fBm.

(ii) Let us prove that there exists two positive constants c1 and c2 such that

c1(x− a) ≤ F−1(x, a) ≤ c2(x− a). (39)
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Indeed, for a fixed a ∈ R, F is a continuously differentiable function and ∂xF (·, a) 6= 0 for
any a ∈ R. Then by the inverse function theorem F−1(·, a) exists and it is a continuously
differentiable function verifying

∂xF
−1(z, a) =

1

V1(F (x, a))
=

1

V1(z)
, where F (x, a) = z.

Since F−1 is continuous we can now resort to the mean value theorem to get that for any
x1, x2 ∈ R we have

F−1(x2, a)− F−1(x1, a) =
x2 − x1
V1(θ)

,

for a certain θ ∈ [F−1(x1, a), F
−1(x2, a)]. Moreover, it is easily seen that F−1(x, x) = 0 for all

x ∈ R, so that |F−1(x, a)| = 1
|V1(θ)|

|x− a|. Our claim (39) is now easily proven once we recall

that λ ≤ |V1(u)| ≤ Λ.

Using (39) and the Gaussian density for B′
t, it is now readily checked that

P
′1/q2 (F (B′

t, a) ≥ x) ≤ c1 exp

(

−c2(x− a)2

t2H

)

.

(iii) Equation (30) reveals that ∂xF is bounded by a constant, so that

E
1/q3
P′ [|∂xF (B′

t, a)|q3] ≤ c.

(iv) Set S =
∫ t

0
Ms dW

′
s and D =

∫ t

0
M2

s ds, where M ≡ K−1
H (
∫ ·

0
V0V

−1
1 (Yu)du) as above, and

where we recall that q4 = 1 + ε with an arbitrarily small ε > 0. It is readily checked that

ξq4 = exp
(

q4S − q4
2
D
)

= exp

(

q4S − q24
2
D

)

exp
(qε
2
D
)

,

where qε = q24 − q4 = ε(1 + ε). Now observe that the term exp(q4S − q24
2
D) is a Girsanov

change of measure which corresponds to a shift on B′ of the form

B̂ = B′ − q4

∫ ·

0

V0V
−1
1 (Yu)du = B − (q4 − 1)

∫ ·

0

V0V
−1
1 (Yu)du.

Calling P̂′ the probability under which B̂ is a fractional Brownian motion, we get

EP′ [ξq4] = E
P̂′

[

exp
(qε
2
D
)]

. (40)

Now plug the estimate (33) into (40). This yields

D ≤ cV

(

1 + ‖B‖2
H− 1

2

)

≤ cV

(

1 + ‖B̂ + q4

∫ ·

0

V0V
−1
1 (Yu)du‖2H− 1

2

)

≤ cV

(

1 + ‖B̂‖2
H− 1

2

)

.

Going back to relation (40) and taking into account the fact that qε can be chosen arbitrarily
small, we get EP′ [ξq4] <∞.
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Gathering all the above estimates into (38), we have thus obtained that

p1t (x) ≤
c1
tH

exp

(

−c2(x− a)2

t2H

)

.

The same kind of bound can be deduced for p2t (x) in (37), which gives our global upper bound
in (34).

Step 2: Lower bound. Our strategy to obtain the lower bound in (34) is based on the following
decomposition:

pt(x) = EP′ [δx(F (B
′
t, a))(ξt − ξc1t)] + EP′ [δx(F (B

′
t, a))ξc1t] =: ρ1t + ρ2t , (41)

where c1 is a constant to be determined later. Observe that the main term will be ρ2t , which
means that we consider a two point partition of the interval [0, t] and we perform a one-step
decomposition of Xt (or Yt) on [0, c1t] and [c1t, t], as opposed to the general time interval
partition in Section 5.

First, we start studying the main term ρ2t : Note that due to (10), we have by Girsanov’s
Theorem

ρ2t = EP′

[

EP′

[

δx(F (B
′
t, a))

∣

∣

∣
Fc1t

]

ξc1t

]

= EP′



exp

(

−(F−1(x, a)−
∫ c1t

0
K(t, s)dW ′

s)
2

2
∫ t

c1t
K(t, s)2ds

)

∂xF
−1(x, a)

√

2π
∫ t

c1t
K(t, s)2ds

ξc1t



 = EP[Lc1,t],

where we have set

Lc1,t := exp

(

−(F−1(x, a)−
∫ c1t

0
K(t, s)dWs +

∫ c1t

0
V0V

−1
1 (Xs)ds)

2

2
∫ t

c1t
K(t, s)2ds

)

∂xF
−1(x, a)

√

2π
∫ t

c1t
K(t, s)2ds

.

In order to determine a lower bound for the above expression, we use the following informa-
tion:
(i) We have ∂xF

−1(x, a) ≥ Λ−1.

(ii) We apply the inequality (x+ a)2 ≥ 1
2
x2 − 2a2 to a2 := (

∫ c1t

0
V0V

−1
1 (Xs)ds)

2 ≤ cV t
2.

(iii) Gaussian convolution identities can be invoked in order to compose the quadratic ex-
ponential term defining Lc1,t with the expected value with respect to the Gaussian random

variable
∫ c1t

0
K(t, s)dW ′

s.
These ingredients easily entail that

ρ2t ≥
cε√
2πσ̂2

exp

(

−F
−1(x, a)2

2σ̂2

)

,

for σ̂2 = 2
∫ t

c1t
K(t, s)2ds+

∫ c1t

0
K(t, s)2ds, and we observe that σ2 ≤ σ̂2 ≤ 2σ2.

Now we estimate the first term ρ1t in (41) and prove that it is upper bounded by a quantity
which is smaller than half of the lower bound we have just obtained. For this term we need
to use again the integration by parts estimates carried out in (35). In order not to repeat
arguments we just mention the main steps: we start by writing

ρ1t = EP′ [δx(F (B
′
t, a))(ξt − ξc1t)] = EP′

[

1{F (B′
t, a)≤x}H (F (B′

t, a), ξt − ξc1t)
]

,
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and we decompose this expression into p1 − p2 like in (37), except for the fact that this time
Z is replaced by Zt := ((ξt − ξc1t) ∂xF (B

′
t, a))

−1.

We wish to take advantage of the fact that ξt− ξc1t is a small quantity whenever c1 is close
to 1. For this, define the process Mc1t,· as Mc1t,s = K−1

H (
∫ ·

c1t
V0V

−1
1 (Yu)du), consider θ ∈ [0, 1]

and define

ξt(θ) := ξc1t exp

(

θ

∫ t

c1t

Mc1t,s dW
′
s −

θ2

2

∫ t

c1t

M2
c1t,s

ds

)

.

