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(ΩDated: October 21, 2013)

Abstract

We revisit the famous problem of quantum slit diffraction of a three-dimensional Gaussian wave

packet, taking into account the diffraction in time phenomenon for a reflective or absorbing slit.

We first recall the theory of diffraction in space and in time to give an explicit integral formula

for the single-slit propagator (for a two-dimensional aperture) assuming that the time of opening

the aperture coincides with the time of emission of the particle. Then we derive a semiclassical

expression for the amplitude when the parameter µ = m|r|2/(~t) is large, where r is the position

of the particle with mass m detected on the screen at the time t. We also give corrections to

the law giving the distance between two fringes in the Fraunhofer regime when the distances of

the apparatus in the propagation direction are large compared to the size of the aperture of the

slit. To conclude, we discuss the phenomenological consequences and we give a new perspective to

investigate the quantum diffraction phenomenon particulary for the cold atom slit experiment.
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I. INTRODUCTION

The quantum slit diffraction experiment of electrons was first realized experimentally in

1961 by C. Jönsson, see1 and2, but the first experimental proof of the quantum diffraction

for individual electrons was shown in the seventies by O. Donati, P. G. Merli, G. P. Missiroli
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and G. Pozzi,3,4 using electron biprisms and later independently by A. Tonomura, J. Endo,

H. Ezawa, T. Matsuda and T. Kawasaki5. The quantum diffraction phenomenon has been

interpreted via the famous thought experiment imagined by Richard Feynman in6. We

mention that this double slit experiment has recently also been done experimentally7 in

a situation where the probability distribution for individual electron on the screen was

observed (statistically) while varying the position of a mask hiding one, two or none of the

slits. In addition, nano-slit electron experiments were recently performed, see for example8.

Futhermore, slit experiment were carried out with neutrons, see9 and the references therein,

ultracold atoms10 and with heavy molecules such as C60, see
11.

In12, Feynman also treated in detail a quantum slit diffraction model using the path

integral formalism to compute the quantum slit propagator. The model consists of a one-

dimensional slit appearing in the motion of an electron at a time τ > t0 = 0 and then removed

instantaneously, the electron striking the screen at a time t > τ . Actually, this means that

the motion of the electron from the source to the screen consists of two independent motions,

the first from the source to the slit and the second one from the slit to the screen. Under this

hypothesis, the quantum propagator for the single-slit system can be written as a product

of the free propagator in the x-direction orthogonal to the slit and the propagator along the

one-dimensional slit axis z: see13 and14 for pedagogical presentations of this model. This so-

called “truncation approximation”19 is convenient and valid under certain conditions. First,

we suppose that the particle passes through the aperture at the classical time τ = tc =

D/vx = (D/x)t, where D is the distance between the emittor and the center of the slit, x

is the distance between the emittor and the screen, and vx = x/t is the classical velocity

related to the wave length λ by the de Broglie relation λ ≈ 2π~/(mvx) = 2π~t/(mx). Here

we assume v ≈ vx because we have a≪ x, where a is the size of the slit, and we take z ≪ x

where z is the position of the particle detected on the screen. Moreover, we also assume

that the motion along the x-axis is classical whereas the one parallel to the screen (in the z

direction) is quantum. The main aim of this article is so to find the condition justifying the

latter assumption, i.e. the classical behavior of the particle along the x-axis, independently

of the fact that we consider the aperture of the slit to be relatively small, and also to give

a correction to the single-slit propagator formula and to analyse the higher-order correction

to the probability density function for different regimes.

At this stage, we should mention that another curious quantum diffraction phenomenon
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was imagined in 1952 M. Moshinsky15. He showed that for a monochromatic plane wave

moving along the one-dimensional line, if a perfectly absorbing screen is placed at a fixed

position on the axis at the times 0 < t < t1 and is removed at the time t1, the probability

density function would be similar to the one observed for the diffraction in space by a half-

plane. By analogy, therefore, we call this phenomenon diffraction in time, and it was first

observed experimentally in 1997 by the cold atom team of the Kastler Brossel Institute

in Paris, see16. In the mean time, the problem of diffraction in both space and time of

monochromatic plane waves for a perfectly reflective slit-screen was treated in17. They used

the Green’s function method, giving the general solution of the diffusion equation18 in the

half-space delimited by the plane of the slit with given boundary conditions. Recently, in19,

another approach was suggested to treat the space and time diffraction problem but for a

Gaussian wave packet and for a perfectly absorbing screen.

In this article, we use the Brukner-Zeilinger approach17 to revisit the quantum slit diffrac-

tion of a Gaussian wave packet. In Section II, we introduce the following model. Consider a

particle, modelled by a three-dimensional Gaussian wave packet of width σ, which is emitted

at the time t0 = 0 from the position x0 < 0, y0 = 0, z0 = 0. The aperture of the slit is

closed until it is opened at the time t1 ≥ 0 after which the wave packet propagates from a

rectangular aperture of the slit (centered at x = 0) to a screen (centered at x > 0) where the

position (y, z) of the particle is detected at a time t > t1. In Section III, we derive an explicit

integral formula for the single-slit propagator (for a rectangular aperture) for all boundary

conditions on the plane of the slit, in the case where the times of emission of the particle

and of opening of the slit coincide: t1 = t0 = 0. After that, we will show that there is a

semiclassical transition, when the parameter µ = m|r|2/(~t) is large, where r is the position

of the particle detected on the screen at the time t. We will also interpret the semiclassical

propagator formula as a sum over classical paths going through the aperture at different

times depending on the position at which the particle passes through the slit. To illustrate

the semiclassical transition we calculate numerically the probability density function for a

narrow Gaussian wave packet , σ ∼ 0. In Section IV we give a correction to the truncation

approximation propagator in the Fraunhofer regime when the dimensions of the aperture

are small compared to the distance between the slit and the screen. Then we give a formula

for the shift in the distance between two successive minima of the probability distribution

function compared to the classical result. In the last section, we will discuss an experimental
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perspective to the diffraction pattern for a relatively large aperture of the slit.

II. DIFFRACTION IN SPACE (DIS) AND IN TIME (DIT) OF A LOCALIZED

WAVE PACKET

The aim of this section is to recall the theory of diffraction in space and time and to give

a general solution to the Schrödinger equation for an initial Gaussian wave packet on the

half space delimited by a plane. The purpose of this study is to give the physical ingredients

and the mathematical tools to treat the problem of the slit diffraction beyond the truncation

approximation. The latter main problem will be explored in the subsequent sections.

A. Basic set up

The diffraction-in-time experiment consists of opening a shutter at position x1 = 0 at a

time t1 ≥ 0 and observing the particle at a point x > 0 after the opening time t−t1 > 0. In15

as well as in17, the wave at the source is considered to be a monochromatic plane wave. Here

we consider, as in19, a localized wave packet (Gaussian), but we follow the method developed

in17 to find the general solution. To understand the difference between the localized wave

packet versus plane wave, we notice that the phase of the wave is non-linear in space and

in time (for one dimension ϕt(x) =
mx2

2~t
) and so the coordinate and time of emission of the

localized wave has to be taken into account (which is not the case for a plane wave since

the phase is linear in time, ϕt(x) = kx − ~k2t
2m

). Thus, for the truncation approximation

model, the half-plane diffraction amplitude for a Gaussian wave packet is given by Fresnel

integrals (see14) whereas for a plane wave this amplitude is given by the Fourier transform of

the shape of the aperture (for example of a two dimensional gate function for a rectangular

aperture). We will see that the result for the space diffraction of a localized wave packet by

an half-plane is actually similar to the so-called “diffraction in time”.

To give a general solution of the diffraction in space and time problem, we first write the

Schrödinger equation for the wave function of the particle moving in the apparatus:

~2

2m
∇2ψ(r, t) + i~ ∂

∂t
ψ(r, t) = 0

ψ(r, t) = 0 for x > x1 and t < t1, and ψ(r1, t) = φ(r1, t) for t > t1.
(1)
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Here we fixed the initial condition in the half-plane to be zero at times t < t1 and inhomo-

geneous Dirichlet boundary conditions on the plane of the slit x = x1 for t > t1. In17, the

boundary condition is taken to be a monochromatic plane wave φ(r1, t) = e−iω0t, whereas

here we will consider a localized wave packet (Gaussian).

We would like to write the solution of (1) using the point source method by computing

the Green function solution of the equation:18

~2

2m
∇2G(r, t, r′, τ) + i~

∂G(r, t, r′, τ)

∂t
= i~δ3(r− r′)δ(t− τ) (2)

with the causality conditions:

G(r, t < τ, r′, τ) = 0, ∇G(r, t < τ, r′, τ) = 0 (3)

The free Green function for infinite volume with the conditions (3) is:

G0(r− r′; t− τ) =

(
m

2iπ~(t− τ)

)3/2

e
im|r−r

′ |2

2~(t−τ) θ(t− τ) (4)

Here we recall the solution of the Schrödinger equation (1) and we refer the reader to17

and18 for more details:

ψ(r, t) =

∫

V

d3r′G(r, t, r
′

, t1)ψ(r
′

, t1)

+
i~

2m

∫ t

t1

dτ

∫

∂V

dS1 [G(r, t, r1, τ)∇r1ψ(r1, τ)− ψ(r1, τ)∇r1G(r, t, r1, τ)] (5)

Here ∂V is the boundary of the half-plane, i.e. the 2-dimensional surface x = x1.

