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Abstract

We propose a semiparametric family of copulas based on a set of orthonormal functions

and a matrix. This new copula permits to reach values of Spearman’s Rho arbitrarily close to

one without introducing a singular component. Moreover, it encompasses several extensions of

FGM copulas as well as copulas based on partition of unity such as Bernstein or checkerboard

copulas. It is also shown that projection of arbitrary densities of copulas onto tensor product

bases can enter our framework. Finally, two estimators of copulas are introduced and their

finite sample behaviours are compared on simulated data.
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1 Introduction

A bivariate copula defined on the unit square [0, 1]2 is a bivariate cumulative distribution function

(cdf) with univariate uniform margins. Sklar’s Theorem [35] states that any bivariate distribution

with cdf H and marginal cdf F and G can be written H(x, y) = C(F (x), G(y)), where C is a

copula. This result justifies the use of copulas for building bivariate distributions. One of the most

popular parametric family of copulas is the Farlie-Gumbel-Morgenstern (FGM) family [9, 13, 25]

defined when θ ∈ [−1, 1] by

C(u, v) = uv + θu(1− u)v(1− v). (1)

A well-known limitation to this family is that it does not allow the modeling of large dependences

since the associated Spearman’s Rho is limited to [−1/3, 1/3]. A possible extension of the FGM

family is to consider the semi-parametric family of symmetric copulas defined by

C(u, v) = uv + θϕ(u)ϕ(v), (2)
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with θ ∈ [−1, 1]. It was first introduced in [29], and extensively studied in [2, 3]. In particular,

it can be shown that, for a properly chosen function ϕ, the range of Spearman’s Rho is extended

to [−3/4, 3/4]. In [4] an extension of (2) is proposed where θ is a univariate function. This modi-

fication allows the introduction of a singular component concentrated on the diagonal v = u and

extends the range of Spearman’s Rho to [−3/4, 1]. We also refer to [6, 7] for another yet similar

extensions.

Here, a new extension of (2) is proposed where, roughly speaking, the single parameter θ is replaced

by a matrix and the function ϕ is replaced by a set of functions. This new copula permits to

reach values of Spearman’s Rho arbitrarily close to 1 without singular component. Moreover, it

also encompasses copulas based on partition of unity such as Bernstein copula [32] or checkerboard

copula [21, 22]. Finally, it is also shown that projection of arbitrary densities of copulas onto tensor

product bases can enter our framework. We take profit of this property to propose new estimators

of copula densities. This paper is organized as follows: The family of copula is introduced in

Section 2 and some algebraic properties are established. Dependence properties are reviewed in

Section 3 while approximation issues are highlighted in Section 4. Some links with existing copulas

as well as new examples are presented in Section 5. Finally, two estimators of copula densities are

proposed in Section 6 and their finite sample properties are illustrated in Section 7 on simulated

data. Concluding remarks are drawn in Section 8. Proofs are postponed to the Appendix.

2 A new family of copulas

Throughout this paper, ej denotes the jth vector of the canonical basis of Rp where j = 1, . . . , p and

p ≥ 2. Besides, 〈f, g〉 is the usual scalar product in L2 while the associated norm is ‖f‖ = 〈f, f〉1/2.
We focus on the modeling of the copula density (denoted by c) rather than on the modeling of the

copula (denoted by C) itself:

Definition 1 Let φ : [0, 1] → R
p be a vector of p orthonormal functions such that φ1(t) = 1 for

all t ∈ [0, 1]. Two sets are defined from φ:

Aφ =
{
A ∈ R

p×p, Ae1 = e1, A
t e1 = e1, ∀(u, v) ∈ [0, 1]2, φ(u)tAφ(v) ≥ 0

}
,

Cφ =
{
c : [0, 1]2 → R, c(u, v) = φ(u)tAφ(v), A ∈ Aφ

}
,

where xt denotes the transposition of the vector x.

The next result establishes that all the functions of Cφ are densities of copulas.

Proposition 1 Cφ is a non-empty set of copula densities.

It is clear that Aφ is not empty since A1 = e1e
t
1 ∈ Aφ. The associated function c(u, v) =

φ(u)tA1φ(v) = 1 ∈ Cφ is the density of the independent copula. The remainder of the proof
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is postponed to the Appendix. Let us also note that Aφ is a subset of matrices with eigenvalue 1

associated with the eigenvector e1 and with non-negative trace. Indeed, if A ∈ Aφ then

tr(Aφ(x)φ(x)t) = tr(φ(x)tAφ(x)) = φ(x)tAφ(x) ≥ 0

for all x ∈ [0, 1]. Integrating with respect to x yields the result since, by assumption,

∫ 1

0

φ(x)φ(x)t dx = Ip, (3)

where Ip is the p× p identity matrix.

Example 1 If p = 2 then A ∈ Aφ implies that A =diag{1, θ} with θ ≥ −1. The associated density

of copulas can be written as c(u, v) = 1 + θφ(u)φ(v) which corresponds to family (2).

This family includes FGM copulas (1) which contains all copulas with both horizontal and vertical

quadratic sections [30], the subfamily of symmetric copulas with cubic sections proposed in [26],

equation (4.4), and some kernel extensions of FGM copulas introduced in [16, 20]. We refer to [10]

for a method to construct admissible functions φ.

The following lemma will reveal useful to build densities of copulas in Cφ without the orthogonality

assumption on φ.

Lemma 1 Let ψ : [0, 1] → R
p be a vector of p functions such that ψ1(t) = 1 for all t ∈ [0, 1] and

∫ 1

0
ψ(x)dx = e1. Let Γ be the Gram matrix defined as Γ =

∫ 1

0
ψ(x)ψ(x)t dx and B ∈ Aψ. Then,

A := Γ1/2BΓ1/2 ∈ Aφ where φ := Γ−1/2ψ fulfills the conditions of Definition 1 and φ(u)tAφ(v) =

ψ(u)tBψ(v) for all (u, v) ∈ [0, 1]2.