Then by the mean value theorem, we have

ξt − ξc1t =

∫ 1

0

dθ ξt(θ)

(
∫ t

c1t

Ms dW
′
s − θ

∫ t

c1t

M2
s ds

)

.

Applying Fubini’s theorem, one sees that the same estimates as in (38), appear again with the

exception that (i) The last term in the decomposition becomes E
1/q4
P′ [(ξt(θ))

q4] which is handled
in the same fashion as before. (ii) There is another term appearing in the decomposition,
namely

E
1/q5
P′

[(
∫ t

c1t

Ms dW
′
s − θ

∫ t

c1t

M2
s ds

)q5]

.

Using (33) and usual estimate methods for stochastic integrals, one obtains that the latter
term is upper bounded by c(1 − c2−2H

1 )t2−2H . Therefore taking c1 sufficiently close to 1 one
obtains that this upper bound is smaller than 1/2 of the lower bound previously obtained.
The proof is now complete. �

5. General lower bound

We now wish to obtain Gaussian type lower bounds for the multi-dimensional case of
equation (3). However, the computations in this section will be performed on the following
simplified version for notational sake (adaptation of our calculations to the drift case are
straightforward):

Xt = a +

d
∑

i=1

∫ t

0

Vi(Xs) ◦ dBi
s, (42)

where a ∈ R
m is a generic initial condition, Vi : R

m → R
m i = 1, . . . , d is a collection of smooth

and bounded vectors fields and B1, . . . , Bd are d independent fBm’s with H ∈ (1/2, 1). Recall
that our goal is then to prove relation (5) in this context. To this aim, we shall assume that
Hypothesis 1.1 (especially relation (4)) is satisfied for the remainder of the article.

5.1. Preliminary considerations. Let us recall briefly the strategy used in [2, 13] in order to
obtain Gaussian lower bounds for solutions of stochastic differential equations. The argument
starts with some additional notation: Recall that the natural filtration of B, which is also the
natural filtration of the underlying Wiener process W defined by (10), is denoted by Ft. As
we have introduced in section 2.1, we write Et for the conditional expectation with respect
to Ft. Under our working Hypothesis 1.1, let us also mention that the following result is
available (see [4, 12] for further details):
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Proposition 5.1. Under Hypothesis 1.1, let X be the unique solution to (42). Then for any
t ∈ (0, 1], the random variable Xt is non degenerate in the sense of Definition 2.1.1 in [17].
In particular, the density of Xt admits the representation pt(x) = E[δx(Xt)], where δx stands
for the Dirac measure at point x.

With this preliminary result in hand, the quantity E[δx(Xt)] will be analyzed by means of
the succesive evaluation of conditional densities of an approximation sequence {Fj; 0 ≤ j ≤ n}
such that Xt = Fn. We thus consider pt(x) = E[δx(Fn)]. The discretization procedure is based
on a corresponding partition of the time interval as π : 0 = t0 < · · · < tn = t, and the sequence
of random variables Fj which satisfy the relation Fj ∈ Ftj .

Let us give some hints about the general strategy for the discretization: it is designed to
take advantage of conditional Malliavin calculus, which allows to capture the convolution
property of Gaussian distributions. We shall thus assume for the moment a structure of the
form

Fj = Fj−1 + Ij +Rj , (43)

where we recall that Fj−1 ∈ Ftj−1
. In formula (43), the term Ij will stand for a Gaussian

random variable (conditionally to Ftj−1
) and Rj refers to a small remainder term, whose

contribution to the density of Fj can be neglected with respect to the one induced by Ij just
like in the argument in (41). The local Gaussian bound (5) will be obtained from the density
of the sum

∑n
j=1 Ij . The argument will finish by an application of the Chapman-Kolmogorov

formula.

As suggested by equation (6), and setting ∆i
j+1(B) := Btij+1

− Btij
, a natural candidate

consists in taking Fj = Xtj , which yields

Ij =

d
∑

i=1

Vi(Xtj )∆
i
j+1(B), and Rj =

d
∑

i=1

∫ t

0

[

Vi(Xs)− Vi(Xtj )
]

dBi
s. (44)

However, this simple and natural guess is not suitable for the fBm case. Indeed, the analysis
of the variances of Ij induced from the decomposition (44) reveals that a significant amount
is generated by the covariances between the increments ∆i

j(B). Now, if we write

t2H = E

[

(

Bi
t

)2
]

= E





(

n
∑

j=1

∆i
j(B)

)2


 =
n
∑

j,k=1

E
[

∆i
j(B)∆i

k(B)
]

, (45)

we realize that the diagonal terms in the right hand side expression only accounts for a term
of the form

∑

j |tj − tj−1|2H , which vanishes as the mesh of the partition goes to 0 when

H ∈ (1/2, 1). This means that our decomposition (44) will not be able to capture the correct
amount of variance contained in Xt, and has to be modified.

There are at least two natural generalizations of the Euler type scheme method described
above:

(1) Take into account the off-diagonal terms in (45), and perform a block type analysis.
(2) Express the equation as an equation driven by the Wiener process W defined by

relation (10) and take advantage of the independence of the increments of W .

In the current paper we have chosen to follow the second approach above, and thus we first
recall how to define equation (42) as a Stratonovich equation with respect to W .
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5.2. Fractional equations as Stratonovich type equations. In order to handle equa-
tion (42) as an equation with respect to W , let us first introduce the following functional
space:

Definition 5.2. Let |H| be the space of measurable functions φ : [0, T ] → R
n such that

‖φ‖2|H| := αH

∫ 1

0

(
∫ 1

0

|φr||φu||r − u|2H−2dr

)

du < +∞.

Note that |H| endowed with the norm ‖ · ‖|H| is a Banach space of functions, which is also a
subspace of H.

In the sequel we also consider random elements with values in |H|. In particular, the norm
of φ in DDD1,2(|H|) is given by

‖φ‖DDD1,2(|H|) = E
[

‖φ‖2|H|

]

+ E
[

‖Dφ‖2|H|⊗|H|

]

.

For these elements, the following result from [1, Proposition 3] allows to define Stratonovich
type integrals (see [17] for a complete definition), which turn out to coincide with Young

integrals in our cases of interest. In the sequel, we will use
∫ 1

0
ut ◦ dBt ≡

∑d
i=1

∫ 1

0
uit ◦ dBi

t to
denote Stratonovich integrals.