In the following, we denote by r⊥ = (y, z) the coordinates in the plane orthogonal to

the x-axis and r⊥,1 = (y1, z1) the same at the shutter. We consider general homogeneous

conditions for the Green function:

G(r, t, r1, τ) = λ1G0(x− x1, r⊥ − r⊥,1; t− τ) + λ2G0(x+ x1, r⊥ − r⊥,1; t− τ) . (6)

By a direct calculus we have :

∂x1G(r, t, r1, t1)|x1=0 = (−λ1 + λ2)
im

~

x

t− τ
G0(x, r⊥ − r⊥,1; t− t1) (7)

In particular we have the following special cases:

(i) for λ1 = 1 λ2 = −1, we have the homogeneous Dirichlet conditions, G(r, t, r1, τ)|x1=0 = 0

(ii) for λ1 = 1 λ2 = 1, we get the homogeneous Neumann conditions, ∂x1G(r, t, r1, τ)|x1=0 = 0
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(iii) for λ1 = 1 λ2 = 0, we get the free Green’s function G(r, t, r1, τ) = G0(r− r1; t− τ)

Notice that the volume is the half-space to the right-hand side of the shutter V =

[0,+∞) × R × R and we consider that the initial wave function vanishes in this domain

ψ(r′, t1) = 0, if x′ > 0, with r′ = (x′, y′, z′). Then by (5), we get the following solution :

ψ(r, t) =
i~

2m

∫ t

t1

dτ

∫

∂V

dS1 [G(r, t, r1, τ)∇r1ψ(r1, τ)− ψ(r1, τ)∇r1G(r, t, r1, τ)]x1=0 . (8)

Note that dS1 is the elementary boundary surface vector orthogonal to the plane at the

point r1 and pointing outward of the volume (i.e. dS1 = −dy1dz1ex). On the surface of the

aperture ∂V , we consider that after opening the shutter, the wave function is a Gaussian

wave packet which was emitted at time t0 = 0, and therefore given by the following wave

function at each point r1 ∈ ∂V :

ψ(r1, τ) =

∫

R3

dR G0(r1 −R; τ)φ(R, 0)θ(τ − t1) , (9)

where the normalized Gaussian wave packet φ is given by:

φ(R, 0) =
1

(2πσ2)3/4
e−

|R−r0|
2

4σ2 , (10)

where R = (X, Y, Z) and so X denotes the coordinate along the x-axis. The probability

density for the initial wave packet is such that |φ(R, 0)|2 → δ3(R− r′) when σ → 0. In the

sequel we will consider the case that σ is small compared to the distance |x1−x0| between the

position x0 of the center of the Gaussian of the wave packet and the position of the shutter x1.

Remark. To relate the conditions (9) to the condition in17, let us rewrite the initial

condition at the emission of the wave packet as a Gaussian distribution of plane waves:

φ(R, 0) =

∫

R3

dk ϕk(r0 −R, 0)e−
σ2

2
k2

(11)

where φk(r0 − R, 0) = eik·(r0−R). Then, if we choose the same boundary condition on the

surface (x1 = 0, y1, z1) for the plane waves defined just above as the one considered in17:

ϕk(r0 −R, τ) = eik·(r1−r0)e−iωτθ(τ − t1) (12)

with the dispersion relation ω = ~k2

2m
, we directly get (9) from (12) and (11). Notice that

in (10) we have arbitrarily chosen the initial wave vector to be zero, but we could generally
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set:

φk0(R, 0) =
1

(2πσ2)3/4
e−

|R−r0|
2

4σ2 eik0·(r0−R) , (13)

where the initial wave vector is k0. However, in the following, we will assume that σ is close

to zero and so there will not be a privileged initial wave vector, which is why we take k0 = 0

in the sequel.

By (8) and (9), we get the following formula

ψ(r, t) =

∫

R3

dR K(r, t,R, 0|∂V, t0)φ(R, 0) (14)

where the propagator is defined by:

K(r, t,R, 0|∂V, t1) ≡
i~

2m

∫ t

t1

dτ

∫

∂V

dS1 · [G(r, t, r1, τ)∇r1G0(r1 −R, τ)−G0(r1 −R, τ)∇r1G(r, t, r1, τ)]x1=0

(15)

Remark. To avoid confusion, we stress that (14) is different from the volume integral term

of the general solution (5): we have just rewritten (8) using the expression (15) and the

integral (9).

Since

∇r1G0(r1 −R, τ) =
im

~

r1 −R

τ
G0(r1 −R, τ)

∇r1G(r, t, r1, τ) =
im

~

(
−λ1

r− r1

t− τ
+ λ2

r+ r1

t− τ

)
G0(r− r1, τ)

we get:

K(r, t,R, 0|∂V, t1) =

−1

2

∫ t

t1

dτ

∫

∂V

dS1·
[
r1 −R

τ
(λ1 + λ2) + λ1

r− r1

t− τ
− λ2

r+ r1

t− τ

]

x1=0

G0(r−r1, t−τ)G0(r1−R, τ)|x1=0

(16)

B. One-dimensional diffraction in time of a localized wave packet

Consider the one-dimensional diffraction-in-time problem for a Gaussian wave packet

emitted at x0 < 0 at the time 0. By similar arguments to those leading to (16), we get, for
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general boundary conditions, the following propagator:

K(x, t,X, 0|x1 = 0, t1) =

∫ t

t1

dτ

[−X
τ
η1 +

x

t− τ
η2

]
G0(x, t− τ)G0(−X, τ) (17)

where we put

η1 =
1

2
(λ1 + λ2) (18)

η2 =
1

2
(λ1 − λ2) . (19)

Notice that choosing η ≡ η2 = 1 − η1 , η ∈ C and taking t1 = 0, a direct calculation shows

that the integral in (17) is equal to G0(x−X ; t) and so it gives the general solution for the

free particle motion, see19. Now, if we take η = 1/2 (i.e. λ2 = 0 and λ1 = 1) then we get the

free boundary condition corresponding to the perfectly absorbing shutter-screen condition.

The correct solution for t1 > 0 is equivalent to the Moshinsky solution:

K(0)(x, t,X, 0|x1 = 0, t1) =
1

2

∫ t

t1

dτ

[
−X
τ

+
x

t− τ

]
G0(x, t− τ)G0(−X, τ) (20)

which is easily evaluated (see19):

K(0)(x, t,X, 0|x1 = 0, t1) = G0(x−X ; t)

[
1 +

1

2
erfc

((
x
t1
t
+X

t− t1
t

)√
mt

2i~t1(t− t1)

)]

(21)

Hence, by (17), we get the propagator for general homogeneous boundary conditions,

K(G)(x, t,X, 0|x1 = 0, t1) = λ1K
(0)(x, t,X, 0|x1 = 0, t1)− λ2K

(0)(x, t,−X, 0; x1 = 0, t1) .

(22)

similar to the case of a monochromatic plane wave17. For λ1 = −λ2 = +1 we get Dirichlet

boundary conditions whereas for λ1 = λ2 = +1 we have Neumann boundary conditions.

The solution of the one-dimensional Schrödinger equation for the perfectly absorbing

shutter-screen is obtained by inserting (20) into the one-dimensional version of (14):

ψ(x, t) =

∫ +∞

−∞

dX K(0)(x, t;X, 0|x1 = 0, t1)ψ(X, 0)

=

∫ +∞

−∞

dX K(0)(x, t;X, 0|x1 = 0, t1)
e−

(X−x0)
2

4σ2

(2πσ2)1/4
. (23)

In particular, if we assume that σ ≪ |x0|, we get that ψ(x, t) ≈ (8πσ)1/4K(0)(x, t; x0, 0|x1 =
0, t1).
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Notice that the explicit solution (21) for σ ≪ |x0| is similar to the explicit formulas giving

the propagator and the wave function for the half-plane diffraction problem in the truncation

approximation19. So both diffraction phenomena are analogous and this is why we use the

term “diffraction in time” even for the localized wave packet. In the next subsection, we

will see that we can also construct an analogous Moshinsky shutter problem for a localized

wave packet and show the equivalence between both approaches for general homogeneous

boundary conditions.

