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Properties of the Ornstein-Uhlenbeck bridge

Sylvain CORLAY*

October 21, 2013

Abstract

This paper is a study of the properties of the Ornstein-Uhlenbeck bridge. We derive its canonical
decomposition using filtration enlargement techniques, and its Karhunen-Loéve expansion for any
value of the initial variance and mean-reversion parameter (or mean-repulsion if negative). Finally,
we present an application to the optimal functional quantization of the Ornstein-Uhlenbeck bridge.

Keywords: Ornstein-Uhlenbeck bridge, canonical decomposition, Karhunen-Loéve, filtration enlarge-
ment, functional quantization

Introduction

Let # and p be two real numbers and ¢ > 0. The Ornstein-Uhlenbeck process of long-term mean
1, mean-reversion parameter 6 and volatility ¢ is defined as the solution of the stochastic differential
equation

dXt == Q(M*Xt)dt+0'dwt, (1)

where W is a standard Brownian motion and where X EN (xo, 03) is assumed to be independent of
W. The S.D.E. is solved by applying Itd’s lemma to the process U; := X;e. We obtain

t
X, = Xoe—et tu (1 . e—et) Jr/ aee(“_t)qu,
0

and
2 ,—0(s+t) 2,-0(s+t) 2N -1 5 g £0
EIX,] = —0t 1 — o0t X, X,) = ahe +o0%e 1 ,
i = o™ 4 (1 =), o (Xs, Xo) {08+0'28/\t if 6=
Let us now consider a finite horizon 7' > 0. For 6 # 0, we have
cov(Xs, Xr) cov(Xy, X7)
E|(X: — E[X¢| X7]) (Xs — E[X | X = X, Xs) —
[( t (X T])( s (X T])] cov(Xy, Xs) Var(Xr)

= ie—9(5+t) (2002 — 02) + 0.26295At)_i _or (%€” + (2005 — 0?) e7%") (0% + (2005 — 0°) e=%)

20 0 20 o297 + (2002 — 02) e= 0T ’

and if § = 0, E[(X; — E[X|X7]) (Xs — E[X,|X7])] = 0§ + s Nt — %

1 Canonical decompositions in the enlarged filtration

1.1 Backgrounds on generalized bridges

Let (Xt)ie[o,r) be a continuous centered Gaussian semimartingale starting from 0 on (2, A, P) and F X
its natural filtration. Fernique’s theorem ensures that fOT E [X?] dt < +oo.
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As Alili in [1], we are interested in the conditioning with respect to a finite family Zz := (Z Yier of
Gaussian random variables, which are the terminal values of processes of the form Z; = fo fi(s)dXs,
i € I, for some finite set of bounded measurable functions f = (fi)icr. A generalized bridge for (Xt)eepo, 1]

corresponding to f with end-point Z = (z;);es is a process (th,z) - with distribution X7/% <
te[0,T
L(X|Zh =z, i€l).
1.1.1 Generalized bridges as semimartingales
ey . oy _ X I 0
Jirina’s theorem ensures the existence of a transition kernel V7| (Xreronn) BR)xC ([0, s],R) = Ry,

corresponding to the conditional distribution £ (Z7|((X¢)te[o,s)))- We make the assumption () that, for
every s € [0,T) and for every (¢ — x;) € C° ([0, s], R), the probability measure VZe | (X)rcio) (dZ, (u)ueo,s])

is absolutely continuous with respect to the Lebesgue measure. We denote by II 7 its density.

(zu)uE[O,s]
The covariance matrix of this Gaussian distribution on R’ is given by

Q(s.7) = E | (Zr — E [Zr|(Xu)ucio.s]) (Zr ~ E [Zr|(Xu)ueo]) | (Xudueo] -
Hence, this hypothesis is equivalent to assume that
Q(s,T) is invertible for every s € [0,T). (H)

Theorem 1.1 (Radon-Nikodym derivative). Under the (H) hypothesis, for any s € [0,T'), and for Pz _-
almost every z € R, P [-’7T = E} is equivalent to P on FX and its Radon-Nikodym density is given
by

P [’7T = E} _ H(Xu)ue[(),s]vT(E)

|, Tlo.1(2)

s

Proposition 1.2 (Generalized bridges as semimartingales). Let us define the filtration Ggxf by th,? =

U(ET,]-}X), the enlargement of the filtration FX corresponding to the above conditioning. We con-
ider the stochasti p7 .= Lz Do 1@ 0,7). Th der the (H
sider the stochastic process D 1= ——gp—zx = — 1, (3] for s € 10,T). en, under the (H)

hypothesis, and the assumption that D7 is continuous, X is a continuous QX’?-semimartingale on [0,T).

Theorem 1.1 and Proposition 1.2 were first established in the Brownian case in [1] and extended to
Gaussian semimartingales in [2].

1.1.2 Canonical decomposition of generalized bridges

Now, as X is a continuous (.F X ]P’)—semimartingale we write its canonical decomposition X =V + M.