Proposition 5.3. Let u = {ut, t ∈ [0, 1]} ∈DDD1,2(|H|), such that
∫ 1

0

∫ 1

0

|Dsut||t− s|2H−2dsdt <∞. (46)

Then

(i) The Stratonovich integral
∫ 1

0
ut ◦ dBt in the sense of [17] exists and we also have

∫ 1

0

ut ◦ dBt = δδδ(u) + αH

∫ 1

0

∫ 1

0

Dsut|t− s|2H−2dsdt. (47)

(ii) Whenever u ∈ Cγ a.s. with γ > 1/2 and H ∈ (1/2, 1), the Stratonovich integral
∫ 1

0
ut ◦dBt

coincides with the Young integral
∫ 1

0
ut dBt.

The next Proposition will allow us to interpret the stochastic integral appearing in (42) as
a Stratonovich type integral.

Proposition 5.4. Let X = {Xt, t ∈ [0, 1]} be the solution to (42), and assume Hypothesis
1.1. Then the process X ∈DDD1,2(|H|) and satisfies the equation

Xt = a+

d
∑

k=1

∫ t

0

Vk(Xu) ◦ dBk
u,

where the Stratonovich integral can be decomposed as a Skorohod integral plus a trace term as
in (47).

Proof. According to Proposition 5.3, we just have to prove that X ∈ DDD1,2(|H|) and satisfies
relation (46). We first focus on proving the relation

E
[

‖X‖2|H|

]

+ E
[

‖DX‖2|H|⊗|H|

]

<∞.
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In order to see the first part of this inequality, invoke relation (16) and write

E
[

‖X‖2|H|

]

= αH

∫ 1

0

∫ 1

0

E [|Xr||Xs|] |r − s|2H−2 drds

≤ cE
[

‖X‖2∞
]

∫ 1

0

∫ 1

0

|r − s|2H−2 drds < c1.

Along the same lines and owing to (17), it is also readily checked that E[‖DX‖2|H|⊗|H|] < ∞
and that relation (46) holds true, which ends the proof. Note that due to Proposition 5.3 (ii)
and Proposition 2.5, we obtain the other assertions. �

Finally, the following corollary is the key to the the effective decomposition we shall use in
order to get our Gaussian lower bound on pt:

Corollary 5.5. Under the same assumptions as for Proposition 5.4, the process K∗
t (Vk(X)) ∈

dom(δ) and satisfies the equation

Xt = a+

d
∑

k=1

∫ t

0

[K∗
t (Vk(X))]s ◦ dW k

s = a +

d
∑

k=1

∫ t

0

(
∫ t

s

∂uK(u, s)Vk(Xu) du

)

◦ dW k
s , (48)

where the anticipative Stratonovich integral with respect to W can be decomposed as a Skorohod
integral plus a trace term.

Proof. With Proposition 5.4 in hand, relation (48) is easily deduced from [17, Proposition
5.2.2] and Proposition 2.1. �

5.3. Discretization procedure. We now proceed to the decomposition of Fn := Xt as
announced in (43), starting from the expression of Fj for j = 0, . . . , n. Indeed, according to
expression (48), a natural approximation sequence for Xt based on a partition 0 = t0 < . . . <
tn = t of [0, t] is the following:

Fi = Fi−1 + Ii +Ri, (49)

where, introducing the additional notations

ηi(u) := inf(u, ti), and gki,s :=

∫ t

s

∂uK(u, s)Vk(Xηi(u)) du (50)

we set (note that gki−1,s ∈ Fti−1
)

Fi−1 :=

d
∑

k=1

∫ ti−1

0

gki−1,s ◦ dW k
s ,

Ii :=
d
∑

k=1

∫ ti

ti−1

gki−1,s ◦ dW k
s =

d
∑

k=1

Vk(Xti−1
)

∫ ti

ti−1

K(t, s) dW k
s , (51)

where the last integral above is simply a Wiener integral with respect to W . We also introduce
a family of random variables Ri defined by:

Ri :=

d
∑

k=1

∫ ti

ti−1

Qk
s ◦ dW k

s , (52)
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where Q is the process defined by

Qk
s :=

∫ t

s

∂uK(u, s)[Vk(Xηi(u))− Vk(Xti−1
)]du. (53)

Observe that if V is elliptic and bounded, it is clear from expression (51) that
∑

i Covti−1
(Ii) ≍

t2HIdm up to a constant, independently of the particular values of the ti’s. We shall see
however how to choose those values at Condition 5.8.

Finally we introduce some random variables ΦM(Ni
γ,p(B)) for i = 1, . . . , n which allow us

to control the supremum norm of the solution of the equation (42) and of their stochastic
derivatives. This argument needs to be added in the methodology of [2, 13] and therefore we
have to tailor the arguments therein to our situation. The localization random variables are
based on the family of functionals Ni

γ,p(B) defined by

Ni
γ,p(B) =

∫ ti

ti−1

∫ ti

ti−1

|Bv −Bu|2p
|v − u|2γp+2

dudv,

which can be compared to Hölder type norms and have the advantage that they can be
differentiated with respect to B. In fact, we can see the aim of introducing this functional in
the following proposition which is direct consequence of Garsia-Rodemich-Rumsey’s Lemma
(see e.g [10]).

Proposition 5.6. Let H > 1
2

and p such that 0 < γ < H − 1
2p

, then we have ‖B‖ti−1,ti,γ ≤
cγ,p[N

i
γ,p(B)]1/2p.

The next step is to study the conditional densities of the approximation sequence Fi. To this
aim, one has to control various terms for which the localization technique of Malliavin Calculus
turns out to be useful. Specifically, recall that we have introduced families of functions
ΦM ,ΦM,ε given by expression (14). In the sequel we localize our expectations using functionals

of the type ΦM (Ni
γ,p(B)) and Φci,ǫ(

∑d
j=1

∫ ti
ti−1

|Dj
rRi|2dr) for some constants ci, ǫ of the form:

ci :=
λ

4

∫ ti

ti−1

K(t, s)2ds > 0, and ǫi :=
ci
2
> 0. (54)

Furthermore, in order to ease notations, notice that we will simply write:

ΦM ≡ ΦM (Ni
γ,p(B)), and Φci,ǫi ≡ Φci,ǫi

(

d
∑

j=1

∫ ti

ti−1

|Dj
rRi|2dr

)

. (55)

With this additional notation in hand, we can proceed to the first step of our approximation
scheme: since Fi is Fti−1

conditionally non-degenerate and the localizations ΦM and Φci,ǫi ∈
D∞, we can write

Eti−1
[δx(Fi)] = Eti−1

[δx(Fi) ΦM Φci,ǫi] + Eti−1
[δx(Fi) (1− ΦM Φci,ǫi)],

and due to the non-negativity of the second term, we have

Eti−1
[δx(Fi)] ≥ Eti−1

[δx(Fi) ΦMΦci,ǫi].