III. ONE-SLIT DIFFRACTION MODEL AND ITS SEMICLASSICAL APPROXI-

MATION

In the last section, we gave the theory of diffraction in space and time for a wave packet

and we furnished the general solution of the Schrödinger equation for an initial Gaussian

wave packet passing through an aperture which is opened at a time t1 ≥ t0 = 0, where t0 is

the time of the emission of the initial wave packet. We have also seen that we can interpret

this phenomenon as a diffraction in time by analogy with the diffraction in space. However,

since the main problem of this article is to derive a formula for the slit diffraction problem,

where the aperture is not assumed to be small compared with the distance between the

slit and the screen (and the slit and the source), we would like to interpret the so-called

diffraction in time phenomenon in a different way, where the apparatus is fixed in time (no

shutter) and the problem is stationary. In this section, we apply the theory developed in

the previous section to the slit diffraction problem and give a geometric interpretation for

the propagator. We first give an explicit formula for the propagator with general boundary

conditions, then give its semiclassical expression and comment on the results. We also

give numerical results for intensity patterns on the screen in the delta limit σ → 0 for the

Dirichlet, Neumann and free boundary conditions and comment on the differences. In the

next section, we will use the semiclassical formula of the propagator to give corrections to

the truncation approximation model.
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A. Single-slit diffraction of a narrow Gaussian wave packet

We consider the slit Ωa,b ≡ {x1 = 0}×[−b, b]×[−a, a], and assume that the shutter is open

at the time t1 = 0. The dynamics of the particle obeys the Schrödinger equation (1) and

the boundary conditions are given by (9), (10). Here we consider the general homogeneous

boundary conditions (6). By (16) we get the following formula for the propagator:

K(a,b)(r, t,R, 0) =

∫ t

0

dτ

∫ a

−a

dz1

∫ b

−b

dy1

[−X
τ
η1 +

x

t− τ
η2

]
G0(r− r1, t− τ)G0(r1 −R, τ)

(24)

The integral over the time of the one-point source propagator (for every r1 ∈ ∂V fixed)

can be evaluated explicitly. The resulting formula will be analyzed in the semiclassical limit

using the stationary phase approximation method which yields a semiclassical interpretation

of the propagator. The one-slit propagator is then given by an integral of this one-point

source propagator over the aperture of the slit. Finally, the wave function on the screen at

time t is given by (14), where we consider an initial narrow Gaussian wave packet (10) of

width σ which is small compared to the distance between the center of the Gaussian and

the slit and also to the size of the aperture:

σ ≪ |r0|, a, b.

By (14) we then have the following approximation:

ψ(r, t) = (8πσ2)3/4
∫

R3

dR K(a,b)(r, t,R, 0)
e−

|R−r0|
2

4σ2

(2πσ2)3/2

≈ (8πσ2)3/4K(a,b)(r, t, r0, 0), when σ ∼ 0 (25)

Therefore, in the sequel we will take R = r0 in (24) since the final wave function is just

proportional to the one-slit propagator.

Remark. In the limit σ → 0, we would like to give a formula for the probability density

for the particle to be at the point r on the screen at the time t. This has already been done

for the truncation approximation, see14 and Appendix 1, and the general idea here is similar.

It is important to realize that |ψ(r, t)|2 represents the non-normalized wave function at the

point r on the screen at the time t and so, to get the probability, we have to divide by the
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total mass on the screen:

M ≡
∫ +∞

−∞

dy

∫ +∞

−∞

dz |ψ(r, t)|2 .

For the truncation approximation model, the particle is assumed to pass through the slit at

the classical time tc (given by a linear relation between t and the distances along the x-axis).

Hence, the total mass passing to the right side of the plane of the slit is equal to the total

mass on the screen:
∫ b

−b

dy1

∫ a

−a

dz1 |ψTrunc(r1, tc)|2 =
∫ +∞

−∞

dy

∫ +∞

−∞

dz |ψTrunc(r, t)|2 (26)

However, in our model there is no similar conservation equation to (26) since we do not

know the exact time when the particle passes through the aperture. Hence, the expression

for the probability density at the point r and at the time t has to written as

P (r, t) =
1

M
|ψ(r, t)|2 → 1

Ω
|K(a,b)(r, t, r0, 0)|2, when σ → 0 (27)

where Ω ≡
∫ +∞

−∞
dy
∫ +∞

−∞
dz|K(a,b)(r, t, r0, 0)|2.

The formula (24) can be rewritten as an integral over all points r1 = (x1, y1, z1) in the

slit (i.e. y1 ∈ [−b, b] and z1 ∈ [−a, a]):

K(a,b)(r, t, r0, 0) =

∫ a

−a

dz1

∫ b

−b

dy1K(r, t; r0, 0|r1) , (28)

where we have defined the three-dimensional one-point source propagator:

K(r, t; r0, 0|r1) ≡
∫ t

0

dτ

[−x0
τ
η1 +

x

t− τ
η2

]
G0(r− r1, t− τ)G0(r1 − r0, τ) . (29)

We want to give an explicit formula for the one-point slit propagator (29). For a detailed

calculuation we refer the reader to Appendix 2. The result is the following explicit formula:

K(r, t; r0, 0|r1) = At(r; r0|r1)eiϕt(r;r0|r1) (30)

where the phase is given by

ϕt(r, r0|r1) ≡
m

2~t
(|r− r1|+ |r1 − r0|)2 (31)

and where the amplitude is given by a linear combination of the Neumann and Dirichlet

amplitudes:

At(r, r1 − r0) ≡ η1A
(N)
t (r, r1 − r0) + η2A

(D)
t (r, r1 − r0). (32)
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The Neumann part is given by:

A
(N)
t (r, r0|r1) =

−x0
(2iπ~t/m)3/2

(
m

2iπ~t

(|r− r1|+ |r1 − r0|)2
|r− r1||r1 − r0|2

+
1

2π|r1 − r0|3
)

(33)

and the Dirichlet part by:

A
(D)
t (r, r0|r1) =

x

(2iπ~t/m)3/2

(
m

2iπ~t

(|r− r1|+ |r1 − r0|)2
|r− r1|2|r1 − r0|

+
1

2π|r− r1|3
)
. (34)

Remark. The equation (28) gives the correct propagator formula for the slit diffraction

problem, whatever the initial condition for the wave at t0 = 0. For example, we can take

the following more general condition than (13):

φk0(R = (X, Y, Z), 0) =
1

((2π)3σ2
xσ

2
yσ

2
z)

1/4
e
−

|X−x0|
2

4σ2
x e

−
|Y −y0|

2

4σ2
y e

−
|Z−z0|

2

4σ2
z eik0·(r0−R) ,

where σy, σz are small but σx is large, and consider in the limit delta-distributions along

the y- and z-axis and a plane wave along the x-axis. Then, the approximation we made for

σ ∼ 0 is still valid in the plane of the slit but not on the x-axis which can be considered the

propagation axis. In this limit, to get the wave solution, we have to compute the Fourier

transform of (28) with respect to x0:

ψ(r, t) ≈
(
32π

σ2
yσ

2
z

σ2
x

)1/4 ∫ +∞

−∞

dx0 K
(a,b)(r, t,R, 0) eik0,xx0

B. Semiclassical limit of the one-slit propagator

In the following we still assume that the opening of the aperture of the slit coincides with

the emission of the Gaussian wave packet t1 = t0 = 0, and that the width of the Gaussian is

small compared to the distances of the apparatus, σ ≪ |x0|, a, b, so that (25) gives a good

approximation to the solution.

Now we will give the semiclassical approximation of the propagator (28) when the fluc-

tuation of the phase tends to zero, i.e. considering that µ ≡ m|r|2

~t
≫ 1 and so that |r| ≫ λ0

with λ0 ≡
√

2π~t/m. This allows us to interpret the propagator of the slit experiment in

this regime as the sum over classical paths starting from r0 at the time t0 = 0 to r at the

time t given that the particle passes through the slit r1 ∈ Ωa,b at a so-called semiclassical

time τsc ∈ (0, t). The results are similar to the ones obtained for the truncation approxima-

tion model (see14 and Appendix 1) but not the same since we do not make any geometrical

13



approximation and, as a consequence, τsc depends on the coordinates r1 of the classical

paths passing through the slit. We should mention that another condition for the validity

of the semiclassical approximation is that the distances |r − r1| and |r1 − r0| have to be of

the same order for every (y1, z1) ∈ Ωa,b, which means that |x0| and |x| are also of the same

order, and that the sizes of the aperture a, b and the position of the screen |y|, |z| have to

be at most of the same order as |x|.

