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Properties of the Ornstein-Uhlenbeck bridge

Sylvain Corlay∗

October 21, 2013

Abstract

This note is a study of the Ornstein-Uhlenbeck bridge and its main properties. We present the
derivation of its canonical decomposition in the first section of the paper using filtration enlargement
techniques. In the second section, we present its Karhunen-Loève expansion, for any value of the initial
variance and mean-reversion parameter (or mean-repulsion if negative). In the third section, we present
an application to the optimal functional quantization of the Ornstein-Uhlenbeck bridge.

Keywords: Ornstein-Uhlenbeck bridge, cannonical decomposition, Karhunen-Loève, filtration enlargement,
functional quantization

Introduction

Let θ and µ be two real numbers and σ > 0. The Ornstein-Uhlenbeck process of long-term mean µ, mean-
reversion parameter θ and volatility σ is defined as the solution of the stochastic differential equation

dXt = θ(µ−Xt)dt+ σdWt, (1)

where W is a standard Brownian motion and where X0
L
∼ N

(
x0, σ

2
0

)
is assumed to be independent of W .

The S.D.E. is solved by applying Itô’s lemma to the process Ut := Xte
θt. We obtain

Xt = X0e
−θt + µ

(
1− e−θt

)
+

∫ t

0

σeθ(u−t)dWu,

and

E[Xt] = x0e
−θt + µ

(
1− e−θt

)
, cov (Xt, Xs) =

{
σ2
0e

−θ(s+t) + σ2e−θ(s+t) e2θs∧t−1
2θ if θ 6= 0,

σ2
0 + σ2 s ∧ t if θ = 0.

Let us now consider a finite horizon T > 0. For θ 6= 0, we have

E
[(
Xt − E[Xt|XT ]

)(
Xs − E[Xs|XT ]

)]
= cov(Xt, Xs)−

cov(Xs, XT ) cov(Xt, XT )

Var(XT )

=
1

2θ
e−θ(s+t)

((
2θσ2

0 − σ2
)
+ σ2e2θs∧t

)
−

1

2θ
e−θT

(
σ2eθt +

(
2θσ2

0 − σ2
)
e−θt

) (
σ2eθs +

(
2θσ2

0 − σ2
)
e−θs

)

σ2eθT + (2θσ2
0 − σ2) e−θT

,

and if θ = 0,

E
[(
Xt − E[Xt|XT ]

)(
Xs − E[Xs|XT ]

)]
= σ2

0 + σ2s ∧ t−

(
σ2
0 + σ2t

) (
σ2
0 + σ2s

)

σ2
0 + σ2T

.
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1 Canonical decompositions in the enlarged filtration

1.1 Backgrounds on generalized bridges

Let (Xt)t∈[0,T ] be a continuous centered Gaussian semimartingale starting from 0 on (Ω,A,P) and FX its

natural filtration. Fernique’s theorem ensures that
∫ T

0 E
[
X2

t

]
dt < +∞ (see Janson [5]).

As Alili in [1], we are interested in the conditioning with respect to a finite family ZT := (Zi
T )i∈I of Gaussian

random variables, which are the terminal values of processes of the form Zi
t =

∫ t

0
fi(s)dXs, i ∈ I, for some

finite set of bounded measurable functions f = (fi)i∈I . A generalized bridge for (Xt)t∈[0,T ] corresponding to

f with end-point z = (zi)i∈I is a process
(
Xf,z

t

)
t∈[0,T ]

with distribution Xf,z L
∼ L

(
X
∣∣Zi

T = zi, i ∈ I
)
.

1.1.1 Generalized bridges as semimartingales

Jirina’s theorem ensures the existence of a transition kernel νZT |((Xt)t∈[0,s]) : B(RI) × C0 ([0, s],R) → R+,

corresponding to the conditional distribution L
(
ZT

∣∣((Xt)t∈[0,s]

))
. We make the assumption (H) that, for ev-

ery s ∈ [0, T ) and for every (t 7→ xt) ∈ C0 ([0, s],R), the probability measure νZT |((Xt)t∈[0,s])
(
dz, (xu)u∈[0,s]

)

is absolutely continuous with respect to the Lebesgue measure. We denote by Π(xu)u∈[0,s],T its density. The

covariance matrix of this Gaussian distribution on R
I writes

Q(s, T ) := E

[(
ZT − E

[
ZT

∣∣(Xu)u∈[0,s]

]) (
ZT − E

[
ZT

∣∣(Xu)u∈[0,s]

])∗∣∣∣(Xu)u∈[0,s]

]
.