Following the lines of [2], we define L7 := [ ¢ %“’S:(()) Then
uw)uelo,s]”
(X, 17), = d(X.E [Zr|(Xu)ueo.1]), Qs 7)™ (2 = E [Z7](Xu)uepo.a]) -

Hence M — <X, LE> is a QX*?,P H?T = 2})—martingale, and the canonical decomposition satisfies
X = (V + <X, LE>) + (M — <X, LE>). The expression for <X, LZ> can be simplified in the two following
cases:

e In the case where X is a martingale, then Vj € I, E [Z%‘(Xu)ue[o é} fo fij(u)dX, so that

(X, L7), = 3 £ils) 3 Qs 1)), (55— B [28] (Xu)ueto,a] ) diX)s @)

icl jerl

e In the case where X is a Markov process, for every j € I there exists g; € L*([0,77]) such that
E {Z%}(Xu)ue[o S} Jy fi(u)dXy + g;(s)X,. Hence, if one assumes that functions (g;)je; have



finite-variations, which is the case if X is an Ornstein-Uhlenbeck process, then d <X E [ZT| ue[o ]] >S
(f(s) +3(s)) d(X)s, and thus

(X, L%), = D (fil) + 96D X Q. D)), (2 —E [ 2| (Kuduew.g] ) dX)se (3)

iel jel
1.2 The Ornstein-Uhlenbeck bridge with a deterministic starting point

We perform the conditioning of a centered Ornstein-Uhlenbeck process X starting from 0 by X = z.
With the same notation as the previous section, we have

d(X,L*), = d(X,E [Zr|(Xu)uecp,]]), Qs T) " (= E [Z1|(Xu)uepo,s)]) -
We have E [X7|(Xu)uep,s)] = Xee ?T7%) and thus d(X,E [Zr|(Xu)uep,1]), = e *T9d(X), =

02e=%(T=%)ds. In this case, Equation (3) simplifies to
d(X, L7), = e~ T=952Q(s, T)~! (z - Xse—9<T—S>) ds. (4)
Moreover
T 2 T
Q(s, T)=E {(/ ae‘g(s_T)qu) } = 0‘26_29T/ e?%3ds,
and thus
20 ,~20T ___1 :
-1 z€ m if 6 # 0,
Q(S,T) - { 02(T ) if=0.
If 6 # 0, plugging this into (4) yields
1 ZeG(TJrs) + X e20s
z _ _—0(T-s 20T - —0(T—s _ S
d<X, L >s =€ ( )296 m (Z - Xse ( )) ds = 20 629T — 6293 ds. (5)

Finally, we obtain the following canonical decomposition

2e0(T+t) | X, 020t
20T _ o206t

dX, = —0X,dt + 20 dt + (0X,dt + dX, + d(X,L?),).

(GW ,P[-|Zp=z])-martingale

By Lévy’s characterization of Brownian motion, the martingale part is of the form O‘th where W is
a (GW,P[|Zr = z])-Brownian motion. When 6 = 0, we obtain the classical Brownian bridge dX; =

=X dt + odW,.

1.3 The corresponding generalized Brownian bridge

Still in the case where o2 = 0, the Ornstein-Uhlenbeck process X; is in one-to-one correspondence with
Zy = fOT e*dW,. Hence, the Brownian motion W conditioned by Zr = z is a generalized Brownian
bridge in the sense of Alili [1] corresponding to (fi)ier = (f : s — €%°), and thus we know its canonical
decomposition. We have E [ZT‘ Wuelo] = fot ePvdW,, and Zp — [ZT‘ Wueloy] = j;T v dw,,

which yields
T 2 T
Q(s,T) = E[(/ eeuqu> } :/ et du.

Hence, if 0 # 0, Q(s,T) " = m. Otherwise, Q(s,T)~* ﬁ
d(W,L7)s = f(s)Q(s, )" (2 — [y f(u)dW,,) ds
| (e~ - Xoyds = 2% Xa T Xagy g 20,
S ds if 6 = 0.

Plugging this into Equation (6) yields the canonical decomposition of the corresponding generalized
bridge.
W=W._L) + (W-(WL). (6)
—
=W, (GW ,P[|Zr=2z])-Brownian motion



1.4 The case of a non-deterministic starting point (o2 # 0)

The conditional distribution of Xy knowing X7, N (E[Xo|Xr], Var(Xo| X)) is explicit from the covari-
ance and expectation of the Ornstein-Uhlenbeck bridge given in the introduction.
1 ¢ ~
From Equation (1), we can write X; = (Xoe ™ +pu (1 —e7%)) + / e qw,. X, depends on
0

=X,
X7 only through its dependence on X7 = X7 — Xoe T — 1 (1 — 6_9’5). Thus, we just need to plug
z = Xr — Xoe "7 — (1 —e7%) in (5) to obtain the canonical decomposition of X with respect to

(6", Pl xr]).