By the above assumptions, we are able to use the stationary phase approximation applied

to the one-point propagator formula (29):

∫ t

0

dτf(τ)eiµφ(τ) ≈ f(τsc)e
iµφ(τsc)

∫ t

0

dτ e
iµ
2
φ
′′
(τsc)(τ−τsc)2 , µ≫ 1 (35)

where τsc is the solution of the equation φ
′
(τ) = 0, φ

′′
(τsc) is the second derivative of φ at

the point τsc, and where we put

f(τ) = 1
((2iπ~/m)2(t−τ)τ)3/2

(
−x0

τ
η1 +

x
(t−τ)

η2

)

µ = m|r|2

2~t
= π|r|2

λ2
0

φ(τ) = |r−r1|2

|r|2(1−τ/t)
+ |r1−r0|2

|r|2τ/t

(36)

By a direct calculation, we find that the saddle point τsc which is the solution of the equation

φ
′
(τ) = 0 is given by

τsc =
|r1 − r0|

|r− r1|+ |r1 − r0|
t (37)

Then we get:

f(τsc) =
1

((2iπ~/m)2(t−τsc)τsc)3/2

(
−x0

τsc
η1 +

x
(t−τsc)

η2

)

µφ(τsc) =
m|r−r1|2

2~(t−τsc)
+ m|r1−r0|2

2~τsc
= m

2~t
(|r− r1|+ |r1 − r0|)2

µφ
′′
(τsc) =

m
~

(
|r−r1|2

(t−τsc)3
+ |r1−r0|2

τ3sc

)
= m

~

t3

(t−τsc)3τ3sc

|r−r1|2|r1−r0|2

(|r−r1|+|r1−r0|)2

(38)

To estimate the integral at the right hand side of (35), we need to integrate in the complex

plane along a contour, which we take to be the perimeter of the eighth part of a circle centered

at −τsc on the real axis and of radius t, together with the radii. Putting N ≡ µφ
′′
(τsc), we

get the following estimate for large N :

∫ t−τsc

−τsc

ds ei
Ns2

2 = ei
π
4

∫ t−τsc

−τsc

ds e−
Ns2

2 + it

∫ π
4

0

dθ eiθe−
Nt2

2
e2iθ =

√
2iπ

N
+ O(

1

N
) , (39)

since the latter integral is of the order 1/N .

14



Hence by (35) and (39), we get the following approximation for the one-point propagator:

Kt(r, r0|r1) ≈ f(τsc)

√
2iπ

µφ′′(τsc)
eiµφ(τsc)

=
(|r− r1|+ |r1 − r0|)2

(2iπ~t/m)5/2|r− r1| × |r1 − r0|

( −x0
|r1 − r0|

η1 +
x

|r− r1|
η2

)
e

im
2~t

(|r−r1|+|r1−r0|)
2

. (40)

The stationary phase approximation method, leading to the formula (40), thus yields the

propagator (30) except for the last terms of (34) and (33). Indeed, the phase is the same

and the amplitude is a linear combination of the first term of the amplitudes (34), (33). We

can explain this result remarking that both first terms in (34) and (33) are large compared

to the second terms since the ratio is of the order m|r|2/~t≫ 1.

Rewriting the semiclassical propagator (40) using (38) we have

K
(sc)
t (r, r0|r1) = σt,τsc(x, x0)

e
imx2

2~t

(2iπ~t/m)1/2
e

im[(y−y1)
2+(z−z1)

2]
2~(t−τsc)

2iπ~(t− τsc)/m

e
im[y21+z21]

2~τsc

2iπ~τsc/m
, (41)

where the function σt,τsc is defined by

σt,τsc(x, x0) ≡
λ20
ρ

(−mx0
2π~τsc

η1 +
mx

2π~(t− τsc)
η2

)
(42)

and where ρ ≡ |r−r1|+ |r1−r0| can be interpreted as the semi-classical path length traveled

by the particle: see Fig. 1. Hence the one-slit propagator formula (28) can be written as

follows:

K(a,b)
sc (r, t; r0, 0) =

e
imx2

2~t

(2iπ~t/m)1/2

∫ a

−a

dz1

∫ b

−b

dy1 σt,τsc(x, x0)
e

im[(y−y1)
2+(z−z1)

2]
2~(t−τsc)

2iπ~(t− τsc)/m

e
im[y21+z21]

2~τsc

2iπ~τsc/m
(43)

The formula (43) is similar to the one-point source propagator in the truncation approx-

imation, formula (85) of Appendix 1, except that the semiclassical time τsc depends on the

distance from the origin to the point in the slit, and from the slit to the screen (see (37)),

and the function σt,τsc in front of the product of the two Gaussians depends on the boundary

conditions.

Remark 1. We can give a geometric interpretation to the diffraction in space and in time

in the semiclassical regime. The first-order term of the semiclassical approximation (41)

gives only the classical path contribution. Therefore, we observe that the propagator (43) is

nothing but a sum over all semiclassical paths (made up of two broken lines) passing through
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FIG. 1. Schematic representation of the apparatus. We illustrate two interfering classical paths

starting from r0 at the time t0 = 0 to r at the time t and passing through the aperture at r1 (resp.

r′1) at the time τsc (resp. τ
′
sc) given by the formula (37).

the aperture of the slit as in Fig.1. Thus, the equation (43) shows that the semiclassical

approximation is in fact a truncation approximation since one sees in these formulas that

the motion along the x-axis and the motion in the orthogonal (y, z) plane are separated and

moreover that along the x-axis the motion is classical. However, we have more information

within our model since by (37) we notice that there is a relation between the classical times

τsc and t even if the two motions from the source to the slit and from the slit to the screen

are separated, see Fig. 1. Actually, we can interpret this relation as the conservation of the
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classical energy of the particle when the particle passes through the slit:

E(r1, τsc) = E(r, t) ⇔ m

2

∣∣∣∣
r1 − r0

τsc − t0

∣∣∣∣
2

=
m

2

∣∣∣∣
r− r1

t− τsc

∣∣∣∣
2

and this leads to (37), whereas the classical momentum is not conserved due to the quantum

diffraction phenomenon.

Consequently, in the semiclassical regime, the theory of diffraction in time allows us to

take into account all the classical paths (passing through the slit at a time depending on

the position inside the aperture) without assuming that the dimensions of the aperture are

small compared to the dimension of the apparatus along the x-axis. Moreover, the additional

term (42) which could not be discovered otherwise, has an important physical meaning since

the values of the parameters η1, η2 depend on whether the screen of the slit is reflective,

absorbing or neither.

In Fig.2., Appendix 3 we show the transition between the quantum and the semiclassical

regimes from the left to the right.

Firstly, for the diffraction patterns at the left side (Fig.2.1a-2.4a), the semiclassical pa-

rameter µ ∼ 4 (i.e., relatively close to one) and so that explain why the curves are different

from those for the truncation approximation (see Fig.2.4a). We observe that for the Dirich-

let boundary condition (Fig.2.1a) there is a narrow central peak decreasing very fast so that

we can not see the oscillations (a numerical zoom could show these slight oscillations). On

the contrary, for the Neumann (Fig.2.2a) and the free boundary conditions (Fig.2.3a), there

is no central peak but large oscillations where the distance between the fringes is essentially

constant but different from the distance between the fringes in the truncation approximation

(Fig.2.4a).

For the curves at right side of (Fig.2.1c-2.4c), we have µ ∼ 800 ≫ 1 and then we get

similar pictures to those in the truncation approximation (Fig. 2.4c) although there is still

a difference in the location of the fringes. In the following section, we will give a qualitative

description of those differences. From (72) and (76) we can conclude that if the first minima

of the curves are not too different, however we observed that the second and the third differ

by 50%.

The patterns in the middle of Fig.2, show the transition between the quantum and the

semiclassical regimes where a central peak appears also for the Neumann (Fig.2.5) and the

free boundary conditions (Fig.2.8).
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Remark 2. Let us make another remark about the probabilistic interpretation of the slit

diffraction experiment in the semiclassical limit. A consequence of the last comment about

the relation between the semiclassical approximation and the truncation approximation is

that there is an analogous equation to (26) giving the relation of the conservation of the

probability between the aperture of the slit and the screen:
∫ b

−b

dy1

∫ a

−a

dz1 |ψsc(r1, τsc)|2 =
∫ +∞

−∞

dy

∫ +∞

−∞

dz |ψsc(r, t)|2 ≡Msc (44)

where τsc is given by (37) and depends on r, r1, r0, t, and where the semiclassical wave

functions in (44) are given by:

ψsc(r1, τsc) =

∫

R3

dR G0(r1 −R, τsc)
ei

|R−r0|
2

2σ2

(2πσ2)3/2
(45)

ψsc(r, t) =

∫

R3

dR K(a,b)
sc (r, t,R, 0)

ei
|R−r0|

2

2σ2

(2πσ2)3/2
(46)

So we get the following formula for the semiclassical density of probability:

Psc(r, t) =
1

Msc
|ψsc(r, t)|2 →

1

Ωsc
|K(a,b)

sc (r, t, r0, 0)|2, when σ → 0 (47)

where Msc is defined in (44) and Ωsc =
∫ b

−b
dy1
∫ a

−a
dz1 |G0(r1 −R, τsc)|2.