See Subsection 9.2 of the Appendix for a proof. A direct application of this lemma yields:

Example 2 The family of copulas with cubic sections proposed in [26], Theorem 4.1 and given by

C(u, v) = uv + uv(1− u)(1− v)[A1v(1− u) +A2(1− v)(1− u) +B1uv +B2u(1− v)]

can be written in our formalism with Lemma 1. Here, p = 3, ψ1(t) = 1, ψ2(t) = 1 − 4t + 3t2,

ψ3(t) = 2t− 3t2, Γ =




1 0 0

0 2/15 1/30

0 1/30 2/15


 and B =




1 0 0

0 A2 A1

0 B2 B1


.

More generally, iterated FGM families [15, 18, 23] where

C(u, v) = uv +

p∑

j=1

θj(uv)
αj ((1− u)(1− v))βj ,

and {αj , βj} = {[j/2] + 1, [(j + 1)/2]} can be shown to be particular cases of our family thanks to

Lemma 1. More examples are given in Section 5.
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Let Tφ the mapping defined for any copula density c ∈ L2([0, 1]
2) by

Tφ(c) =

∫ 1

0

∫ 1

0

c(x, y)φ(x)φ(y)t dxdy ∈ R
p×p. (4)

The mapping Tφ permits to compute the matrix associated with any copula density c ∈ Cφ:

Proposition 2 Each copula density c ∈ Cφ is defined by an unique matrix A which is given by

A = Tφ(c) = Ec(φ(U)φ(V )t) = cov(φ(U), φ(V )) + e1e
t
1,

where (U, V ) is a random pair with density c.

Let × denote the matrix product and let ⋆ denote the product of copulas introduced in [5] and

defined in terms of densities as

cA ⋆ cB(u, v) :=

∫ 1

0

cA(u, s)cB(s, v)ds,

for all (u, v) ∈ [0, 1]2. The following stability properties can be established (see Appendix for a

proof).

Proposition 3 Aφ is a convex set and (Aφ,×) is a semi-group. If, moreover, Ip ∈ Aφ then

(Aφ,×) is a monoid.

Let us also consider the bivariate function q(u, v) = φ(u)t φ(v) defined for (u, v) ∈ [0, 1]2. The

following result is the analogous of Proposition 3 for Cφ.

Proposition 4 Cφ is a closed convex set and (Cφ,×) is a semi-group. If, moreover, q ∈ Cφ then

(Cφ,×) is a monoid.

In view of Propositions 2 – 4, it appears that Tφ(cA ⋆ cB) = Tφ(cA)Tφ(cB) for all (cA, cB) ∈ C2
φ

and thus:

Proposition 5 Tφ is an isomorphism between (Aφ,×) and (Cφ, ⋆).

To summarize, it appears that Aφ is stable with respect to matrix multiplication. Moreover, mul-

tiplying the matrices is equivalent to “multiplying” the copulas using the ⋆ product. Besides, from

the results of [5], it is possible to build Markov processes by giving all the marginal distributions

and a family of copulas satisfying a functional equation based on the ⋆ product and simpler than

the Chapman-Kolmogorov (differential) equation. In our case, the isomorphism between (Aφ,×)

and (Cφ, ⋆) allows to further simplify the functional equation into a matrix equation. We refer

to [5] for more details on this methodology.

Finally, the next lemma shows that it is possible to aggregate copulas of Cφ with different number

of orthogonal functions through the use of Cesàro summations.
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Lemma 2 Let cp ∈ Cφ with associated matrix A and consider the density of copula defined for all

(u, v) ∈ [0, 1]2 and q ≥ 1 by

c̄q(u, v) :=
1

q

q∑

p=1

cp(u, v).

Then, c̄q ∈ Cφ with associated matrix B defined by Bij = (q + 1 −max(i, j))Ai,j/q for all (i, j) ∈
{1, . . . , q}2.

An application of this lemma is provided in Paragraph 5.2.

3 Dependence properties

Several measures of association between the components of a random pair can be considered: the

normalized volume [34], Kendall’s Tau [28], paragraph 5.1.1, Gini’s gamma [12], Blomqwist’s medial

correlation coefficient [28], paragraph 5.1.4, Spearman’s footrule [12], and Spearman’s Rho [28],

paragraph 5.1.2. All these measures are invariant to strictly increasing functions. Kendall’s Tau

and Spearman’s Rho can be interpreted as probabilities of concordance minus probabilities of

discordance of two random pairs. Let us first focus on the Spearman’s Rho. It can be written only

in terms of the copula C:

ρ = 12

∫ 1

0

∫ 1

0

C(u, v)dudv−3. (5)

Note that ρ coincides with the correlation coefficient between the uniform marginal distributions.

In the case of the copula introduced in Definition 1, it can be expressed thanks to the function φ

and the matrix A ∈ Aφ associated with its density.

Proposition 6 Let (U, V ) be a random pair with density of copula c ∈ Cφ associated with the

matrix A ∈ Aφ. The Spearman’s Rho is given by ρ = 12µtAµ− 3 where µ =
∫ 1

0
xφ(x)dx.

Similarly to the Spearman’s Rho, the Kendall’s Tau can be written only in terms of the copula C:

τ = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)−1, (6)

and in the framework of Definition 1, it can be expressed thanks to the function φ and the matrix

A ∈ Aφ associated with its density.

Proposition 7 Let (U, V ) be a random pair with density of copula c ∈ Cφ associated with the

matrix A ∈ Aφ. The Kendall’s Tau is given by τ = 1− 4tr (AtΘAΘ) where Θ is the p× p matrix

defined by Θ =
∫ 1

0
Ψ(u)φ(u)t du and with Ψ(u) =

∫ u
0
φ(t)dt.