Recalling that Fi = Fi−1 + Ii +Ri, we then obtain the following decomposition:

Eti−1
[δx(Fi)ΦMΦci,ǫi] = J1,i + J2,i + J3,i, (56)
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where
J1,i = Eti−1

[δx(Fi−1 + Ii)], J2,i = Eti−1
[δx(Fi−1 + Ii)(ΦMΦci,ǫi − 1)], (57)

and

J3,i =
m
∑

j=1

Eti−1

[

ΦMΦci,ǫi

∫ 1

0

∂xj
δx(Fi−1 + Ii + ρRi)R

j
i dρ

]

. (58)

Our aim is now to prove that in this decomposition J1,i should yield the main contribution,
while J2,i is small because of the quantity (ΦMΦci,ǫi − 1) whenever M and n are large enough
and J3,i is small due to the presence of the difference between Xti − Xti−1

in Ri. We shall
implement this strategy in the next subsections.

5.4. Upper and lower bounds on J1,i. The main information which will be used about
J1,i is the following:

Proposition 5.7. Let J1,i be defined by (57). Then under Hypothesis 1.1 we have

J1,i = Eti−1
[δx(Fi−1 + Ii)] =

exp
(

−1
2
(x− Fi−1)

∗Σ−1
i−1(x− Fi−1)

)

(2π)m/2 |Σi−1|1/2
, (59)

where Σi−1 is a deterministic (conditionally to Fti−1
) matrix such that

λ

(
∫ ti

ti−1

K2(t, u) du

)

Idm ≤ Σi−1 ≤ Λ

(
∫ ti

ti−1

K2(t, u) du

)

Idm,

and where the two strictly positive constants λ,Λ satisfy (4).

Proof. The fact that Ii−1 is conditionally Gaussian is clear from expression (51), and this
immediately yields our claim (59). Furthermore,

Σi−1 := Covti−1
(Ii) = Eti−1

[Ii I
∗
i ]

= Eti−1

[(

d
∑

k=1

Vk(Xti−1
)

∫ ti

ti−1

K(t, u) dW k
u

)(

d
∑

l=1

V ∗
l (Xti−1

)

∫ ti

ti−1

K(t, u) dW l
u

)]

=

d
∑

k=1

Vk(Xti−1
)V ∗

k (Xti−1
)

∫ ti

ti−1

K2(t, u) du,

which finishes the proof of our second claim thanks to Hypothesis 1.1. �

The previous proposition induces a natural choice for the partition (ti) in terms of the
kernel K:

Condition 5.8. We choose the partition 0 = t0 < . . . < tn = t of [0, t] such that we have
∫ ti
ti−1

K2(t, u) du = t2H

n
=: σ2

n for all i = 1, . . . , n.

With this choice in hand, let us note the following properties for further use:

Lemma 5.9. Let t0, . . . , tn be the partition of [0, t] defined by Condition 5.8. Then

(i) The partition is constructed in a unique way.

(ii) We have 0 ≤ ti − ti−1 ≤ cH n
−1/(2H) for all i = 1, . . . , n.

(iii) The parameters ci defined at (54) are all equal to λt2H

4n
.
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Proof. Our first claim stems from the fact that
∫ t

0
K2(t, u) du = t2H and v 7→

∫ τ

v
K2(t, u) du

is a strictly decreasing function for all 0 ≤ v ≤ τ ≤ t.

In order to prove our item (ii) recall expression (7), from which we easily deduce the bound

K(t, s) ≥ cH(t− s)H−1/2. (60)

Consider now a fixed point τ ∈ (0, t] and 0 ≤ v ≡ vτ < τ ≤ t such that
∫ τ

v
K2(t, u) du = t2H

n
.

Thanks to the bound (60) we have vτ ≥ wτ where wτ ≡ w is defined by

cH

∫ τ

w

(t− u)2H−1 du =
t2H

n
⇐⇒ cH

[

(t− w)2H − (t− τ)2H
]

=
t2H

n
.

In addition, since 2H > 1 we have (t − w)2H − (t − τ)2H ≥ (τ − w)2H for w < τ < t, which

means that wτ ≥ xτ where xτ is defined by the equation (τ − x)2H = cHt2H

n
. The latter

equation can be solved explicitly as xτ = τ − cH t
n1/(2H) , and summarizing our last considerations

we end up with the relation

τ − vτ ≤ cHt

n1/(2H)
,

which easily yields our assertion (ii). The proof of (iii) is straightforward. �

Now we state the following Corollary to Proposition 5.7, whose immediate proof is left to
the reader:

Corollary 5.10. Let J1,i be defined by (57). Then under Hypothesis 1.1 and Condition 5.8

we have for σ2
n = t2H

n

J1,i ≥
1

(2π)m/2(Λσ2
n)

m/2
exp

(

−|x− Fi−1|2
2λ σ2

n

)

, (61)

Summarizing the considerations of this section, we have obtained that the main contribution
to Eti−1

[δx(Fi)], J1,i, is of the order given by (61). Most of our work is now devoted to prove
that the contributions of J2,i and J3,i are smaller than a fraction of (61) ifM,n are conveniently
chosen.

5.5. Upper bounds for J2,i. We start the control of J2,i by stating a bound in terms of the
localization we have chosen:

Proposition 5.11. Let J2,i be the quantity defined by (57). Then there exists positive con-
stants cλ,Λ, k1, k2 and p1 independent of n such that:

|J2,i| ≤ cλ,Λ
(

σ2
n

)−k2
Li
n(k1, p1), where Li

n(k1, p1) ≡ ‖1− ΦMΦci,ǫi‖k1,p1,ti−1
,

with σ2
n = t2H

n
, and where we recall that the norms ‖·‖k,p,t have been introduced at equation (12)

and the random variables ΦM ,Φci,ǫi at equation (55).