Hence, this hypothesis is equivalent to assume that

Q(s, T ) is invertible for every s ∈ [0, T ). (H)

Theorem 1.1 (Radon-Nikodym derivative). Under the (H) hypothesis, for any s ∈ [0, T ), and for PZT
-

almost every z ∈ R
I , P

[
·
∣∣ZT = z

]
is equivalent to P on FX

s and its Radon-Nikodym density is given by

dP
[
·
∣∣ZT = z

]

dP

∣∣∣∣∣
FX

s

=
Π(Xu)u∈[0,s],T (z)

Π0,T (z)
.

Proposition 1.2 (Generalized bridges as semimartingales). Let us define the filtration GX,f by GX,f
t :=

σ
(
ZT ,FX

t

)
, the enlargement of the filtration FX corresponding to the above conditioning. We consider the

stochastic process Dz
s :=

dP[·|ZT=z]
dP |FX

s

=
Π(Xt)t∈[0,s],T

(z)

Π0,T (z) for s ∈ [0, T ). Then, under the (H) hypothesis, and

the assumption that Dz is continuous, X is a continuous GX,f -semimartingale on [0, T ).

Theorem 1.1 and Proposition 1.2 were first established in the Brownian case in [1] and extended to Gaussian
semimartingales in [2].

1.1.2 Canonical decomposition of generalized bridges

Now, as X is a continuous
(
FX ,P

)
-semimartingale, we write its canonical decomposition X = V + M .

Following the lines of [2], we define Lz
t :=

∫ t

0

dΠ(Xu)u∈[0,s],T
(z)

Π(Xu)u∈[0,s],T
(z) . Then

d
〈
X,Lz

〉
s
= d

〈
X,E

[
ZT

∣∣(Xu)u∈[0,·]

]〉
s
Q(s, T )−1

(
z − E

[
ZT

∣∣(Xu)u∈[0,s]

])∗
.

Hence M −
〈
X,Lz

〉
is a

(
GX,f ,P

[
·
∣∣ZT = z

])
-martingale, and the canonical decomposition writes X =

(
V +

〈
X,Lz

〉)
+
(
M −

〈
X,Lz

〉)
. The expression for

〈
X,Lz

〉
can be simplified in the two following cases:
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• In the case where X is a martingale, then ∀j ∈ I, E

[
Zj
T

∣∣∣(Xu)u∈[0,s]

]
=

∫ s

0
fj(u)dXu so that

d
〈
X,Lz

〉
s
=

∑

i∈I

fi(s)
∑

j∈I

(
Q(s, T )−1

)
ij

(
zj − E

[
Zj
T

∣∣∣(Xu)u∈[0,s]

])
d〈X〉s. (2)

• In the case where X is a Markov process, for every j ∈ I there exists gj ∈ L2([0, T ]) such that

E

[
Zj
T

∣∣∣(Xu)u∈[0,s]

]
=

∫ s

0 fj(u)dXu + gj(s)Xs. Hence, if one assumes that functions (gj)j∈I have finite-

variations, which is the case if X is an Ornstein-Uhlenbeck process, then d
〈
X,E

[
ZT

∣∣(Xu)u∈[0,·]

]〉
s
=(

f(s) + g(s)
)
d〈X〉s, and thus

d
〈
X,Lz

〉
s
=

∑

i∈I

(fi(s) + gi(s))
∑

j∈I

(
Q(s, T )−1

)
ij

(
zj − E

[
Zj
T

∣∣∣(Xu)u∈[0,s]

])
d〈X〉s. (3)

1.2 The Ornstein-Uhlenbeck bridge with a deterministic starting point (σ2

0
= 0)

We perform the conditioning of a centered Ornstein-Uhlenbeck process X starting from 0 by XT = z. With
the same notation as the previous section, we have

d 〈X,Lz〉s = d
〈
X,E

[
ZT

∣∣(Xu)u∈[0,·]

]〉
s
Q(s, T )−1

(
z − E

[
ZT

∣∣(Xu)u∈[0,s]

])
.

We have E
[
XT

∣∣(Xu)u∈[0,s]

]
= Xse

−θ(T−s) and thus d
〈
X,E

[
ZT

∣∣(Xu)u∈[0,·]

]〉
s
= e−θ(T−s)d〈X〉s = σ2e−θ(T−s)ds.

In this case, Equation (3) simplifies to

d〈X,Lz〉s = e−θ(T−s)σ2Q(s, T )−1
(
z −Xse

−θ(T−s)
)
ds. (4)

Moreover

Q(s, T ) = E

[(∫ T

s

σeθ(s−T )dWu

)2]
= σ2e−2θT

∫ T

s

e2θsds,

and thus

Q(s, T )−1 =

{
2θ
σ2 e

−2θT 1
e2θT −e2θs if θ 6= 0,
1

σ2(T−s) if θ = 0.