Let us note that Propositions 6 and 7 extend the results of [8], Theorem 25 established in the case

of copulas based on partition of unity. Such copulas were introduced in [21, 22]. It is shown in Sec-

tion 5 that they are particular cases of the family considered in Definition 1. Besides, Blomqwist’s

medial correlation coefficient, Gini’s gamma and Spearman’s footrule can also be rewritten in
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terms of the copula C (see for instance [27]). All these coefficients thus benefit from closed form

expressions similar to these of Propositions 6, 7 but we do not enter into details there.

Following [36], the total tail dependence along the diagonals between two random variables X and

Y with respective cdf F and G can be quantified by

Λ =


λLU λUU

λLL λUL


 = lim

t→1−


 P(G(Y ) > t|F (X) < 1− t) P(G(Y ) > t|F (X) > t)

P(G(Y ) < 1− t|F (X) < 1− t) P(G(Y ) < 1− t|F (X) > t)


 .

Again, all these coefficients can be written only in terms of the copula, for instance

λUU = lim
u→1−

C̄(u, u)

1− u
, (7)

where C̄ is the survival copula, i.e. C̄(u, v) = 1 − u − v + C(u, v). In the family Cφ, the tail

dependence along the diagonals is not possible:

Proposition 8 Let (U, V ) be a random pair with density of copula c ∈ Cφ. Then, Λ =


0 0

0 0


.

4 Approximation properties

Let c be a density of copula in L2([0, 1]
2). Recall that the mapping Tφ associates a p × p matrix

to c via (4) and introduce:

Pφ(c)(u, v) = φ(u)t Tφ(c)φ(v), (u, v) ∈ [0, 1]2. (8)

The next lemma gives a necessary and sufficient condition for Pφ(c) ∈ Cφ:

Lemma 3

(i) Let c ∈ L2([0, 1]
2) be an arbitrary density of copula. If Ip ∈ Aφ then Pφ(c) ∈ Cφ and

Pφ(c) = q ⋆ c ⋆ q.

(ii) Conversely, if Pφ(c) ∈ Cφ for all c ∈ L2([0, 1]
2) then Ip ∈ Aφ.

Let (c1, c2) ∈ L2
2([0, 1]

2) and let us consider the scalar product defined as

≺ c1, c2 ≻=

∫ 1

0

(c1 ⋆ c2)(u, u)du =

∫ 1

0

∫ 1

0

c1(u, v)c2(v, u)dudv.

Note that, for symmetric copulas, the above scalar product reduces to the L2− scalar product

〈c1, c2〉 =
∫ 1

0

∫ 1

0

c1(u, v)c2(u, v)dudv.

In the case of densities of copulas in Cφ, the scalar product can be computed using the associated

matrices:
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Lemma 4 Let c2 ∈ L2([0, 1]
2).

(i) If c1 ∈ Cφ with associated matrix A, then ≺ c1, c2 ≻= tr(ATϕ(c2)).

(ii) If, moreover, c2 ∈ Cφ with associated matrix B, then ≺ c1, c2 ≻= tr(AB).

As a consequence of the above lemmas, we have:

Proposition 9 Pφ is an orthogonal projection on Cφ if and only if Ip ∈ Aφ.

This result is now illustrated on the FGM family where explicit computations can be done:

Example 3 It is well known that the FGM family is a particular case of Example 1 with φ(x) =
√
3(1 − 2x), A = diag{1, θ} and where |θ| ≤ 1/3. Here, Ip /∈ Aφ and thus the projection Pφ(c) of

any density of copula c on the FGM family is not itself a density of copula in the general case.

However, let us remark that Tφ(c) = diag{1, θ̃} and thus Pφ(c)(u, v) = 1+3θ̃(1−2u)(1−2v) where

θ̃ =

∫ 1

0

∫ 1

0

c(x, y)φ(x)φ(y)dxdy = 3

∫ 1

0

∫ 1

0

c(x, y)(1− 2x)(1− 2y)dxdy = ρc,

the Spearman’s Rho associated with c. We thus have the following result:

• If |ρc| ≤ 1/3 then Pφ(c) is a FGM copula and ρPφ(c) = ρc,

• If |ρc| > 1/3 then Pφ(c) is not a copula.

It appears from this example that it is possible to associate with any copula a FGM copula with

the same Spearman’s Rho ρc provided |ρc| ≤ 1/3.

Suppose now that {φi}i≥1 is an orthonormal basis of L2([0, 1]). Then, {φi ⊗ φj}i,j≥1 is an or-

thonormal basis of L2([0, 1]
2) where ⊗ denotes the tensor product, i.e (f ⊗ g)(u, v) := f(u)g(v) for

all (u, v) ∈ [0, 1]2. Consequently, the L2−projection of any c ∈ L2([0, 1]
2) on {φi ⊗ φj}1≤i,j≤p is

given by

c̃p(u, v) =

p∑

i=1

p∑

j=1

ai,jφi(u)φj(v) = φ(u)tAφ(v)

where A = (ai,j)1≤i,j≤p with ai,j =
∫ 1

0

∫ 1

0
c(x, y)φi(x)φj(y)dxdy = (Tφ(c))i,j . This yields A = Tφ(c)

and c̃p = Pφ(c). In view of Lemma 3(i), it follows that c̃p ∈ Cφ if Ip ∈ Aφ. As a conclusion, the

L2-projection of any density of copula in L2([0, 1]
2) on a tensor product basis can be written in

our formalism and the following result holds:

Theorem 1 Let {φi}1≤i≤p be an orthonormal family of L2([0, 1]).

(i) The projection Pφ on Cφ introduced in (8) coincides with the L2− projection on {φi ⊗
φj}1≤i,j≤p.

