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Automatic foreground extraction via joint
CRF and online learning

W. Zou, K. Kpalma and J. Ronsin
ELECT
A novel approach is proposed for automatic foreground extraction
which aims to segment out all foreground objects from the background
in the image. The segmentation problem is formulated as an iterative
energy minimisation of the conditional random field (CRF), which
can be efficiently optimised by graph-cuts. The energy minimisation
is initialised and modulated by a soft location map predicted by a dis-
criminative classifier which is learned on-the-fly from a set of segmen-
ted exemplar images. Iteratively minimising the CRF energy leads to
optimal segmentation. Experimental results on the Pascal visual
object classes (VOC) 2010 segmentation dataset, a widely acknowl-
edged difficult dataset, show that the proposed approach outperforms
the state-of-the-art techniques.
Introduction: Foreground extraction is of great practical importance in a
variety of applications in image processing and computer vision, such as
object recognition, object tracking, content-based image retrieval and
image editing. According to the need for human involvement, fore-
ground extraction can be classified into two categories: interactive fore-
ground extraction and the automatic one. The interactive foreground
extraction, which requires the human being to roughly separate
objects from the background like drawing a bounding box surrounding
objects, has been extensively studied, e.g. [1, 2]; however, automatic
foreground extraction is not fully investigated, mainly due to the diffi-
culties to automatically localise objects in complex scenes.

Recently, exemplar images, in which foreground objects have been
manually segmented from the background, are shown to be helpful
cues for automatic foreground extraction. In [3], geometrically similar
images are retrieved by comparing global image descriptors GIST [4],
and the object location map of the input image is created by fusing seg-
mentation masks of k-nearest exemplar images. Instead, in [5], the
object location map is modelled via windows likely to contain objects
of exemplar images. Such windows are detected by a state-of-the-art
object detection algorithm. In this Letter, we term the former approach
as ‘global transfer’, and the latter one as ‘window transfer’. The main
and common drawback of these two approaches is the lack of ability
to localise objects in a complex scene whose background is cluttered.
On the one hand, the global transfer [3] suffers from limited robustness
of GIST to handle geometric deformations. On the other hand, transfer-
ring windows to an image is sensitive to object variations, e.g. position,
rotation and scale.

To address the aforementioned issues, this Letter proposes a novel
approach which combines online learning with iterative energy minimis-
ation of the conditional random field (CRF). Specifically, the object
location map is predicted by a binary classifier which is online-learned
from exemplar images whose ‘appearances’ are similar to that of the
query image. Then, this location map is exploited to initialise and
modulate the energy minimisation which leads to a binary labelling.
The optimal segmentation is obtained when the minimisation reaches
convergence.

Exemplar-based online prediction: To retrieve a set of exemplar images
similar to the query image, we use scale-invariant feature transform
(SIFT) [6] as a local feature for image representation. SIFT descriptors
are extracted within 16 × 16 patches with a step-size of two pixels.
Standard bag-of-features (BOF) is used as an intermediate represen-
tation of SIFT descriptors by associating each of them with one
feature vector of the visual dictionary learned by K-means. The visual
words are accumulated on three levels of a spatial pyramid (1 × 1, 2 ×
2, 4 × 4) of image. Thus, an image is represented by a BOF vector
with the dimensionality D = (1 + 4 + 16) × t, where t is the size of the
visual dictionary, set to 400 in our experiments.

With the BOF image representation, k-nearest exemplar images,
issued from the training dataset, are retrieved for the query image by
measuring χ2 distances of images features. These exemplar images are
then used to learn a region-based foreground/background classifier
which is exploited to predict an object location map of the input
image. For this purpose, the query image and its k-nearest exemplar
images are segmented into superpixels by using the contour-based seg-
mentation algorithm gPb [7] (globalised probability of boundary). To
describe these superpixels, SIFT and self-similarity (SSIM) [8] are
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used as local feature descriptors. In addition, BOF along with a
spatial pyramid (two levels) visual words accumulation on the super-
pixel are adopted, where the SIFT and SSIM dictionaries are with
sizes of 2000 and 800, respectively. Therefore, a superpixel is rep-
resented by a feature vector which is the combination of BOF vectors
of SIFT and SSIM.

For superpixel classification, a standard support vector machine
(SVM) is utilised. Suppose that {f1, f2, …, fN} are feature vectors
extracted from N superpixels of k-nearest exemplar images, and their
corresponding class labels are {y1, y2, …, yN}, yn∈ { + 1, − 1}, where
yn = + 1(yn = − 1) indicates the superpixel n mainly belonging to the
foreground (background). The primal SVM optimisation problem is

min
w

1

2
‖w‖2 + C

∑N
n=1

ℓ ynw
Tf n

( )
(1)

where ℓ(u) = max (0, 1− u) is the hinge loss function, C is the regular-
isation constant set to 20 in our experiments, w is the separating hyper-
plane and can be obtained by solving formulation (1). With the learned
w, a test superpixel m represented by a feature vector fm can obtain a
classification score

sm = wTfm (2)

where sm is typically in the range of [–3, 3], in which the positive value
represents the superpixel mmore likely to be the foreground and conver-
sely the negative value indicates that it is the background. Therefore, the
object location map of the input image can be obtained by computing
the classification scores of all its superpixels and assigning these
scores to corresponding pixels. To create a probabilistic location map,
a sigmoid is fitted to each of these classification scores.

So far, foreground objects have been roughly extracted by threshold-
ing the object location map. Unfortunately, the SVM classification
scores are not always reliable as the training exemplars may not be
matched well with the input image. In addition, the superpixels are pre-
dicted independently, without considering the relationship between
neighbouring superpixels, and may result in noisy segmentation. To
make the system more robust and obtain coherent segmentation, we
propose a joint segmentation model based on the CRF and the object
location map predicted by the SVM.