Proof. Our strategy hinges on the conditional integration by parts formula we have introduced
in Proposition 2.2 , which gives for some constants ki, pi, i = 1, ..., 4,

|J2,i| =
∣

∣

∣
Eti−1

[

1{Fi−1+Ii>x}H
ti−1

(1,...,m)(Ii, 1− ΦMΦci,ǫi)
]
∣

∣

∣

≤ c1,q‖ det(ΓIi,ti−1
)−1‖k3p3,ti−1

‖Ii‖k4k2,p2,ti−1
‖1− ΦMΦci,ǫi‖k1,p1,ti−1

. (62)



26 M. BESALÚ, A. KOHATSU-HIGA, S. TINDEL

Here, we have used that 1{Fi−1+Ii>x} ≤ 1.

In order to bound the right hand side of (62) we start by computing the Malliavin derivatives
of Ii. Recall that due to (51), we have for j = 1, . . . , d, α > 1 and r, r1, . . . , rα > ti−1 that

Dj
rIi = Vj(Xti−1

)K(t, r) 1[ti−1,ti](r), and Dα
r1...rα

Ii = 0.

As far as ΓIi,ti−1
is concerned, it is a conditionally deterministic quantity such that for i, j =

1, . . . , d, we can write

ΓIi,ti−1
=

d
∑

j=1

〈

DjIi,D
jI∗i
〉

L2([ti−1,ti])

=

d
∑

j=1

Vj(Xti−1
)V ∗

j (Xti−1
)

∫ ti

ti−1

K2(t, s)ds = σ2
n V (Xti−1

)V ∗(Xti−1
).

Using the ellipticity condition of Hypothesis 1.1(2) for V , we thus obtain that

0 ≤ Γ−1
Ii,ti−1

≤ 1

λσ2
n

Idm.

Therefore ‖Ii‖k4k2,p2,ti−1
≤ C (σ2

nΛ)
k4
2 and

‖ det(ΓIi,ti−1
)−1‖k3p3,ti−1

≤
(

1

λσ2
n

)mk3

.

Substituting these inequalities in (62), our proof is now finished. �

From the above Proposition 5.11, we see that in order to get a convenient bound for J2,i
we need to study the random variable ‖1 − ΦMΦci,ǫi‖k1,p1,ti−1

. A suitable information for us
will be the following bound:

Proposition 5.12. Let Li
n(k1, p1) = ‖1 − ΦMΦci,ǫi‖k1,p1,ti−1

be the random variable defined
at Proposition 5.11. Then for any p (recall that ΦM ≡ ΦM (Ni

γ,p(B))) large enough so that

2p(1 − γ
H
)− k1 − 2

H
> 0 with H − 1

2
< γ < H − 1

2p
, the following holds true: For any η > 0

there exists CM,η,p > 0 such that

E[Li
n(k1, p1)] ≤ CM,η,p n

−η. (63)

Proof. We sketch the proof for p1 = 2. The general case follows similarly. We start noting that
it is enough to find a proper bound for ‖1−ΦM‖k1,p1,ti−1

and ‖1−Φci,ǫi‖k1,p1,ti−1
separately. We

start with the first one. Using Chebyshev inequality we have, for any k2 ≥ 1 and γ ∈ (0, H− 1
2p
)

E
[

|1− ΦM |2
]

≤ P(Ni
γ,p(B) > M − 1) ≤

E
[

|Ni
γ,p(B)|k2

]

(M − 1)k2
. (64)
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Evaluate now E[|Ni
γ,p(B)|k2]. A simple application of Jensen’s inequality yields:

E
[

|Ni
γ,p(B))|k2

]

= E

[

(
∫ ti

ti−1

∫ ti

ti−1

|Bv − Bu|2p
|v − u|2pγ+2

dudv

)k2
]

≤ c |ti − ti−1|2(k2−1)

(

∫ ti

ti−1

∫ ti

ti−1

E
[

|Bv − Bu|2pk2
]

|v − u|(2pγ+2)k2
dudv

)

≤ ck2,p,γ,H|ti − ti−1|2k2p(H−γ). (65)

Recalling from that Lemma 5.9(ii) that |ti − ti−1| ≤ cH n
−1/(2H) and taking k2 large enough,

we obtain that E[|Ni
γ,p(B))|k2] ≤ cM,η n

−η for an arbitrary large η. This is consistent with
relation (63).

In order to achieve the first claim, we also have to get a bound for the derivatives of ΦM .
In fact, we shall only detail the calculations for the first derivative, since estimates for the
higher order derivatives are similar. Now we resort to the explicit expression of the Malliavin
derivative of ΦM given in [22, Remark 3.2], which can be computed as:

|Dj
sΦM | ≤ |Φ′

M (Ni
γ,p(B))|µs,

where s ∈ [ti−1, ti] and the process µ is defined by

µs = 4p

∫ s

ti−1

∫ ti

s

|Bξ −Bη|2p−1

|ξ − η|2γp+2
dξ dη 1[ti−1,ti](s).

We thus get

‖DΦM‖2L2([ti−1,ti])
= ‖DΦM‖2H([ti−1,ti])

≤ cH |Φ′
M(Ni

γ,p(B))|2
∫ ti

ti−1

∫ ti

ti−1

µu|u− v|2H−2µv dudv.

Furthermore, taking into account the fact that p is large enough, we obtain that for any
exponent κ > 0 the following hold true:

E[|µs|κ] ≤ (2p)κ(ti − ti−1)
2(κ−1)

∫ s

ti−1

∫ ti

s

E
[

|Bξ −Bη|(2p−1)κ
]

|ξ − η|(2γp+2)κ
dξdη

≤ cp,κ,γ,H |ti − ti−1|2pκ(H−γ)−κH .

Applying this inequality with κ = 4, recalling from (14) that ‖Φ′
M‖∞ = ‖φ‖∞ ≤ cφe

−1, and
plugging (64), this yields

E

[

‖DΦM‖2L2[ti−1,ti]

]

≤ cH‖Φ′
M‖2∞

∫ ti

ti−1

∫ ti

ti−1

|u− v|2H−2
E[µuµv1{Ni

γ,p(B)>M−1}]dudv

≤ cH,p

∫ ti

ti−1

∫ ti

ti−1

|u− v|2H−2
E

1
4 [µ4

u]E
1
4 [µ4

v]
E
[

|Ni
γ,p(B)|k3

]

(M − 1)k3
dudv,

for an arbitrary large k3. Proceeding as in (65), for an arbitrary large k4 we end up with:

E

[

‖DΦM‖2L2[ti−1,ti]

]

≤ cH,p,M |ti − ti−1|2p(k4+2)(H−γ),

which corresponds again to our assertion (63) since |ti − ti−1| ≤ cH n
−1/(2H).