(ii) Moreover, these projections give rise to densities of copula in Cφ if and only if Ip ∈ Aφ.
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Classical approximation properties in L2([0, 1]
2) yield:

Corollary 1 Suppose the assumptions of Theorem 1 hold and let c ∈ L2([0, 1]
2) be a density of

copula. Then, ‖c − Pφ(c)‖ → 0 and ρ(Pφ(c)) → ρ(c) as p → ∞, where ρ(Pφ(c)) and ρ(c) denote

respectively the Spearman’s Rho associated with Pφ(c) and c.

5 Examples

In paragraph 5.1, some examples of copulas found in the literature are shown to enter in our model.

New families are exhibited in paragraph 5.2.

5.1 Copulas based on partition of unity

Recall that a collection of functions ξ = (ξ1, . . . , ξp)
t is called a partition of unity [21, 22] if ξi ≥ 0,

∫ 1

0
ξi(x)dx = 1/p for all i = 1, . . . , p and

∑p
i=1 ξi = 1. It can be established that copulas based on

partition of unity are particular cases of the proposed family:

Proposition 10 Let ξ = (ξ1, . . . , ξp)
t be a partition of unity, and let M be a p×p doubly stochastic

matrix. Then, the function defined for all (u, v) ∈ [0, 1]2 by c(u, v) = pξ(u)tMξ(v) is a density of

copula and c ∈ Cφ. Moreover, φ = (HΓξH
t)−1/2Hξ where s = e1 + · · ·+ ep, H = Ip + e1s

t − set1,

and Γξ is the Gram matrix associated with ξ.

As an illustration, we have:

Example 4 The Bernstein copula [32] is obtained by choosing ξi(x) = Ci−1
p−1x

i−1(1− x)p−i and

Mij = p

{
C

(
i

p
,
j

p

)
− C

(
i− 1

p
,
j

p

)
− C

(
i

p
,
j − 1

p

)
+ C

(
i− 1

p
,
j − 1

p

)}
, (9)

where C is an arbitrary copula.

In the case of Bernstein copula, the basis φ = (HΓξH
t)−1/2Hξ cannot be simplified. However,

in the particular case where {ξ1, . . . , ξp} is orthogonal and
∫ 1

0
ξ2i (t)dt = β2 for all i = 1, . . . , p, we

have Γξ = β2Ip and therefore

HΓξH
t = β2




p 0 . . . . . . . . . 0

0 2 1 . . . . . . 1
... 1 2

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . . 2 1

0 1 . . . . . . 1 2




.
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The inverse square-root of this matrix benefits from a closed-form expression, and we thus have a

simple linear relation between the two families of functions: φ = Ωξ with

Ω =
1

β




p−1/2 . . . . . . . . . . . . p−1/2

−p−1/2 γ (γ − 1) . . . . . . (γ − 1)
... (γ − 1) γ

. . .
...

...
...

. . .
. . .

. . .
...

...
...

. . . γ (γ − 1)

−p−1/2 (γ − 1) . . . . . . (γ − 1) γ




, (10)

where γ = (p−2+p−1/2)/(p−1). Explicit computations can be achieved in case of the checkerboard

copula:

Example 5 The checkerboard copula [21, 22] is obtained by choosing ξi(x) = I {x ∈ Ii} where

{Ii, i = 1, . . . , p} is the equidistant partition of [0, 1] into p intervals and Mij as in (9). Besides,

Γξ = (1/p)Ip and therefore φ = Ωξ where Ω is given by (10) with β = p−1/2.

5.2 Orthogonal bases

Trigonometric basis. The trigonometric family is defined by φ0(x) = 1, φ2j−1(x) =
√
2 sin(2πjx)

and φ2j(x) =
√
2 cos(2πjx) for all j ≥ 1 and x ∈ [0, 1]. It is orthonormal with respect to

the usual scalar product on L2([0, 1]). Let θ ≥ 0 and consider the (2p + 1) × (2p + 1) matrix

A =diag{1, θ, θ, . . . , θ}. One has

cp,θ(u, v) := φ(u)tAφ(v) = 1− θ + θDp(u− v)

where Dp is the Dirichlet kernel given by

Dp(t) =
sin((2p+ 1)πt)

sin(πt)
.

It is then clear that cp,θ ∈ Cφ if θ ≤ 1/(1−D−
p ) where D

−
p := mintDp(t). Since D

−
p < 0, it follows

that θ is upper bounded by 1/(1−D−
p ) < 1 and thus Ip /∈ Aφ when φ is the trigonometric family.

Besides, Proposition 6 yields that the associated Spearman’s rho is

ρp,θ =
6θ

π2

p∑

j=1

1

j2
.

Numerical computations show that the maximum value is obtained for p = 2 for which D−
2 = −1

and ρ2,1/2 = 15/(4π2). This bound can be increased by introducing

c̄q,θ(u, v) :=
1

q

q−1∑

p=0

cp,θ(u, v) = 1− θ + θFq(u− v) (11)
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where Fq is the Fejér kernel [14] defined as

Fq(x) =
1

q

q−1∑

p=0

Dp(x) =
1

q

(
sin(qx/2)

sin(x/2)

)2

.

Since this kernel is positive, it is readily seen that c̄q,θ is a density of copula for all θ ∈ [0, 1].

Besides, Lemma 2 entails that c̄q,θ ∈ Cφ for all θ ∈ [0, 1]. The associated Spearman’s rho is

ρ̄q,θ =
1

q

q−1∑

p=0

ρp,θ =
6θ

π2

1

q

q−1∑

p=1

p∑

j=1

1

j2
=

6θ

π2



q−1∑

j=1

1

j2
− 1

q

q−1∑

j=1

1

j


 .

Let us remark that ρ̄q,θ → θ as q → ∞ and thus, arbitrary large dependences can be modeled.