Segmentation with joint CRF and SVM: Given an input image X = {x1,
x2, …, xN} with object location map S = {s1, s2, …, sN}, predicted by
the online-learned SVM classifier, and contour map E = {e1, e2, …,
eN}, created by the gPb segmentation, foreground/background seg-
mentation can be explicitly formulated as a binary labelling problem:
finding a labelling set L = {l1, l2, …, lN} to represent the segmentation
of X, where ln = 1(ln = 0) represents pixel xn∈X belonging to the fore-
ground (background). The segmentation model is defined as energy
minimisation of pairwise CRFs

E(L) =
∑

{n, j}[Y

Qn, j ln, lj
( )+∑

n

Ln ln( ) (3)

where ϒ is a set of all pairs of neighbour pixels (four-way connectivity),
Θn,j is the smoothness term which ensures that the overall labelling is
smooth by considering the labels of neighbour pixels, Λn is the data
term which measures the likelihood degree of the pixel to be labelled
as foreground or background.

The smoothness term is defined as

Qn, j ln, lj
( ) = 0, if ln = lj

C(n, j), otherwise

{
(4)

where Ψ(n, j) is a function defined based on contour map E

C(n, j) = w

dis(n, j)
exp −b en − ej

( )2{ }
(5)

here dis(·) indicates the spatial Euclidean distance between neighbouring
pixels, the constant parameter w is set to 50, β is defined as

b = 1

2mean en − ej
( )2( ) (6)

From (5) we can observe that the segmentation boundary is promoted to
be aligned with the contour computed by gPb.
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The data term is derived from image colour distributions and object
location map S. It is defined as

Ln ln( ) = −log F ln( )V xn|ln( )( ) (7)

where Φ(ln) is the location prior of pixel n to be foreground or back-
ground, Ω is an appearance model predicting the foreground or back-
ground probability.

The location prior of pixel n for the foreground model is defined as

F ln = 1( ) = s(n) (8)

Similarly, the location prior of pixel n for the background model is
defined as

F ln = 0( ) = 1− s(n) (9)

Following the interactive foreground extraction algorithm of grabcut
[2], the appearance model is characterised by two Gaussian mixture
models (GMMs), one is for the foreground and the other one is for
the background. Each of them is a full-covariance Gaussian mixture
with five components.

The remaining problem is how to obtain the parameters of GMMs. In
the interactive foreground extraction, these parameters are learned from
the foreground/background pixels separated by a human being.
However, in the automatic foreground extraction, human involvement
is not allowed. The solution for this problem is to leverage the object
location map predicted by the SVM. Those pixels with object location
probability larger than a threshold value η are selected for foreground
appearance modelling, and the other pixels are for background appear-
ance modelling. The threshold value η is defined as

h = min (tmean(S), 4max (S)) (10)

where τ and ϖ are predefined parameters, which are set to 0.8 and 0.6,
respectively, in our experiments. With the well-defined smoothness and
data terms, foreground extraction is obtained by iteratively minimising
the energy function of (3) via efficient graph-cuts [1].

Experimental results: The proposed algorithm is evaluated on the
Pascal visual object classes (VOC) 2010 segmentation dataset [9],
which contains 1928 images with 20 object classes plus background.
As in the previous works [3, 5], the standard training set, containing
964 images, is for training, and the remaining images are used for
testing. Note that, the proposed approach is a generic foreground/back-
ground segmentation, whereas object categories information is not used.
The segmentation performance is measured by an average union (AvU)
metric defined as

AvU = 1

T

∑T
t=1

Pt
⋂

Gt

Pt
⋃

Gt
(11)

where T is the number of test images, Pt is the set of predicted fore-
ground pixels of test image t and Gt is the ground-truth of the
foreground.

For performance comparison, we use three baselines: plain grabcut
[2] and two state-of-the-art foreground extraction algorithms which
are global transfer [3] and window transfer [5]. The grabcut [2] is an
interactive segmentation algorithm. To enable automatic segmentation,
a centre box occupying 50% area of the image is used to initially separ-
ate the foreground pixels from the background pixels for the grabcut.

System performance is first evaluated by varying the number of
nearest neighbours k. Fig. 1 summarises the evaluation. For comparison,
results computed from the simple thresholding segmentation of the
object location map created by the SVM prediction, and the performance
of the global transfer [3], which is the most related to our approach, are
also presented in Fig. 1. Clearly, even segmentation by only threshold-
ing the object location map (curve B) is comparable with the global
transfer [3] (curve C). The proposed full method (curve A), which in-
tegrates the object location map to the CRF energy minimisation,
improves the performance further.
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A: our full method (SVM + CRF)
B: segmentation only based on SVM prediction
C: global transfer [3]

Fig. 1 Segmentation performance by varying the number of nearest neigh-
bours k

Curve A shows the performance of our full method; curve B shows the per-
formance of segmentation by thresholding the object location map created by the
SVM prediction and curve C presents the performance of global transfer [3]

Table 1 shows the AvU scores of all methods. Among the baselines,
window transfer [5] obtains the best result with 47.8% AvU; and global
transfer [3], reported with k = 40, is ranked second with 42.8% AvU. As
can be observed, the proposed approach improves the performance to
49.3% and achieves the best.

Table 1: AvU on Pascal VOC 2010 dataset
Method
S LETT
Grabcut
ERS
Global transfer
29th Aug
Window transfer
ust 2013
Proposal
AvU (%)
 30.0
 42.8
 47.8
 49.3
Conclusion: We have presented a novel automatic foreground extrac-
tion algorithm which combines online learning and iterative CRF
energy minimisation. The experimental evaluations demonstrate that
the proposed approach consistently outperforms the state-of-the-art
methods.
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