IV. SEMI-CLASSICAL APPROXIMATIONS FOR THE SLIT EXPERIMENT

The equation (28) gives the three-dimensional one-gate-slit propagator as a double in-

tegral of the three-dimensional one-point-slit propagator given by the equations (30), (32)

and (31). Despite the fact that there is no explicit formula giving the result for the gate-slit

propagator, we can give an approximation when the size of the slit and the distance on

the screen are relatively small, in which case it is also of interest to give an estimate for

the relative shift between the minima in the interference pattern for the Fraunhofer regime

compared with the truncation approximation.

We first want to give the semiclassical approximation of the one-point source propagator

(30) when the sizes in the x-direction are relatively large compared to the sizes of the slit

and of the distances of the observation point on the screen:

|x− x1|, |x1 − x0| ≫ a, b, |z|, |y|
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and also large compared to λ0 =
√

2π~t/m (relatively short time). Therefore the semiclas-

sical limit (43) is a good approximation.

By (31), the phase of the propagator (30) is given by

~

m
ϕt =

|r− r1|2
2t

+
|r1 − r0|2

2t
+

|r− r1||r1 − r0|
t

(48)

We denote the two-dimensional vectors of the position on the screen r⊥ = (y, z), on the

slit r⊥,1 = (y1, z1). In the sequel, we take x1 = 0, so |x − x1| = |x|, |x1 − x0| = |x0| and
y0 = 0, z0 = 0, x0 < 0. The first two terms of the r.h.s. of (48) are rewritten as

|r− r1|2
2t

+
|r1|2
2t

=
x2

2t
+

(r⊥ − r⊥,1)
2

2t
+
x20
2t

+
r2⊥,1

2t
(49)

Expanding to fourth order the third term of the r.h.s. of (48), we have

|r− r1||r1 − r0|
t

=
|x||x0|
t

√
1 +

(r⊥ − r⊥,1)2

x2

√

1 +
r2⊥,1

x20
(50)

≈ |x||x0|
t

(
1 +

(r⊥ − r⊥,1)
2

2x2
− (r⊥ − r⊥,1)

4

8x4

)(
1 +

r2⊥,1

2x20
−

r4⊥,1

8x40

)
(51)

≈ |x||x0|
t

(
1 +

r2⊥,1

2x20
+

(r⊥ − r⊥,1)
2

2x2

)
− |x||x0|

8t

(
(r⊥ − r⊥,1)

2

x2
−

r2⊥,1

x20

)2

(52)

Due to (49) and (52) we get:

~

m
ϕt ≈

(x− x0)
2

2t
+

(r⊥ − r⊥,1)
2

2(t− tc)
+

r2⊥,1

2tc
− |x||x0|

8t

(
(r⊥ − r⊥,1)

2

x2
−

r2⊥,1

x40

)2

(53)

where:

tc =
|x0|

|x|+ |x0|
t =

|x0|
|x− x0|

t . (54)

A. The truncation approximation

Notice that due to (37), tc could be interpreted as the semiclassical time at the first order

approximation in the regime |x|, |x0| ≫ |z|, |z1|:

τsc =
|r1 − r0|t

|r− r1|+ |r1 − r0|
≈ tc, when |x|, |x0| ≫ |z|, |z1| . (55)

Inserting this into the amplitude of (41), i.e. neglecting the influence of the position on

the screen and in the slit, we get the following approximation:

At(r, r0|r1) ≈ σt,tc(x, x0)
1√

2iπ~t/m

1

(2iπ~/m)2(t− tc)tc
. (56)
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where σt,tc(x, x0) is given by (42). In (53), we neglect the terms of order O(r4⊥) and O(r
4
⊥,1),

to get
~

m
ϕt ≈

(x− x0)
2

2t
+

(r⊥ − r⊥,1)
2

2(t− tc)
+

r2⊥,1

2tc
. (57)

Then, by (56) and (57), we get the Fraunhofer approximation to second order for the one-

point source propagator:

Kt(r, r0|r1) ≈

σt,tc(x, x0)
eim

(x−x0)
2

2~t

√
2iπ~t/m

e
im

(y−y1)
2

2~(t−tc)

√
2iπ~(t− tc)/m

eim
y21

2~tc

√
2iπ~tc/m

e
im

(z−z1)
2

2~(t−tc)

√
2iπ~(t− tc)/m

eim
z21

2~tc

√
2iπ~tc/m

. (58)

Consequently, for the single-slit model, by integrating over y1, z1 on [−b, b]× [−a, a], we get

the usual truncation approximation formula (86), see Appendix 1, multiplied by a constant

factor σt,tc depending on t and tc, as well as on |x0|, x and on the boundary conditions.

In addition, by the semiclassical probabilistic interpretation, see (47), since σt,tc(x, x0) is a

constant number, we get the same probability density formula as the one in14, (see also (96)

in Appendix 1) which means that the initial boundary conditions on the slit do not affect

the diffraction pattern in this regime. We observe this phenomenon numerically in Fig.3.

for t = 0.05 and t = 0.005.

B. The fourth-order approximation in the Fraunhofer regime

Remember that the Fresnel numbers (see Appendix 1) are given by

NF (a) =
2a2

λL
, NF (b) =

2b2

λL

where L = |x| and λ = 2π~/(mv), and where a is the dimension of the slit along the z-

axis and b the one along the y-axis, with v ≈ vx = |x − x0|/t. In the Fraunhofer regime,

we have NF (a) ≪ 1 and since the distance between two successive minima on the pattern

is ∆z ∼ λL/(2a) = a/Nf(a) (see Fig. 3 for the truncation model (TM) and14), we have

∆z ≫ a and so we are looking for the correction for z ≫ a. We also assume that x≫ b≫ a

and 2b2/(λL) ≪ 1, so that ∆z ≫ ∆y ≫ b. In this case, we can neglect the terms of the

order O(y4) and O(y41) in (53):

~

m
ϕt ≈

x2

2t
+

(r⊥ − r⊥,1)
2

2(t− tc)
+

r2⊥,1

2tc
− |x||x0|

8t

(
(z − z1)

2

x2
− z21
x20

)2

(59)
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given that z ≫ a ≥ z1, we get

(
(z − z1)

2

x2
− z21
x20

)2

≈ (z2 − 2z1z)
2

x4
(60)

which means that we keep only the terms of the order O(z2z21) (plus the terms of the order

z4) and we neglect the terms of the order O(z41). Inserting the approximation (60) in (59),

we obtain:

~

m
ϕt ≈

x2

2t
+

(y − y1)
2

2(t− tc)
+
y21
2tc

+
(z − z1)

2

2(t− tc)
+
z21
2tc

− |x0|z2
8|x|3t (2z1 − z)2 , (61)

which leads to a similar expression to the second order expanding of the phase (57) after

rewriting the last three terms of (61) in another explicit form:

~

m
ϕt ≈

x2

2t
+

(y − y1)
2

2(t− tc)
+
y21
2tc

+
(z − z

′

1)
2

2(t′ − t′c)
+
z
′2
1

2t′c
− z4

8|x|2
tc

t(t− tc)
, (62)

where we used the expression (54), and where

t
′

c = tc

(
1− tc

2t

z2

x2

)2(
1 +

4t3c
(t− tc)2t

z4

x4

)−1

≈ tc

(
1− z2

|x|2
tc
t

)
, (63)

t′ − t
′

c = t− tc , (64)

z
′

1 = z1

(
1− z2

2|x|2
tc
t

)
. (65)

Here we approximated (63) to the second order O( z
x
)2 such that

z′21
2t′1

is of the fourth order

O( z
x
)4. We remark that the term θ z2

2t
, θ ≡ − z2

4|x|2
tc

(t−tc)
appearing in (62) gives no contribution

to the intensity. Keeping the zeroth-order approximation for the amplitude (56), the fourth

-order approximation gives the propagator in the z-direction :

eimθ z2

2~t

∫ a

−a

dz1
eim

x2

2~t

√
2iπ~t/m

e
im

(z−z
′

1)
2

2~(t
′
−t

′
c)

√
2iπ~(t− tc)/m

eim
z
′2
1

2~tc

√
2iπ~tc/m

= eimθ z2

2~t

∫ a′

−a′
dz

′

1

eim
x2

2~t

√
2iπ~t/m

e
im

(z−z
′
1)

2

2~(t
′
−t

′
c)

√
2iπ~(t′ − t′c)/m

e
im

z
′2
1

2~t
′
c

√
2iπ~t′c/m

(66)

since dz
′

1/
√
t′c ≈ dz1/

√
tc by (63) and since

√
1 + ǫ2 ≈ 1 + ǫ2

2
, for ǫ ≪ 1. Thus we obtain a

similar result to (86):