The Haar basis. For each positive integer i, let us denote by Ji the interval Ji =
[

pi
2qi−1 ,

pi+1
2qi−1

)

where pi and qi are the integers uniquely determined by i = 2qi−1 + pi and 0 ≤ pi < 2qi−1. The

Haar basis [31] is defined by φ0(t) = I{t ∈ [0, 1]} and φi(t) = 2
qi−1

2 (I{t ∈ J2i} − I{t ∈ J2i+1}) , for
i = 1, . . . , p. In the following, it is assumed that p is a power of 2. Let θ ≥ 0 and consider the p×p
matrix A =diag{1, θ, θ, . . . , θ}. One has

cp,θ(u, v) := φ(u)tAφ(v) = 1− θ + θKp(u, v) (12)

where Kp is the Dirichlet kernel associated with the Haar basis

Kp(u, v) = p

p∑

i=1

I{(u, v) ∈ I2i },

and recall that {Ii, i = 1, . . . , p} is the equidistant partition of [0, 1] into p intervals. It is thus

clear that Kp can be rewritten as

Kp(u, v) = p

p∑

i=1

p∑

j=1

Mi,jξi(u)ξj(v)

where M = Ip is the p× p identity matrix and ξi(u) = I{u ∈ Ii}. It appears that Kp is the density

of a copula based on partition of unity. In view of Proposition 10, it follows that Kp ∈ Cφ. Finally,
(12) can be interpreted as a linear mixture of Kp and the independent copula, leading to cp,θ ∈ Cφ
for all θ ∈ [0, 1]. Thus, Ip ∈ Aφ when φ is the Haar family. Straightforward calculations show that

the associated Spearman’s rho is given by ρp(θ) = θ
(
1− p−2

)
. Let us remark that ρp(θ) → θ as

p→ ∞ and thus, arbitrary large dependences can be modeled.

6 Estimation

Let (U1, V1), . . . , (Un, Vn) be independent copies of a random pair (U, V ) from a density c ∈ Cφ
associated with a matrix A. Assume that the function φ is known. Then, estimating c reduces to

10



estimating A. Proposition 2 provides two interpretations of A in terms of a covariance matrices

and thus two possible estimators:

Â1,n =
1

n

n∑

i=1

φ(Ui)φ(Vi)
t,

Â2,n =
1

n

n∑

i=1

(φ(Ui)− e1)(φ(Vi)− e1)
t + e1e

t
1.

In both cases, the corresponding estimated density is given by ĉj,n(u, v) = φ(u)t Âj,nφ(v), j ∈ {1, 2}
and can be simplified as

ĉ1,n(u, v) =
1

n

n∑

i=1

q(u, Ui)q(v, Vi),

ĉ2,n(u, v) = 1 +
1

n

n∑

i=1

(q(u, Ui)− 1)(q(v, Vi)− 1).

For a fixed value of n, one cannot guaranty that these estimators belong to Cφ. Nevertheless,

one can prove that the margins of ĉ2,n are uniform:
∫ 1

0
ĉ2,n(u, t)dt =

∫ 1

0
ĉ2,n(t, v)dt = 1 for all

(u, v) ∈ [0, 1]2. Besides, if Ip ∈ Aφ then ĉ1,n(u, v) ≥ 0 for all (u, v) ∈ [0, 1]2. The next result can

also be readily established:

Proposition 11 Let c ∈ Cφ. For all j ∈ {1, 2},

(i) E(ĉj,n(u, v)) = c(u, v) for all n ≥ 1.

(ii)
√
n(ĉj,n(u, v)−c(u, v)) converges in distribution to a centered Gaussian distribution N (0, σ2

j (u, v))

as n→ ∞, where

σ2
1(u, v) = ζ1(u)

tAζ1(v)− c(u, v)2 with ζ1(t) =

∫ 1

0

q2(x, t)φ(x)dx,

σ2
2(u, v) = ζ2(u)

tAζ2(v)− (c(u, v)− 1)2 with ζ2(t) =

∫ 1

0

(q(x, t)− 1)2φ(x)dx.

More generally, both estimators ĉ1,n and ĉ2,n can still be used even for densities of copulas c /∈ Cφ.
Letting c̃p = Pφ(c) and ĉp ∈ {ĉ1,n, ĉ2,n}, the straightfoward decomposition holds: (ĉp − c) =

(ĉp− c̃p)+ (c̃p− c). The first term can be interpreted as an estimation error, it is controlled (when

p if fixed and n→ ∞) by Proposition 11. The second term is an approximation error, independent

of n, it is controlled by Corollary 1 (when p→ ∞). The asymptotic properties when both p→ ∞
and n→ ∞ depend on the chosen basis of functions. They can be derived thanks to the following

classical result:

Proposition 12 Let {φi}i≥1 be an orthonormal basis of L2([0, 1]) and consider c ∈ L2([0, 1]
2).

Set Ap = Tφ(c) and c̃p = Pφ(c) for the sake of simplicity. Then, for all j ∈ {1, 2},

‖ĉj,n − c‖2 = ‖Âj,n −Ap‖2F + ‖c̃p − c‖2,

where ‖M‖F =
√
tr(MM t) is the Frobenius norm of the matrix M .