28 M. BESALÚ, A. KOHATSU-HIGA, S. TINDEL

Finally, let us mention that along the same lines, we get a bound of the following form for
the ℓ-th derivative:

E

[

‖Dj1,...,jℓΦM‖2L2([ti−1,ti]ℓ)

]

≤ cH,p max
j=1,...,ℓ

‖Φ(j)
M ‖∞|ti − ti−1|2p(2+k5)(H−γ)

≤ cH,p,M |ti − ti−1|2p(2+k5)(H−γ),

for an arbitrary large k5. This yields our claim (63), invoking again the upper bound |ti −
ti−1| ≤ cH n

−1/(2H).

The calculation for ‖1−Φci,ǫi‖k1,p1,ti−1
is similar and we skip details for sake of conciseness.

It is based on the fact that for any k6 > 0, Chebyshev’s inequality and Lemma 6.4 (postponed
to the Appendix) imply that:

P

(

d
∑

j=1

∫ ti

ti−1

|Dj
rR

i|2dr > λ

8

∫ ti

ti−1

K(t, s)2ds

)

≤
(

λ

8

∫ ti

ti−1

K(t, s)2ds

)−k6

E





(

d
∑

j=1

∫ ti

ti−1

|Dj
rR

i|2dr
)k6




≤ c
(

λσ2
n

)−k6
(ti − ti−1)

(2γ+1)k6 ≤ cn(1− 2γ+1
2H

)k6 .

Here we have used the result in Lemma 5.9 (ii) once more and the fact that γ > H − 1
2
. �

5.6. Upper bounds for J3,i. We now turn to the main technical issue in our computations,
namely the bound on J3,i. Our aim is thus to prove the following proposition:

Proposition 5.13. Let J3,i be the quantity defined by (58). Then there exist c > 0 and k > 0
such that for any H − 1

2
< γ < H.

|J3,i| ≤
cM,V,m(ti − ti−1)

γ

(σ2
n)

m/2
≤ cM,V,m

nγ/2H (σ2
n)

m/2
. (66)

Proof. We start from expression (58) and normalize Ii+ ρRi in the following way: we just set
Ii + ρRi = σn Ui, where Ui = σ−1

n (Ii + ρRi). We thus have

J3,i =

m
∑

j=1

Eti−1

[

ΦMΦci,ǫi

∫ 1

0

∂xj
δx(Fi−1 + σn Ui)R

j
i dρ

]

.

Along the same lines as in (62), the integration by parts formula (15) now yields

J3,i = σ−(m+1)
n

m
∑

j=1

∫ 1

0

Eti−1

[

1{Ii+ρRi>x−Fi−1}H
ti−1

(j,1,...,m)(Ui, R
j
iΦMΦci,ǫi)

]

dρ.

Hence the following bound holds true (see [17, p. 102]):

|J3,i| ≤ c1,q σ
−(m+1)
n A1

∫ 1

0

A2(ρ)A3(ρ) dρ,

where the quantities A1, A2(ρ), A3(ρ) are respectively defined by

A1 = max
j=1,..,m

‖Rj
i ΦM ′‖k1,p1,ti−1

, A2(ρ) = ‖ det(Γ−1
Ui,ti−1

)ΦM ′Φci,ǫi‖k3p3,ti−1
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and
A3(ρ) = ‖Ui ΦM ′‖k4k2,p2,ti−1

,

and where we also recall that Rj
i is defined by (52). Then the first inequality in (66) follows

from Lemmas 6.4, 6.5 and 6.6 which have been postponed to the Appendix, and by choosing
γ such that H − 1

2
< γ. In order to go from the first inequality in (66) to the second one, we

simply apply Lemma 5.9. �

5.7. Lower bound. Let us first summarize the considerations of the previous section: start-
ing from decomposition (56) and applying Corollary 5.10, Propositions 5.11, 5.12 and 5.13
and the forthcoming relation (76), we have obtained the following facts: The inequality
Eti−1

[δx(Fi)] ≥ J1,i + J2,i + J3,i holds true, and thus

Eti−1
[δx(Fi)] ≥

1

(2π)m/2(Λσ2
n)

m/2
exp

(

−|x− Fi−1|2
2λ σ2

n

)

− cλ,Λ
(

σ2
n

)−k2 Li
n(k1, p1)−

cM,V,m

nγ/2H (σ2
n)

m/2
, (67)

with the additional information E[Li
n(k1, p1)] ≤ CM,η n

−η for an arbitrarily large exponent η.

We are now ready to prove the main theorem of this article:

Proof of Theorem 1.2. With equation (67) in hand, we shall follow the strategy designed
in [2, 13]: Fix x−a throughout the proof and define the balls Bi = B(yi, c1σn) for i = 1, . . . , n
where yi = a+ i

n
(x− a). We also define below an additional sequence {xi; i = 1 . . . , n}, such

that xi ∈ Bi and xn = x. The constant c1 will be fixed later on.

a

y0 y1 · · · yi−1

Bi

xi

yi

c1σn

yi+1 · · · yn−1

x

yn

x−a
n

Figure 1. Space partition for the lower bound, with sequence y1, . . . , yn and xi.

We shall now proceed in a backward recursive way on the index i. For instance in order to
go from n to n− 1, we resort to (67) in order to write:

E [δx(Fn)] = E[Etn−1 [δx(Fn)]] ≥
cV,m
σm
n

E

[

exp

(

−|x− Fn−1|2
2λσ2

n

)

− cM,V,m n
−κ

]

,
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for a certain strictly positive constant κ. Hence

E [δx(Fn)] ≥ cV,m
σm
n

∫

R

E

[(

exp

(

−|x− Fn−1|2
2λσ2

n

)

− cM,V,m n
−κ

)

δxn−1(Fn−1)

]

dxn−1

≥ cV,m
σm
n

∫

Bn−1

E

[(

exp

(

−|x− Fn−1|2
2λσ2

n

)

− cM,V,m n
−κ

)

δxn−1(Fn−1)

]

dxn−1.

We now observe the following: if we wish the term δxn−1(Fn−1) to give a non null contribution,
the relations

xn−1 ∈ B(yn−1, c1σn), x− yn−1 =
x− a

n
, σn =

tH

n1/2
, |Fn−1 − xn−1| ≤ c1σn

must be satisfied. Moreover, from these conditions, it is easily seen that |x − Fn−1| ≤ 4c1σn
whenever n ≥ |x−a|2

c1t2H
. We thus define a constant c2 ≥ 1

4c1
such that

n =
c2 |x− a|2

t2H
. (68)

Then if we take c1 such that exp
(

−8c21
λ

)

≥ 1
2

and n such that cM,V,m n
−κ ≤ 1/4, we obtain

E [δx(Fn)] ≥
cV,m
4σm

n

∫

Bn−1

E
[

δxn−1(Fn−1)
]

dxn−1.