K̃t,tc(x, y, z; b, a) = σt,tc(x, x0)
eim

(x2+y2+z2)2

2~t

(2iπ~t/m)3/2
Ft′,t′c

(z, a′)Ft,tc(y, b), (67)
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where the function Ft′,t′c
is defined by (87), and where αt′,t′c

is given by

αt′,t′c
(z, a

′

) =

√
2a′2

2π~tc(t− tc)/mt

(
1− z

a′

tc
t

)
= αt,tc(z, a

′

) . (68)

Similar to (91), since λ ≈ 2π~/mvx with vx = |x − x0|/t and tc ≈ |x0|/vx = |x0|t/|x − x0|,
we can rewrite (68) as

αt′,t′c
(z, a

′

) ≡
√
γN

′

F

(
1− z

a′γ

)
, γ = |x− x0|/|x0| (69)

where the Fresnel number is:

N
′

F ≡ 2a
′2

λL
≈ NF ×

(
1− z2

γL2

)
, (70)

where L = |x| and γ = |x − x0|/|x0| (and we have used tc/t ≈ |x0|/|x − x0|). By (67), we

find an analogous result for the distance ∆z between two successive minima of the intensity

(see14 for a detailed approximation) but to fourth-order approximation:

∆z′ ≈ λL

2a′
≈ ∆z

(
1 +

z2

2γL2

)
. (71)

Thus, we should observe in the intensity pattern (see Fig.2c), a deviation of the distance

between the consecutive minima from the truncation approximation given by the following

law:

δ ≡ ∆z′ −∆z

∆z
≈ z2

2γL2
. (72)

C. Criterion for the validity of the fourth-order approximation

As we saw in the last Section IV.B, the 4th-order correction involves the ratio between

the distance of the observation on the screen and the distance in the x-direction between

the screen and the slit. The aim of this section is to understand the condition of validity for

the 4th -order correction to the truncation approximation model. Here we have to assume

that the system is in the semiclassical regime so that the parameter µ, introduced in Section

III.B is relatively small. Hence we will see that the corrections are not related to the value

of the parameter µ but to the quantum fluctuation along the x-axis.

We remark that in Fig.3, Appendix 3 the approximation seems valid for the curves at the

right side (Fig.3.1c-3.3c compared with Fig.3.4c) and at the middle (Fig.3.1b-3.3b compared

with Fig.3.4b), whereas it is not correct for the curves at the left side (Fig.3.1a-3.3a compared
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with Fig.3.4a). Actually, the optical resolution of the pattern has to be high enough to

distinguish two successive minima, i.e. the relative difference δ, see (72), has to be small :

δ ≪ 1 ⇒ z ≪ L
√

2γ (73)

This means that the distance z on the screen has to be relatively small compared to L (if

γ ∼ 1/2). We have seen that in the Fraunhofer regime (see Appendix 1 and14 for more

details) the pattern on the screen has several minima at n∆z, n = 2, 3, 4, · · · with distances

∆z = λL/2a. In fact, for z ≫ ∆z, the intensity becomes rather small compared to its

maximum and so the visibility is low. If we consider that we can observe the pattern in a

window |z| ≤ n∆z, then by (73) we get the criterion

∆z ≪ L

√
2γ

n
⇒ λ

L
≪ a

L

√
8γ

n
(74)

Hence, given the geometrical parameter a/L, we obtain a condition for the ratio between

the wavelength λ = 2π~/mv ≈ 2π~t/(m|x − x0|) and the distance L. We reintroduce the

parameter λ0 =
√

2π~t
m

, so that λ =
λ2
0

|x−x0|
. The length λ0 can be interpreted as the spatial

fluctuation of the phase exp(im|x − x0|2/2~t) = exp (iπ|x− x0|2/λ20) appearing in the free

propagator (4). So if t is small enough, then λ/|x − x0| = λ20/|x − x0|2 will be very small

and consequently the space fluctuations in the x-axis will be negligible. On the contrary, if

t is large, the fluctuations are not negligible and then the approximation λ≪ |x−x0| is not
valid. The criterion (74) gives a condition:

λ20
|x− x0|2

≪ 1

n

a

L

√
8γ

γ′
⇔ q ≪ 1

n
(75)

where the parameter called the coherence number in the x-direction q is defined as

q ≡ κ2

ρ
(76)

where κ ≡ λ0/|x − x0| is the quantum fluctuation parameter in the x-axis and ρ ≡ a
L

√
8γ
γ′

with γ′ = |x− x0|/L, is the inverse of the zoom parameter.

In the Fig.3, Appendix 3 for the diffraction patterns at the left side (Fig.3.1a-3.4a) the

coherence parameter is of the order of unity, and the semiclassical parameter µ ∼ 2500 (with

NF (a) ∼ 3 × 10−5, NF (b) ∼ 3 × 10−3). We observe some differences with the truncation

approximation. First, the distance between the fringes is about 66% in case of the first

minimum and 100% for the second. We conclude that in those cases, the fourth-order
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approximation above is not valid. However, we observe different shapes for the different

boundary conditions and also the amplitude of the oscillations are not the same. If we

suppose that we can experimentally (and this is probably a big challenge) build an apparatus

for which the parameter µ is of the range 102 − 104, the differences described before would

provide physical information about the surface of the slit.

For the Fig.3.1b-3.4b, the parameters q ∼ 6×10−2 and µ ∼ 5×104 (withNF (a) ∼ 6×10−4,

NF (b) ∼ 3 × 10−2). In this case the fourth-order approximation is quite good for the first

ten fringes. For example, we have δ ∼ 0.1% for the first fringe’ shift, δ ∼ 7% for the third

one and δ ∼ 16% for the fifth one. Additionally, we observe that the shape of the curves as

well as the amplitude of the oscillations do not depend on the boundary conditions.

Similarly for the Fig.3.1c-3.4c, the parameters q ∼ 6 × 10−3 and µ ∼ 5 × 105 (with

NF (a) ∼ 6 × 10−3, NF (b) ∼ 6 × 10−1) and we obtain diffraction patterns very close to the

truncation approximation. In the next section, we will see that experimentally this is the

general situation.

V. DISCUSSION

A. General remarks

Concerning the two-slit problem, we observed that for large µ and for small Fresnel

numbers (NF (a), NF (b), NF (d) ≪ 1, where d is the distance between the centers of the slits

along the z-axis) the interference pattern has a similar shape to the one for the truncation

approximation (see14), see Fig. 4, Appendix 3 but we observe a similar diffraction in time

phenomenon for the envelope of the interference pattern which is nothing but the diffraction

curve for a single-slit centered at x1 = y1 = z1 = 0. The two-slit propagator formula is given

by:

K(dble)(r, t, r0, 0) =

∫ −a+d

−a−d

dz1

∫ b

−b

dy1 K(r, t; r0, 0|r1) +
∫ a+d

a−d

dz1

∫ b

−b

dy1 K(r, t; r0, 0|r1)
(77)

where the three-dimensional one-point source propagator K(r, t; r0, 0|r1) is given by (30).

Here we have only studied a rectangular aperture but naturally the propagator (24) can
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be generalized for an arbitrarily shape of slit:

K(Σ)(r, t, r0, 0) =

∫

Σ

dy1dz1 K(r, t; r0, 0|r1) (78)

where Σ is the aperture of the slit (e.g., circle) and where the one-point source propagator

K(r, t; r0, 0|r1) is given by (30).

Also, we mention that the semiclassical approximation is valid for two dimensions where

we have to integrate (24) along the y1-axis and apply the stationary phase approximation

method. Similarly to (43) we get:

K(2D)
sc (r, t; r0, 0) =

e
imx2

2~t

√
2iπ~t/m

∫ a

−a

dz1 σ
(2D)
t,τsc (x, x0)

e
im(z−z1)

2

2~(t−τsc)

√
2iπ~(t− τsc)/m

e
im(z1−z0)

2

2~τsc

√
2iπ~τsc/m

(79)

where σ
(2D)
t,τsc (x, x0) is given by (42) and with the semiclassical time τsc is given by (37) taking

y0 = y1 = y = 0.