If θ 6= 0, plugging this into (4) yields

d〈X,Lz〉s = e−θ(T−s)2θe2θT
1

e2θT − e2θs

(
z −Xse

−θ(T−s)
)
ds = 2θ

zeθ(T+s) +Xse
2θs

e2θT − e2θs
ds. (5)

Finally, we obtain the following canonical decomposition

dXt = −θXtdt+ 2θ
zeθ(T+t) +Xte

2θt

e2θT − e2θt
dt+ (θXtdt+ dXt + d〈X,Lz〉t)︸ ︷︷ ︸

(GW ,P[·|ZT=z])-martingale

.

By Lévy’s characterization of Brownian motion, the martingale part is of the form σdW̃t where W̃ is a(
GW ,P[·|ZT = z]

)
-Brownian motion. When θ = 0, we obtain the classical Brownian bridge

dXt =
z −Xt

T − t
dt+ σdW̃t.
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1.3 The corresponding generalized Brownian bridge

Still in the case where σ2
0 = 0, the Ornstein-Uhlenbeck process Xt is in one-to-one correspondence with

Zt :=
∫ T

0
eθudWu. Hence, the Brownian motion W conditioned by ZT = z is a generalized Brownian

bridge in the sense of Alili [1] corresponding to (fi)i∈I = (f : s 7→ eθs), and thus we know its canonical

decomposition. We have E
[
ZT

∣∣(Wu)u∈[0,t]

]
=

∫ t

0 e
θudWu, and ZT −E

[
ZT

∣∣(Wu)u∈[0,t]

]
=

∫ T

t eθudWu, which
yields

Q(s, T ) = E

[(∫ T

s

eθudWu

)2]
=

∫ T

s

e2θudu.

Hence, if θ 6= 0, Q(s, T )−1 = 2θ
e2θT −e2θs

. Otherwise, Q(s, T )−1 = 1
T−s .

d〈W,Lz〉s = f(s)Q(s, T )−1
(
z −

∫ s

0
f(u)dWu

)
ds

=

{
2θe2θs

e2θT −e2θs

(
ze−θs − Xs

σ

)
ds = 2θe2θs

e2θT −e2θs
XT eθ(T−s)−Xs

σ ds if θ 6= 0,
XT−Xs

σ(T−s) ds if θ = 0.

Plugging this into Equation (6) yields the canonical decomposition of the corresponding generalized bridge.

W = 〈W,Lz〉 + (W − 〈W,Lz〉) .︸ ︷︷ ︸
=W̃ , (GW ,P[·|ZT=z])-Brownian motion

(6)

If we plug this into the S.D.E. (1), we retrieve the canonical decomposition derived in the previous section.

1.4 The case of a non-deterministic starting point (σ2

0
6= 0)

The conditional distribution of X0 knowing XT , N (E[X0|XT ],Var(X0|XT )) is explicit from the covariance
and expectation of the Ornstein-Uhlenbeck bridge given in the introduction.

From Equation (1), we can write Xt =
(
X0e

−θt + µ
(
1− e−θt

)) ⊥⊥
+

∫ t

0

σeθ(u−t)dWu

︸ ︷︷ ︸
=:X̃t

. X̃t depends on

XT only through its dependence on X̃T = XT − X0e
−θT − µ

(
1− e−θt

)
. Thus, we just need to plug z =

XT −X0e
−θT −µ

(
1− e−θt

)
in (5) to obtain the canonical decomposition of X̃ with respect to

(
GW ,P[·|XT ]

)
.

2 Karhunen-Loève expansions

In this section, we derive the Karhunen-Loève expansion of the Ornstein-Uhlenbeck bridge of any initial
variance or mean-reversion parameter. The method of derivation is the same as the one used for the Ornstein-
Uhlenbeck process in [3].

The covariance operator of the Ornstein-Uhlenbeck bridge is defined by TOBf (s) :=
∫ T

0 c(s, t)f(t)dt,
where c(s, t) is the covariance function E[(Xt − E[Xt|XT ])(Xs − E[Xs|XT ])] given in the introduction.

Proposition 2.1. If f ∈ C([0, T ]) and g := TOBf , then

g′′ − θ2g = −σ2f
g(T ) = 0, σ2

0g
′(0) =

(
σ2 − θσ2

)
g(0)

Conversely, if f ∈ C([0, T ]) and g ∈ C2([0, T ]) satisfy these three properties, then g = TOBf .

This is proved by differentiating twice under the integral signs and evaluating at t = 0 and t = T .
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As a consequence, TOBf = λf is equivalent to g being the solution of the O.D.E.