These arguments can now be iterated backward from i = n−1 to 1, and the reader can easily
check that the only additional required condition is the compatibility relation yi+1−yi ≤ c1σn
(this will be verified below). Denoting by αm the volume of a unit ball in R

m (namely
αm = πm+2/Γ(m

2
+ 1)), we end up with

E [δx(Fn)] ≥
(

cV,m
4 σm

n

)n

|B(0, c1σn)|n−1 =
(cV,m

4

)n
(

n1/2

tH

)nm(
c1t

H

n1/2

)m(n−1)

αn−1
m (69)

=
(cV,m

4

)n

(cm1 αm)
n−1

(

n1/2

tH

)m

=
1

αm (c1tH)
m exp

(

n ln

(

cV,mc
m
1 αm

4

)

+
m

2
ln(n)

)

.

Once here, we are reduced to tune our parameters according to the following constraints:

(i) Recalling (68), we have that if c1 is taken small enough so that ρ ≡ − ln(cV,mc
m
1 αm/4) > 0

and (as alluded to above) such that exp(−8c21/λ) ≥ 1
2

and n ln(ρ)+m ln(n) ≥ 0 for all n ∈ N,
we get

exp

(

n ln

(

cV,mc
m
1 αm

4

))

= exp

(

−ρc2 ‖x− a‖2
t2H

)

.

We remark here that the values of c1, c2 and cM,V,m are fixed independently of n. It is now
easily seen that our bound (69) is of the form (5).

(ii) We now choose the constant c2 in (68) so that the compatibility relation yi+1 − yi ≤ c1σn
is satisfied. Towards this aim, recall that

|yi+1 − yi| =
|x− a|
n

=
|x− a|
n1/2

1

n1/2
,
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and since n = c2
|x−a|2

t2H
, we get

|yi+1 − yi| =
|x− a|
n1/2

c
−1/2
2

tH

|x− a| = c
−1/2
2 σn.

It is thus sufficient to take c
−1/2
2 ≤ c1 ∧ (2c

1/2
1 ), which also satisfies that n ≥ |x−a|2

4c1t2H
. This

completes our proof. �

6. Appendix: Some properties of stochastic derivatives

We start this technical section with a general bound on the space H related to fractional
Brownian motion.

Lemma 6.1. Let H ∈ (0, 1/2), t ∈ (0, 1] and consider the space H defined on [0, t] as in
Section 2.1. Let f be an element of Cγ([0, t]) for 1/2 − H < γ < 1/2, with ‖f‖∞ ≤ a and
‖f‖0,t,γ ≤ b. Then

‖f‖H ≤ cH
(

a tH + b tγ+H
)

.

Proof. For a function g defined on [0, t], recall that its fractional derivative is given by

D
1/2−H
t− gu =

gu
(t− u)1/2−H

+

∫ t

u

gu − gv
(v − u)3/2−H

dv. (70)

Consider now f ∈ Cγ([0, t]) satisfying the conditions above, and set gu = u−(1/2−H)fu. Ac-
cording to [17, formula 5.31], we have

‖f‖2H ≤ cH

∫ t

0

s1−2H
∣

∣

∣
D

1/2−H
t− gs

∣

∣

∣

2

ds. (71)

We now proceed to estimate the right hand side of relation (71).

Indeed, plugging definition (70) into (71), it is readily checked that

‖f‖2H ≤ cH

(
∫ t

0

A2
s ds+

∫ t

0

B2
s ds

)

, with As =
fs

(t− s)1/2−H
, Bs =

∫ t

s

fs − ψv fv
(v − s)3/2−H

dv,

where we have set ψv = (s/v)1/2−H . It is then easily seen that
∫ t

0
A2

s ds ≤ cH a
2 t2H . In order

to bound B, notice that the function ψ is well defined on [s, t] and satisfies ψs = 1, ψv ≤ 1
and |ψ′

v| ≤ v−1.

|fs − ψv fv| ≤ |fs − fv|ψv + |fs||1− ψv| ≤ b (v − s)γ + a|1− ψv|γ ≤
(

b+
a

sγ

)

(v − s)γ.

Dividing this inequality by (v− s)3/2−H , recalling that γ ≤ 1/2 and integrating over [s, t], we
get

|Bs| ≤ cH

(

b+
a

sγ

)

(t− s)γ−(1/2−H),

which entails that
∫ t

0

B2
s ds ≤ cH

(

a2 t2H + b2 t2(γ+H)
)

.

Gathering our bounds on
∫ t

0
A2

s ds and
∫ t

0
B2

s ds, our proof is now finished.
�

Let us now state a bound on Malliavin derivatives.



32 M. BESALÚ, A. KOHATSU-HIGA, S. TINDEL

Proof of relation (11). We focus on the first derivative case, the other ones being handled in
a similar fashion. We will thus prove that

|DuF | ≤ ess supu≤r|DrF |K(t, u).

Indeed, according to Proposition 2.1, we have that for F ∈ Ft

|DuF | = |[K∗
tDF ]u| = |

∫ t

u

DrF∂rK(r, u)dr| ≤ ess supu≤r≤t|DrF |K(t, u),

which is exactly our claim. �

We now turn to the bounds on the process Q featuring in the definition of our remainders
Ri (see decomposition (49) of Xt):

Lemma 6.2. Let X be the solution to (42), let ηi be the function defined by (50) and Q the
process given by (53). If r1, s ∈ (ti−1, ti) then the following bounds hold true:

∣

∣Qk
s

∣

∣ ≤ cVK(t, s)|ti − ti−1|γZ i
0 (72)

∣

∣Dl
r1
Qk

s

∣

∣ ≤ cVK(t, s)K(t, r1)Z
i
1, (73)

for F1-measurable random variables Z i
0, Z

i
1 defined by Z i

0 = ‖B‖ti−1,t,γ ∨ ‖B‖γti−1,t,γ and

Z i
1 = sup

{

|Dl
r1(Xv −Xti−1

)|, ti−1 ≤ r1 ≤ v ≤ ti
}

, (74)

admitting moments of all orders. In general, we can extend these results to Malliavin deriva-
tives of arbitrary order ℓ ≥ 1 in the following way: for r1, s ∈ (ti−1, ti) and r2, . . . , rℓ < ti we
have

|Dj1...jℓ
r1...rℓ

Qk
s | ≤ cV K(t, s)Z i

ℓ

n
∏

j=1

K(t, rj), (75)

for Z i
ℓ ≡ sup

{

|Dj1...jℓ
r1...rℓ

(Xv −Xti−1
)|, ti−1 ≤ ri ≤ v ≤ ti, i = 1, . . . , n

}

, which is a F1-measurable
random variable with moments of all orders.