11



7 Numerical experiments

The proposed estimators ĉ1,n and ĉ2,n are compared on simulated data. Both estimators are

built on the trigonometric basis, see Subsection 5.2. The value of p is selected by minimizing

the distance between the empirical Spearman’s Rho and the estimated one under the model:

ρ̂j,n = 12µt Âj,n µ− 3, j ∈ {1, 2}, see Proposition 6. The comparison is achieved on three models:

the Fejér copula (11) with q = 5, the Gaussian copula and Ali-Mikhail-Haq (AMH) copula [1]

with a sample size fixed to n = 500. For each of the above copula models, five values of the

dependence parameter were tested in order to explore a wide range of possible Spearman’s Rho

values: [0.06, 0.55] for the Fejér copula, [−0.9, 0.9] for the Gaussian copula and [−0.25, 0.41] for

the AMH one. Let us highlight that Fejér copula belongs to our family while Gaussian and AMH

copulas do not. The comparison of the estimation results in both situations should illustrate the

approximation ability of the considered family of copulas Cφ. The experiments where conducted on

N = 100 replications of the 3× 5 datasets. The empirical mean ρ̄j as well as the sum-of-squared-

errors εj corresponding to each estimator ρ̂j,n, j ∈ {1, 2} are computed on the N replications and

reported in Table 1. It appears that both estimators are able to estimate the Spearman’s Rho in

a reliable way, even though large values of |ρ| are slightly under-estimated. Clearly, ĉ2,n performs

better than ĉ1,n. The second estimator yields much smaller errors than the first one. Let us

also stress that the sum-of-squared-errors associated with ĉ2,n is nearly constant for all considered

copula models and Spearman’s Rho values. This phenomenon shows that the considered family

may be suitable for estimating various dependence structures. The above results are confirmed by

Figure 1. It displays the boxplots of (ρ̂j,n − ρ) computed on the replications of the 3× 5 datasets

for each estimator (j ∈ {1, 2}). The estimation errors associated with ĉ2,n are nearly centered and

benefit from a smaller variance than those associated to ĉ1,n.

ρ ρ̄1 ε1 ρ̄2 ε2

0.06 0.05 0.49 0.06 0.20

0.18 0.16 0.75 0.18 0.23

0.30 0.27 0.57 0.29 0.19

0.42 0.39 0.90 0.42 0.22

0.55 0.53 0.55 0.54 0.20

ρ ρ̄1 ε1 ρ̄2 ε2

-0.9 -0.87 0.21 -0.87 0.16

-0.5 -0.46 0.51 -0.48 0.25

0.0 0.00 0.53 0.00 0.13

0.5 0.43 1.25 0.47 0.26

0.9 0.83 1.52 0.87 0.13

ρ ρ̄1 ε1 ρ̄2 ε2

-0.25 -0.22 0.48 -0.25 0.15

-0.15 -0.12 0.63 -0.14 0.19

0.00 -0.00 0.45 0.00 0.20

0.19 0.16 0.70 0.19 0.21

0.41 0.35 1.02 0.40 0.21

Table 1: Estimation results on three simulated copulas (Fejér (left), Gaussian (center) and AMH

(right)) for different values of Spearman’s Rho (ρ). For each estimator ĉj,n, j ∈ {1, 2}, the empirical

mean of the estimated Spearman’s Rho (ρ̄j) is computed as well as the associated sum-of-squared-

errors (εj).
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8 Conclusion and further work

We proposed a new family of bivariate copulas defined from a matrix and a family of orthogonal

functions. High dependences can be modeled without introducing singular components. It has also

been shown that this family can be used for approximating any density of copula. As a consequence,

it appears as a good tool for modeling bivariate data. The extension to higher dimensional copula

could be achieved by using high dimensional arrays. The computational issues involved in the

estimation procedure could be overcomed using the approach of [33] to avoid multidimensional

summations for the Bernstein copula. The extension to high dimension could also be done using

one-factor copula models [19] similarly to [24] which permit to avoid the curse of dimensionality

effects.
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[22] Li X., Mikusiński, P. and Taylor, M. D., 1998. Strong approximation of copulas. Journal of

Mathematical Analysis and Applications, 225, 608–623.

[23] Lin, G. D., 1987. Relationships between two extensions of Farlie-Gumbel-Morgenstern distri-

bution, Annals of the Institute of Statistical Mathematics, 39, 129–140.

14



[24] Mazo, G., Girard, S. and Forbes, F., 2014. A flexible and tractable class of one-factor copulas,

submitted, http://hal.archives-ouvertes.fr/hal-00979147

[25] Morgenstern, D., 1956. Einfache Beispiele zweidimensionaler Verteilungen. Mitteilungsblatt

für Mathematische Statistik, 8, 234–235.

[26] Nelsen, R. B., Quesada-Molina, J. J. and Rodŕıguez-Lallena, J. A., 1997. Bivariate copulas
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9 Appendix

9.1 Proofs of main results

Proof of Proposition 1. Let c ∈ Cφ. Clearly, c(u, v) ≥ 0 for all (u, v) ∈ [0, 1]2 from the

definition of Aφ. It only remains to prove that the margins of c are standard uniform distributions.

To this end, let us remark that ∫ 1

0

φ(v)dv = e1, (13)

since for all j = 1, . . . , p, we have
∫ 1

0
φj(v)dv = 〈e1, ej〉 = δ1j , where δij = 1 if i = j and δij = 0

otherwise. As a consequence,

∫ 1

0

c(u, v)dv = φ(u)tA

∫ 1

0

φ(v)dv = φ(u)tAe1 = φ(u)t e1 = φ1(u) = 1.

The proof of
∫ 1

0
c(u, v)du = 1 is similar. ✷

Proof of Proposition 2. Let c ∈ Cφ such that c(u, v) = φ(u)tAφ(v) = φ(u)tBφ(v) for all

(u, v) ∈ [0, 1]2 and for some (A,B) ∈ A2
φ. It follows that

c(u, v)φ(u)φ(v)t = φ(u)φ(u)tAφ(v)φ(v)t = φ(u)φ(u)tBφ(v)φ(v)t,

and integrating with respect to u and v yields Tφ(c) = A = B in view of (3). Remark that, if

moreover, c ∈ Cφ with associated matrix A ∈ Aφ then

Ec(φ(U)) =

∫ 1

0

∫ 1

0

φ(u)φ(u)tAφ(v)dudv = A

∫ 1

0

φ(v)dv = Ae1 = e1

in view of (3) and (13). Thus, the matrix A can also be interpreted as A =cov(φ(U), φ(V ))+e1e
t
1.✷