B. Ultracold atoms slit experiment under gravity

In the slit experiments for electrons, cold neutrons and heavy molecules, we point out that

the dimensions of the apparatus are large so that the semiclassical parameter is very large,

for example in9 and7, µ is of the order ∼ 1010, it is ∼ 1013 in11 and ∼ 107 in10. Additionally,

experimentally the initial wave function (at the time of the emission) is not localized at r0

but a plane wave along the x-axis. As discussed above, it suffices to Fourier transform the

propagator (28) with respect to the variable x0. However, in the cold atoms experiment10

the narrow wave packet model is more convenient even if for realistic conditions we do not

reach the limit σ → 0. In20 is presented a theoretical description and interpretation of the

latter experiment, but still following the truncation approximation. Concretely, a bunch of

coherent cold neon atoms (mass m = 3.349× 10−26kg) is trapped above a plate where there

are two apertures (the two-slits system) at a distance l1. At the time t0 = 0 the optical-

magnetic trap is switch off and the atoms fall under the gravity field of the earth, passing

through the two slits and strike a detection plate at distance l2 from the two-slit plate. It is

assumed that the initial wave of an atom falling down the gravity field is a Gaussian wave

packet centered at r0 = 0 with an initial vector wave k0. It is also assumed that the motion

along the z-axis is classical. Moreover, the dimensions of the slits are considered to be small
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compared to the distances l1 and l2 which, in addition to the classical treatment along z,

is the truncation approximation. By fixing k0,z = 0, it follows that the classical time that

the particle needs to pass through the slits is simply given by t1 =
√

2l1/g. Then, taking

l1 ∼ 0.1m, g = 9.81ms−2 we compute t1 ∼ 0.1s and so λ ≈ ~/mvz ∼ 1.5 × 10−8m which

yields to µ ≈ 2π(l1+l2)/λ ∼ 107. Besides, in20 numerical simulations are performed to study

the probability density for small l2 showing that the interference patterns can be observed

only for l2 ≥ 5× 10−4m. In the Fig. 4 of20, the probability density is plotted especially for

l1 = 10−4m, 5×10−4m, 10−3m, 1.13×10−1m where we can observe a transition between the

so-called separated regime and the mixed regime14 between the two-slits patterns. However

the length l1 was kept fixed for numerical simulation and so we may wonder what the shape

pattern would be if we varied the length l1 in such a way that the total length l1 + l2 is of

orders 10−6 − 10−2m. In this situation, the semiclassical parameter µ would be of orders

102 − 106 and so we expect the probability density to be modified by the fluctuation along

the z-axis which should exhibit a correction to the truncation approximation model.

Here we will give a brief description of the modifications needed in our model to describe

this experiment. Again we use the Brunker-Zeilinger method and obtain a semiclassical

approximation for the propagator. We leave the numerical simulation for another article

where we will investigate the phenomenological consequences of our model.

As described above, we consider Gaussian wave packet (10) centered at x0 = y0 = z0 = 0

falling down the gravity field g = g ez where g = 9.81 ms−1 and passing through a single

slit, where the slit is an aperture in a plane orthogonal to the z-axis positioned at z1 > 0.

After a time t, the particle is detected on a screen at the position z > z1. We describe the

quantum-motion of the particle by the following equation similar to (1):

− ~2

2m
∇2ψ(r, t) + V (z) ψ(r, t) = i~ ∂

∂t
ψ(r, t)

ψ(r, t) = 0 for z > z1 and t < t1, and ψ(r1, t) = φ(r1, t) for t > t1.
(80)

with V (z) = mgz and where we fixed the boundary and initial condition on the plane of

the slit. As before, we consider a shutter opening at the time t1 = 0 after which the wave

propagates below the slit plane (i.e. z > z1).

Using the same arguments as previously but replacing the free Green’s function by:

Gg(r, t; r
′, t′) = G0(r, t; r

′, t′) e
im
2~

(

g(z+z′)(t−t′)− g2

12
(t−t′)3

)

(81)
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where the free propagator G0(r, t; r
′, t′) is given by (4), we get:

K(g)(r, t; 0, 0) =
i~

2m

∫ t

0

dτ

∫ a

−a

dz1

∫ b

−b

dy1 χt,τ (z, z1)Gg(r, t; r1, τ)Gg(r1, t; r0, τ) (82)

where:

χt,τ (z, z1) ≡ η1
z1
τ

+ η2
z − z1
t− τ

− iη2 gt+ i(η1 + η2)gτ − i(η1 − η2)
gτ

2

Then for µ ≡ mr2/(2~t) ≫ 1, by the stationary phase approximation we obtain:

K(g)
sc (r, t; 0, 0) ≈

∫ a

−a

dx1

∫ b

−b

dy1 Asc(r, t; 0, 0|r1) eiφsc(r,t;0,0)|r1) (83)

where the one-point source amplitude is given by

Asc(r, t; 0, 0|r1) =
χt,τsc(z, z1)

((2iπ~/m)2(t− τsc)τsc)3/2

√
2iπ

ωsc(r, t; 0, 0)

with

ωsc(r, t; 0, 0|r1) =
m

~

(
(r− r1)

2

(t− τsc)3
+

(r1 − r0)
2

(τsc − t0)3

)
− mg2t

4~

and the one-point source phase by

φsc(r, t; 0, 0|r1) =
m

2~

(
(r− r1)

2

t− τsc
+

(r1 − r0)
2

τsc − t0

)

+
m

2~

(
g(z + z1)(t− τsc) + (z1 + z0)(τsc − t0)−

g2

12
(t− τsc)

3 − g2

12
(τsc − t0)

3

)

Here, the semiclassical time τsc is the solution of the following fifth-order polynomial equation

(since after expansion, the term in τ 6 disappears):

(r− r1)
2τ 2 − (r1 − r0)

2(t− τ)2 = g(z − z0)(t− τ)2τ 2 +
g2

4
τ 4(t− τ)2 − g2

4
τ 2(t− τ)4 (84)

which can be interpreted as the conservation of the classical energy of the particle passing

through the aperture, the trajectories being two broken parabolas similarly to the broken

straight lines for the case without gravity. The first parabolic trajectory goes from r0 = 0

at the time t0 = 0 to the point r1 at the time τ , and the second one from r1 at the time

τ to the point r at the time t. Then, the classical energies for a particle following the two

trajectories are E0 =
m
2
v2
0 for the first one and E1 =

m
2
v2
1 −mgz1 for the second one, with

the classical velocities

v0 =
x1 − x0
τ − t0

ex +
y1 − y0
τ − t0

ey + (
z1 − z0
τ − t0

− g

2
(τ − t0))ez
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v0 =
x− x1
t− τ

ex +
y − y1
t− τ

ey + (
z − z1
t− τ

− g

2
(t− τ))ez

The conservation of energy equation

E0 = E1 ⇔
1

2
|v0|2 =

1

2
|v1|2 − gz1

then leads to the equation (84).

C. Conclusion

To summarize, the fourth-order corrections are generally small for realistic experimental

situations, which is to be expected a priori since the theoretical predictions fit very well with

the past and current experiments. However, our model brings a new perspective investigat-

ing the quantum diffraction beyond the truncation approximation. The fluctuation along

the “propagation axis” could in principle be quantitatively and qualitatively demonstrated

experimentally for a system following the conditions (minimum):

1. the apparatus has to be of mesoscopic scale, since we have seen that the length along

the “propagation axis” has to be of orders 10−6 − 10−3m to have µ ∼ 102 − 105 in

order to be able to observe any shift in the distances between the fringes.

2. the statistics have to be high enough to have a good accuracy so that we can detect

a shift for δ ∼ 10% and also so that the differences between the amplitude of the

oscillation for different boundary conditions can be detected.

To construct an experimental apparatus of this kind is certainly a challenge but perhaps not

entirely beyond future advances in technology.
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VI. APPENDICES

A. Appendix 1: The truncation approximation for the quantum-multi-slit diffrac-

tion problem

We recall14 that the single “gate” slit propagator, centered on the x-axis of size 2a on the

z-axis and 2b on the y-axis is given by the following formula14:

K
(a,b)
Trunc(r, t; r0, 0|r1, tc) =

ei
m(x−x0)

2

2~t

(2iπ~t/m)1/2

∫ a

−a

dz1

∫ b

−b

dy1
ei

m[(y−y1)
2+(z−z1)

2]
2~(t−tc)

2iπ~(t− tc)/m

ei
m[(y1−y0)

2+(z1−z0)
2]

2~tc

2iπ~tc/m
,

(85)

where tc = |x1 − x0|t/|x − x0|. We note that this formula is valid only if the distances

on the x-axis are very large compared to the distance on the screen and to the sizes of

the slit, i.e. for |x − x1|, |x1 − x0| ≫ a, b, |y|, |z|.14 The formula (85) can be interpreted as

follows: The propagator is the sum over the paths x(τ) of the particle going from the source

(x(0) = x0, z(0) = z0, y(0) = y0) to the screen (x(t) = x, z(t) = z, y(t) = y), given that it

goes through the slit x(tc) = x1, z(tc) = z1 ∈ [−a, a], y(tc) = y1 ∈ [−b, b] at the time tc

defined just above. Notice that we can find an explicit formula for the propagator (85) in

terms of the Fresnel function12,14:

K
(a,b)
Trunc(r, t; r0, 0|r1, tc) =

ei
|r−r0|

2

2t

(2iπ~t/m)3/2
Ft,tc(z, a)Ft,tc(y, b) (86)

where:

Ft,tc(z, a) ≡ (C[αt,tc(z, a)] + C[αt,tc(z,−a)] + iS[αt,tc(z, a)] + iS[αt,tc(z,−a)]) (87)

and where the Fresnel functions are defined as follows21:

u ∈ R
1 7→ C[u] =

∫ u

0

dw cos (
πw2

2
) (88)

u ∈ R
1 7→ S[u] =

∫ u

0

dw sin (
πw2

2
) (89)

with

αt,tc(z, a) ≡
√

ma2t

π~tc(t− tc)