Proof. The bound (72) is an easy consequence of (53), Proposition 2.5 and the fact that
∂uK(u, s) ≥ 0. Moreover, observe that whenever r1 > ti−1 we have Dr1Vk(Xti−1

) = 0. Hence,
using Proposition 2.1 we get:

|Dl
r1
Qk

s | =
∣

∣

∣

∣

∫ t

s∨r1

∂uK(u, s) Dl
r1
Vk(Xηi(u))du

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

s∨r1

∂uK(u, s)[K∗
tD

l
·Vk(Xηi(u))]r1du

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

s∨r1

∂uK(u, s)

(
∫ t

r1

D
l
r2
Vk(Xηi(u))∂r2K(r2, r1)dr2

)

du

∣

∣

∣

∣

.

It is thus readily checked that

|Dl
r1
Qk

s | ≤ cVZ
i
1

∣

∣

∣

∣

∫ t

s∨r1

∂uK(u, s)K(t, r1)du

∣

∣

∣

∣

≤ cVZ
i
1K(t, s)K(t, r1).

The general result (75) is now obtained by means of an induction argument and resorting to
the same techniques as in the case of the first order derivative (namely ℓ = 1). �
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Remark 6.3. Note that due to the definition (74) of Z i
l and Proposition 2.5 which controls

the derivatives of X using the Hölder norms of B, the random variables Z verify:

|Z i
j| ≤ CV exp

(

CV ‖B‖
1
γ

ti−1,ti,γ

)

,

for any γ ∈ (1
2
, H). Hence, applying Proposition 5.6 we obtain

|Z i
j| ≤ CV exp

(

CV,γ

(

Ni
γ,p(B)

)
1

2γp

)

,

for any p such that 0 < γ < H − 1
2p

. This relation yields in particular that Z i
j ∈ ∩q≥1L

q(Ω).
Furthermore, once we localize by the random variables ΦM or ΦM ′ , we end up with:

max
0≤l≤k

(

Z i
l ΦM ′

)

≤ cM,V,m, with cM,V,m = cV,m exp(cV,m(M
′)

1
2γp ). (76)

In the next proposition, we give norm estimates for the remainder terms Ri needed in the
upper bound for J3,i.

Lemma 6.4. In the setting of Proposition 5.4 and Corollary 5.5, with the definition (52) and
(55), the following estimate is valid:

‖Rj
iΦM ′‖k1,p1,ti−1

≤ cV,M (ti − ti−1)
γ σn. (77)

Proof. This result obviously involves the control of many derivative terms. For the sake of
conciseness, we only sketch the bound for DRi. Now recall that

Ri =
d
∑

k=1

∫ ti

ti−1

Qk
s ◦ dW k

s .

We now apply a small variant of [17, Proposition 1.3.8] to Stratonovich integrals, which states
that for r ∈ [ti−1, ti] we have

Dj
rRi = Qj

r +
d
∑

k=1

∫ ti

ti−1

Dj
rQ

k
s ◦ dW k

s . (78)

Let us now evaluate the L2[ti−1, ti] norm of Dj
rRi. The main contribution for this norm comes

from the term Q in the right hand side of (78), for which we obtain, according to (72),
∫ ti

ti−1

(

Qj
r

)2
dr ≤ cV |ti − ti−1|2γ

(

Z i
0

)2
∫ ti

ti−1

K2(t, r) dr

= cV
(

Z i
0

)2 |ti − ti−1|2γ σ2
n,

and thus

E
1/p1
ti−1

[

‖Q‖p1L2([ti−1,ti])
ΦM ′

]

≤ cV |ti − ti−1|γ σn E p1
ti−1

[(

Z i
0

)p1 ΦM ′

]

≤ cV,M |ti − ti−1|γ σn,

which is consistent with our claim (77).

Let us give another example of term which has to be analyzed in order to bound the norm
of Dj

rRi: the term A defined as

A := E
1/p1
ti−1

[

(
∫ ti

ti−1

dr

∫ ti

ti−1

ds
[

Dj
rQ

k
s

]2
)

p1
2

ΦM ′

]

.
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Along the same lines as above, using (72), we find

A ≤ cM,V

∫ ti

ti−1

dsK2(t, s)

∫ ti

ti−1

drK2(t, r) = cM,V σ
4
n,

which is a remainder term with respect to (77). Notice that many other higher order terms
have to be evaluated in order to complete the proof. We omit these cumbersome but routine
developments for sake of conciseness. �

We now turn to the bound on A2(ρ):

Lemma 6.5. Recall that A2(ρ) is defined as A2(ρ) = ‖ det(ΓUi,ti−1
)−1ΦM ′Φci,ǫi‖k3p3,ti−1

. Then
this quantity is uniformly bounded in n, ρ and ω ∈ Ω.

Proof. First remark that using Proposition 4 in [2], we have that

det(ΓUi,ti−1
)−1Φci,ǫi ≤ σ2m

n

(

1

2
λ

∫ ti

ti−1

K2(t, s)ds−
d
∑

j=1

∫ ti

ti−1

|Dj
rR

i|2dr
)−m

Φci,ǫi.

Moreover, we have localized
∑d

j=1

∫ ti
ti−1

|Dj
rR

i|2dr by Φci,ǫi with ci =
λσ2

n

8
. Thus we end up

with

det(ΓUi,ti−1
)−1Φci,ǫi ≤ σ2

n

(

λ

4

∫ ti

ti−1

K2(t, s)ds

)−1

,

from which the result follows. �

The estimates for A3(ρ) are obtained in a similar fashion. In fact, we have:

Lemma 6.6. The same conclusion as in Lemma 6.5 holds true for the quantity A3(ρ) =
‖Ui ΦM ′‖k4k2,p2,ti−1

.

Proof. With respect to Lemma 6.4, we only need to consider additionally the bound for

‖IiΦM ′‖k2,p2,ti−1
≤ c‖Ii‖k2,p3,ti−1

‖ΦM ′‖k2,p4,ti−1
.

The above follows from Hölder’s inequality. Therefore the result follows from straightforward
calculations for Ii as in the proof of Proposition 5.11. �
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