Proof of Proposition 3. It is clear that Aφ is convex. Let us prove that (Aφ,×) is a semi-

group. Since the product × is associative, it only remains to establish that (A,B) ∈ A2
φ entails

A×B ∈ Aφ. First, (3) entails

φ(u)tABφ(v) = φ(u)tA

{∫ 1

0

φ(y)φ(y)t dy

}
Bφ(v)

=

∫ 1

0

{
φ(u)tAφ(y)

}{
φ(y)tBφ(v)

}
dy ≥ 0,

and second it is easily seen that ABe1 = e1 and (AB)t e1 = e1. Finally, Ip ∈ Aφ and (Aφ,×) is a

semi-group both imply that (Aφ,×) is a monoid. ✷
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Proof of Proposition 4. It is clear that Cφ is convex. Let us prove that (Cφ, ⋆) is a semi-

group. Since the product ⋆ is associative (see [5], Theorem 2.4), it only remains to establish that

(cA, cB) ∈ C2
φ entails cA ⋆ cB ∈ Cφ:

cA ⋆ cB(u, v) =

∫ 1

0

φ(u)tAφ(s)φ(s)tBφ(v)ds,

= φ(u)tA

{∫ 1

0

φ(s)φ(s)t ds

}
Bφ(v) = φ(u)tABφ(v).

This proves that (cA, cB) ∈ C2
φ and is associated with the matrix AB ∈ Cφ, see Proposition 3.

Finally, q ∈ Cφ and (Cφ, ⋆) is a semi-group both imply that (Cφ, ⋆) is a monoid. ✷

Proof of Proposition 6. Let C denote the copula associated with the density c ∈ Cφ. Intro-

ducing Ψ(u) =
∫ u
0
φ(t)dt and γ =

∫ 1

0
Ψ(u)du, we have C(u, v) = Ψ(u)tAΨ(v) and (5) leads to

ρ = 12γtAγ − 3. A partial integration yields γ = e1 − µ and

(e1 − µ)tA(e1 − µ) = et1Ae1 − µt (A+At)e1 + µtAµ = 1− 2µ1 + µtAµ

with µ1 =
∫ 1

0
tdt = 1/2 and the result follows. ✷

Proof of Proposition 7. Let C denote the copula associated with the density c ∈ Cφ. Standard
algebra gives

∫ 1

0

∫ 1

0

C(u, v)dC(u, v) =

∫ 1

0

∫ 1

0

Ψ(u)tAΨ(v)φ(u)tAφ(v)dudv

=

∫ 1

0

∫ 1

0

Ψ(v)tAtΨ(u)φ(u)tAφ(v)dudv

=

∫ 1

0

Ψ(v)tAtΘAφ(v)dv

=

∫ 1

0

tr
(
Ψ(v)tAtΘAφ(v)

)
dv

=

∫ 1

0

tr
(
AtΘAφ(v)Ψ(v)t

)
dv

= tr
(
AtΘAΘt

)
.
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Besides, a partial integration shows that Θt = e1e
t
1 −Θ. It follows that

tr
(
AtΘAΘt

)
= tr

(
AtΘAe1e

t
1

)
− tr

(
AtΘAΘ

)

= tr
(
AtΘe1e

t
1

)
− tr

(
AtΘAΘ

)

= tr
(
Θe1e

t
1A

t
)
− tr

(
AtΘAΘ

)

= tr
(
Θe1e

t
1

)
− tr

(
AtΘAΘ

)

= Θ1,1 − tr
(
AtΘAΘ

)

= 1/2− tr
(
AtΘAΘ

)
.

The conclusion follows from (6). ✷

Proof of Proposition 8. Let C denote the copula associated with the density c ∈ Cφ. Recalling
that Ψ(u) =

∫ u
0
φ(t)dt, we have C(u, v) = Ψ(u)tAΨ(v). In view of (13), Ψ(1) = e1 leading to

C(1, 1) = 1 and thus (7) can be rewritten as

λUU = 2− lim
u→1−

C(u, u)− C(1, 1)

u− 1
= 2− ∂C(u, u)

∂u

∣∣∣∣
u=1

.

Straightforward calculations show that

∂C(u, u)

∂u

∣∣∣∣
u=1

= φ(1)t (A+At)Ψ(1) = φ(1)t (A+At)e1 = 2φ(1)t e1 = 2,

and consequently λUU = 0. The proof for the other terms of the matrix Λ is similar. ✷

Proof of Proposition 9. Let us suppose first that Ip ∈ Aφ. Let us first remark that, from

Proposition 4, Cφ is a convex and closed subset of L2([0, 1]
2). Second, it is clear from Lemma 3(i)

that Pφ is idempotent:

Pφ(Pφ(c)) = q ⋆ P (c) ⋆ q = q ⋆ q ⋆ c ⋆ q ⋆ q = q ⋆ c ⋆ q = P (c),

for all c ∈ L2([0, 1]
2) since q ⋆ q = q from (3). Third, let c ∈ L2([0, 1]

2) and s ∈ Cφ with associated

matrix A. Our aim is to prove that ≺ c− Pφ(c), s ≻= 0. In view of Lemma 4,

≺ c− Pφ(c), s ≻= tr(Tφ(c)A)− tr(Tφ(c)A) = 0

and the direct part of the result is proved. Conversely, if Pφ is a projection on Cφ then, necessarily,

Pφ(q) ∈ Cφ. Besides, Pφ(q) = q and thus q ∈ Cφ entailing Ip ∈ Aφ. The converse part of the result

is proved. ✷
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Proof of Corollary 1. First, it is clear that ‖c − Pφ(c)‖ → 0 as p → ∞, since, in view of

Theorem 1(i), c̃p := Pφ(c) can be interpreted as a L2− projection of c. From (5), it follows that