(
1− z

a

tc
t

)
(90)

and since we have seen that λ ≈ 2π~/mvx with vx = |x − x0|/t and tc ≈ |x1 − x0|/vx =

|x1 − x0|t/|x− x0|, we can rewrite (90) as

αt,tc(z, a) ≡
√
γNF

(
1− z

aγ

)
, (91)
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where γ = |x− x0|/|x1 − x0| and where the Fresnel number is defined as

NF ≡ 2a2

λL
, (92)

where L = |x− x1|.
The intensity on the screen is proportional to the modulus square of the propagator, and

is given by14:

I
(a,b)
Trunc(r, t; r0, 0|r1, tc)| ≡ I0|K(a,b)

Trunc(r, t; r0, 0|r1, tc)|2 = I0

( m

2π~t

)3
|Ft,tc(z, a)|2|Ft,tc(y, b)|2

(93)

In14 three distinct regimes were considered depending on the value of the Fresnel number:

(i) If NF ≪ 1: we have the Fraunhofer regime, which means that the distances are suffi-

ciently large to get a usual interference pattern22 where the distance between two consecutive

minima of intensity are about λL/(2a) in the z-direction and λL/(2b) in the y-direction.

(ii) If NF ≫ 1: we are in the so-called Fresnel regime where the interference pattern has a

similar shape as the gate but with a different scale: a(γ−1) in the z-direction and b(γ−1) in

the y-direction. More specifically, the intensity is very small if z > a(γ−1) and y > b(γ−1)

and oscillate very fast around a constant if z < a(γ − 1) and y < b(γ − 1).

(iii) If NF ∼ 1: the intermediate regime is a transition between both regimes for which there

is a spreading around the center of the intensity and similar to the Fraunhofer regime for

large distances (on the screen).

The formula for the multi-slit problem is given by the sum over the single-slit propagator

for each slit (centered in (Aj, Bj), j = 1, .., N):

K
(N)
Trunc(r, t; r0, 0|r1, tc) =

ei
m(x−x0)

2

2~t

(2iπ~t/m)1/2

N∑

j=1

∫ Aj+aj

Aj−aj

∫ Bj+bj

Bj−bj

ei
m[(y−y1)

2+(z−z1)
2]

2~(t−tc)

2iπ~(t− tc)/m

ei
m[(y1−y0)

2+(z1−z0)
2]

2~(t−tc)

2iπ~(t− tc)/m
.

(94)

Then, to get the interference pattern on the screen, we have to compute the square modulus

of the N -slit propagator:

I
(N)
Trunc(r, t; r0, 0|r1, tc) ≡ I0 × |K(N)

Trunc(r, t; r0, 0|r1, tc)|2 . (95)

Remark.: In14, for a initial Gaussian wave packet in the limit σ → 0 (σ is the width of

the Gaussian), it is proved that the density of probability is proportional to the square of
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the propagator:

P (N=1)(r, t; r0, 0|r1, tc) =
π2~2t2c
mab

2π~tc
m

|K(N=1)(r, t; r0, 0|r1, tc)|2 =
1

4abγ3
|Ft,tc(z, a)|2|Ft,tc(y, b)|2 ,

(96)

where we generalized the probabilistic interpretation developed in14 for a two dimensional

slit, and where the factor 2π~tc
m

in the second equality in (96) come from the Gaussian

normalisation in the x-direction. Notice that by (94), we can extend the result for all N by

recursion.

B. Appendix 2: Derivation of the one-point source propagator

By (29), the one-point source propagator is given by

K(r, t; r0, 0|r1) ≡
∫ t

0

dτ

[−x0
τ
η1 +

x

t− τ
η2

]
G0(r− r1, t− τ)G0(r1 − r0, τ) (97)

= η2K
(D)(r, t; r0, 0|r1) + η1K

(N)(r, t; r0, 0|r1) (98)

where we have introduced the Dirichlet part:

K(D)(r, t; r0, 0|r1) =
∫ t

0

dτ

[
x

t− τ

]
G0(r− r1, t− τ)G0(r1 − r0, τ) (99)

and the Neumann part:

K(N)(r, t; r0, 0|r1) =
∫ t

0

dτ

[−x0
τ

]
G0(r− r1, t− τ)G0(r1 − r0, τ) (100)

We will use the Laplace transform defined by

LT [f(τ); τ, s] =

∫ +∞

0

dτ e−sτf(τ)

and the inverse Laplace transform

LT−1 [F (s); s, τ ] =

∫ c+i∞

c−i∞

ds

2iπ
eτsF (s),

where c is a real-valued constant chosen such that the integral remains finite. We have the

following Laplace transforms (see equations (28) P.147 §4.5 and (5) P.246 §5.6 in23):

LT

[( m

2iπ~t

)3/2
ei

m|r|2

2~t ; t, s

]
=
ei|r|

√
2mis/~

2iπ~|r|/m (101)

LT

[
1

t

( m

2iπ~t

)3/2
ei

m|r|2

2~t ; t, s

]
=
ei|r|

√
2mis/~

2iπ|r|2

(
−
√

2mis

~
+

i

|r|

)
(102)
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So by (100) and (101) we get

K(N)(r, t; r0, 0|r1)

=
−mx0

~
× LT−1

[
ei|r−r1|

√
2mis/~

2iπ|r− r1|
ei|r1−r0|

√
2mis/~

2iπ|r1 − r0|2

(
−
√

2mis

~
+

i

|r1 − r0|

)
; s, t

]
(103)

putting u1 = r1 − r0, u2 = r− r1, (103) is equal to

−mx0
~

(|u2|+ |u1)|2
|u2||u1|2

×

LT−1

[
ei(|u2|+|u1|)

√
2mis/~

(2iπ|u2|+ |u1|)2

(
−
√

2mis

~
+

i

|u2|+ |u1|
+

(
i

|u1|
− i

|u2|+ |u1|

))
; s, t

]
(104)

then using the inversion formulas (101), we get:

K(N)(r, t; r0, 0|r1) = A
(N)
t (r, r0|r1)eiϕ(r,r0|r1) (105)

where the amplitude is given by:

A
(N)
t (r, r0|r1) =

−x0
(2iπ~t/m)3/2

(
m

2iπ~t

(|r− r1|+ |r1 − r0|)2
|r− r1||r1 − r0|2

+
1

2π|r1 − r0|3
)

(106)

and the phase by:

ϕt(r, r0|r1) ≡
m

2~t
(|r− r1|+ |r1 − r0|)2 (107)

Similary for the Dirichlet boundary condition, by the symmetries t1 ↔ t−t1 and u1 ↔ u2

in (103), we get that the amplitude is given by:

A
(D)
t (r, r0|r1) =

x

(2iπ~t/m)3/2

(
m

2iπ~t

(|r− r1|+ |r1 − r0|)2
|r− r1|2|r1 − r0|

+
1

2π|r− r1|3
)

(108)

and that the phase does not change and is given by (107).

C. Appendix 3: Diffraction patterns
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FIG. 2. Quantum/Semiclassical transition for the single-slit interference pattern. We take x =

1, x1 = 0, x0 = −1, a = 0.01 and b = 0.1 in the units ~ = m = 1. We represent the relative

populations computed as the square modulus of the propagators (28) respectively for the Dirichlet

(Fig.2.1a-2.1c), Newmann (Fig.2.2a-2.2c) and free (Fig.2.3a-2.3c) boundary conditions and also for

the truncation approximation (Fig.2.4a-2.4c) by the Equation (93), with t = 1 for the figures at

the left (a), t = 0.05 at the middle (b) and t = 0.005 at the right (c).
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FIG. 3. Truncation approximations for the single-slit interference pattern. We take x = 50, x1 =

0, x0 = −50, a = 0.01 and b = 0.1 in the units ~ = m = 1. We represent the relative pop-

ulations computed as the square modulus of the propagators (28) respectively for the Dirichlet

(Fig.3.1a-3.1c), Newmann (Fig.3.2a-3.2c) and free (Fig.3.3a-3.3c) boundary conditions and also for

the truncation approximation (Fig.3.4a-3.4c) by the Equation (93), with t = 1 for the figures at

the left (a), t = 0.05 at the middle (b) and t = 0.005 at the right (c).
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FIG. 4. Double-slit interference patterns. We take x = 50, x1 = 0, x0 = −50, a = 0.01, b = 0.1

and d = 0.1, in the units ~ = m = 1. We represent the relative populations computed as the

square modulus of the propagators (77) respectively for the Dirichlet (Fig.4.1a-4.1b), Newmann

(Fig.4.2a-4.2b) and free (Fig.4.3a-4.3b) boundary conditions with t = 1 for the figures at the left

(a), t = 0.05 at the right (b).
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