λg′′ + (σ2 − λθ2)g = 0
g(T ) = 0, σ2

0g
′(0) = (σ2 − θσ2

0)g(0).

Hence, the Karhunen-Loève eigenvalues and unit eigenfunctions of the Ornstein-Uhlenbeck bridge are

λOB
n =

σ2

w2
n + θ2

and eOB
n (t) =

(
T

2
−

1

4wn
sin (2wnT )

)−1/2

sin(wn(t− T )), (7)

where (wn)n≥1 are the strictly positive and increasingly sorted solutions to

(σ2 − θσ2
0) sin(wT ) = −wσ2

0 cos(wT ). (8)

1. Deterministic starting point (σ0 = 0)

Equation (8) then amounts to sin(wT ) = 0, and thus wn = nπ
T for n ≥ 1. (This case is derived in [4].)

2. Non-deterministic starting point (σ0 6= 0)

(a) If σ2 = θσ2
0 , Equation (8) amounts to

cos(wT ) = 0,

and thus the increasingly sorted positive solutions are wn = nπ
T − π

2T for n ≥ 1.

(b) If θσ2
0 < σ2, Equation (8) amounts to

(
σ2 − σ2

0θ
)

︸ ︷︷ ︸
>0

tan(wT ) = −σ2
0w,

and thus the increasingly sorted positive solutions are wn ∈
]
nπ
T − π

2T ,
nπ
T

[
for n ≥ 1.

(c) If θσ2
0 > σ2, Equation (8) amounts to

(
σ2
0θ − σ2

)
︸ ︷︷ ︸

>0

tan(wT ) = σ2
0w.

There is a unique solution in each interval of the form
]
kπ
T + π

2T ,
(k+1)π

T

[
for k ≥ 1. There is

another solution on
]
0, π

2T

[
if and only if σ2

0 > σ2
0θ − σ2.

In cases (b) and (c), the numerical value can then be computed using a root-finding method on the corre-
sponding interval. This is illustrated in Figure 1.

3 Functional quantization

The quantization of a random variable X valued in a reflexive separable Banach space (E, | · |) consists in
its approximation by Y that takes finitely many values in E. We measure the resulting discretization error
with the L2 norm of the difference |X − Y |. If we settle on a fixed maximum cardinal N for Y (Ω), the
minimization of the error reduces to the optimization problem.

EN (X, | · |) = min
{∥∥ |X − ProjΓ(X)|

∥∥
2
, Γ ⊂ E such that |Γ| ≤ N

}
, (9)

A solution of (9) is an L2-optimal quantizer of X .

Now let X be a bi-measurable stochastic process on [0, T ] verifying
∫ T

0 E
[
|Xt|2

]
dt < ∞, which we see as

a random variable valued in the Hilbert space H = L2([0, T ]). We assume that its covariance function ΓX is
continuous. In the seminal paper [7], it is shown that, in the centered Gaussian case, linear subspaces U of H

5
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π
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3π
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2π
T

5π
2T

0

σ 2
0 > θσ 2

0 −σ2 σ 2
0 ≤ θσ 2

0 −σ2

θσ 2
0 < σ2

Figure 1: Solutions to Equation (8) in cases (b) and (c).

spanned by N -stationary quantizers correspond to principal components of X , in other words, are spanned
by eigenvectors of the covariance operator of X , that is, its Karhunen-Loève eigenfunctions

(
eXn

)
n≥1

.

To perform optimal quantization, the Karhunen-Loève expansion is first truncated at a fixed order m and then
the R

m-valued Gaussian vector constituted of the m first coordinates of the process on its Karhunen-Loève
decomposition is quantized. We have to determine the optimal rank of truncation dX(N) (the quantization

dimension) and the optimal dX(N)-dimensional quantizer of the first coordinates,
dX(N)⊗
j=1

N
(
0, λX

j

)
. The

minimal quadratic distortion EN (X) writes

EN (X)2 =
∑

j≥m+1

λX
j + EN

( m⊗

j=1

N
(
0, λX

j

))2

.

If the eigensystem
(
eXn , λX

n

)
1≤n≤dX(N)

is known, we just need to perform the finite-dimensional quantization

of
m⊗
j=1

N
(
0, λX

j

)
. Various algorithms have been devised to deal with this problem, among others, Lloyd’s

algorithm [6] and the Competitive Learning Vector Quantization (CLVQ). A review of these methods is
available in [8]. In Figures 2 and 3, we show optimal quantizers of the Orntein-Uhlenbeck bridge for different
initial variances, mean-reversion parameters, volatilities and maturities.
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