2 Karhunen-Loéve expansions

In this section, we derive the Karhunen-Loéve expansion of the Ornstein-Uhlenbeck bridge of any initial
variance or mean-reversion parameter. The method of derivation is the same as the one used for the
Ornstein-Uhlenbeck process in [3].

The covariance operator of the Ornstein-Uhlenbeck bridge is defined by T9Z f (s) := fOT c(s,t) f(t)dt,
where ¢(s,t) is the covariance function E[(X; — E[X| X7])(Xs — E[X|X7])] given in the introduction.

Proposition 2.1. If f € C([0,T]) and g := TOBf, then

g// _929 — —0’2f
g(T)=0,  03g'(0) = (0% — 057) 9(0)

Conversely, if f € C([0,T]) and g € C%([0,T)) satisfy these three properties, then g = TOB f.

This is proved by differentiating twice under the integral signs and evaluating at t =0 and t = T.

As a consequence, TOB f = \f is equivalent to g being the solution of the O.D.E.

A" + (02 = N0%)g =0
9(T)=0,  05g'(0) = (0% — 07)g(0).

Hence, the Karhunen-Loéve eigenvalues and unit eigenfunctions of the Ornstein-Uhlenbeck bridge are

OB o? OB r L e
AP = R and en o (t) = 3 " oo Sin (2w, T) sin(wy, (t = T)), (7)
wy, Wn,

where (wy,)n>1 are the strictly positive and increasingly sorted solutions to
(0% — 003) sin(wT) = —wag cos(wT). (8)

1. Deterministic starting point (cy = 0)

Equation (8) then amounts to sin(w1’) = 0, and thus w, = %% for n > 1. (This case has already
been derived in [4].)

2. Non-deterministic starting point (o # 0)

(a) If 02 = 6o, Equation (8) amounts to

cos(wT) =0,
and thus the increasingly sorted positive solutions are w, = 7% — 5% for n > 1.
(b) If 0o < o, Equation (8) amounts to
(0% = 030) tan(wT) = —ogw,
————
>0

and thus the increasingly sorted positive solutions are w,, € ]"—T’T — 5, %[ forn > 1.



(c) If o2 > o2, Equation (8) amounts to

(030 — 0®) tan(wT) = ogw.
————
>0

There is a unique solution in each interval of the form }%’r, %’T + %[ for £ > 1. There is

another solution on |0, 7% | if and only if o3 > 036 — o2

) 2T
In cases (b) and (c), the numerical value can then be computed using a root-finding method on the
corresponding interval. This is illustrated in Figure 1.

2n
T T

L E]
Sy

s
T

Figure 1: Solutions to Equation (8) in cases (b) and (c).

3 Functional quantization

The quantization of a random variable X valued in a reflexive separable Banach space (F,| - |) consists
in its approximation by Y that takes finitely many values in E. We measure the resulting discretization
error with the L? norm of the difference | X — Y|. If we settle on a fixed maximum cardinal N for Y (£2),
the minimization of the error reduces to the optimization problem.

En(X,|-|) = min {|| X — Projr(X)[[|,, I C E such that [T| < N}, (9)

A solution of (9) is an L?-optimal quantizer of X.

Now let X be a bi-measurable stochastic process on [0, T] verifying fOTIE [|X¢[?] dt < oo, which we
see as a random variable valued in the Hilbert space H = L?([0,T]). We assume that its covariance
function T'X is continuous. In the seminal paper [6], it is shown that, in the centered Gaussian case,
linear subspaces U of H spanned by IN-stationary quantizers correspond to principal components of X,
in other words, are spanned by eigenvectors of the covariance operator of X, that is, its Karhunen-Loéve
eigenfunctions (e)) _..

To perform optimal quantization, the Karhunen-Loéve expansion is first truncated at a fixed order
m and then the R™-valued Gaussian vector constituted of the m first coordinates of the process on its
Karhunen-Loéve decomposition is quantized. We have to determine the optimal rank of truncation d* (V)
(the quantization dimension) and the optimal d*(N)-dimensional quantizer of the first coordinates,

aX (V)
® N (0,A)). The minimal quadratic distortion Ex(X) is given by
j=1

En(X) =) A§+5N<(§)N(0,AJX)).

j>m—+1

If the eigensystem (eff AKX ) is known, we just need to perform the finite-dimensional quanti-

1<n<dX (N)

m
zation of @ N (0, )\JX ) Various algorithms have been devised to deal with this problem, among others,
j=1



Lloyd’s algorithm [5] and the Competitive Learning Vector Quantization (CLVQ) [7]. In Figures 2 and 3,
we show optimal quantizers of the Orntein-Uhlenbeck bridge for different initial variances, mean-reversion
parameters, volatilities and maturities.

Figure 2: Optimal quantization of the Ornstein-Uhlenbeck bridge with parameters T =1, 0 =1, 02 =1,
08 =0,z0=p=Xr=0and N = 10.

Figure 3: Optimal quantization of the Ornstein-Uhlenbeck bridge with parameters 7' = 10, = 1, 0 = 1,
08 =1/2,20=0,u=—1, Xr =1and N = 16.
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