ρ(c̃p)− ρ(c) =

∫

[0,1]4
(c̃p(x, y)− c(x, y))I{x ≤ u}I{y ≤ v}dxdydudv

and Cauchy-Schwarz inequality yields

|ρ(c̃p)− ρ(c)| ≤ ‖c̃p − c‖
(∫

[0,1]4
I{x ≤ u}I{y ≤ v}dxdydudv

)1/2

=
1

2
‖c̃p − c‖

and the conclusion follows. ✷

Proof of Proposition 10. Let ψ = Hξ and B = pH−tMH−1 where H−t denotes the transpo-

sition of the inverse of H. First, it is easily seen that

c(u, v) = pξ(u)tMξ(v) = ψ(u)tBψ(v),

with ψ1(t) =
∑p
i=1 ξi(t) = 1 and

∫ 1

0
ψ(t)dt = H

∫ 1

0
ξ(t)dt = 1

pHs = e1. Besides, since ξi ≥ 0 for all

i = 1, . . . , p and M is a doubly stochastic matrix, it is clear that c(u, v) ≥ 0 for all (u, v) ∈ [0, 1]2.

Second, standard algebra shows that H−1e1 = s/p and H−ts = e1. As a consequence,

Be1 = pH−tMH−1e1 = H−tMs = H−ts = e1

and similarly Bt e1 = e1 leading to B ∈ Aψ. Lemma 1 entails that A := Γ1/2BΓ1/2 ∈ Aφ where

φ := Γ−1/2ψ fullfills the conditions of Definition 1 and the density of copula

c(u, v) = pξ(u)tMξ(v) = ψ(u)tBψ(v) = φ(u)tAφ(v)

belongs to Cφ. ✷

Proof of Proposition 11. The proof is a consequence of E(q(u, U)) = 1, E(q(u, U)q(v, V )) =

c(u, v) and of the Central-Limit Theorem. ✷

Proof of Proposition 12. As a consequence of the properties of the L2− projection, ‖ĉj,n−c‖2 =

‖ĉj,n − c̃p‖2 + ‖c̃p − c‖2, and the result follows from ‖ĉj,n − c̃p‖2 = ‖Âj,n −Ap‖2F (the proof being

similar to the one of Lemma 4). ✷

9.2 Proofs of auxiliary results

Proof of Lemma 1. Let us first remark that Γe1 = e1 and Γt e1 = e1. Consequently, there

exists a square root Γ1/2 of Γ such that Γ1/2e1 = e1 and (Γ1/2)te1 = e1. It follows that Ae1 = e1,

At e1 = e1 and that, for all (u, v) ∈ [0, 1]2, φ(u)tAφ(v) = ψ(u)tBψ(v), it is thus clear that A ∈ Aφ

with φ1(x) = 1 for all x ∈ [0, 1] and φ is orthonormal. ✷
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Proof of Lemma 2. Let cp ∈ Cφ with associated matrix A and consider the density of copula

defined for all (u, v) ∈ [0, 1]2 and q ≥ 1 by

c̄q(u, v) :=
1

q

q∑

p=1

cp(u, v)

=
1

q

q∑

p=1

q∑

i=1

q∑

j=1

Ai,jφi(u)φj(v)I{i ≤ p}I{j ≤ p}

=

q∑

i=1

q∑

j=1

Ai,j

(
1

q

q∑

p=1

I{max(i, j) ≤ p}
)
φi(u)φj(v)

=

q∑

i=1

q∑

j=1

Ai,j

(
q + 1−max(i, j)

q

)
φi(u)φj(v)

=:

q∑

i=1

q∑

j=1

Bi,jφi(u)φj(v).

It is clear from its definition that c̄q is a density of copula. Therefore, c̄q ∈ Cφ and the result is

proved. ✷

Proof of Lemma 3. (i) Let c ∈ L2([0, 1]
2) and suppose Ip ∈ Aφ. Then q ∈ Cφ and

φ(u)t Tφ(c)φ(v) = φ(u)t
{∫ 1

0

∫ 1

0

φ(x)c(x, y)φ(y)t dxdy

}
φ(v)

=

∫ 1

0

∫ 1

0

q(u, x)c(x, y)q(y, v)dxdy

= (q ⋆ c ⋆ q)(u, v),

which proves that φ(u)t Tφ(c)φ(v) ≥ 0 for all (u, v) ∈ [0, 1]2. Moreover,

Tφ(c)e1 =

∫ 1

0

∫ 1

0

φ(x)c(x, y) {φ(y)e1}t dydx =

∫ 1

0

∫ 1

0

φ(x)c(x, y)dydx

=

∫ 1

0

φ(x)dx = e1,

in view of (13) and similarly Tφ(c)
t e1 = e1. As a conclusion, Tφ(c) ∈ Aφ and thus Pφ(c) ∈ Cφ.

(ii) Conversely, if Pφ(c) ∈ Cφ for all c ∈ L2([0, 1]
2), we have in particular Pφ(q) = q ∈ Cφ and thus

Ip ∈ Aφ. ✷
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Proof of Lemma 4. (i) Let c2 ∈ L2([0, 1]
2) and let c1 ∈ Cφ with associated matrix A. By

definition,

≺ c1, c2 ≻ =

∫ 1

0

∫ 1

0

c1(u, v)c2(v, u)dudv

=

∫ 1

0

∫ 1

0

φ(u)tAφ(v)c2(v, u)dudv

=

∫ 1

0

∫ 1

0

tr
{
φ(u)tAφ(v)c2(v, u)

}
dudv

=

∫ 1

0

∫ 1

0

tr
{
Aφ(v)c2(v, u)φ(u)

t
}
dudv = tr {ATϕ(c2)} .

(ii) If, moreover, c2 ∈ Cφ with associated matrix B then Tϕ(c2) = B and the conclusion follows. ✷
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Figure 1: Boxplots of the estimation errors (ρ̂j,n − ρ). Left: first estimator (j = 1), right: second

estimator (j = 2). Top: Féjer copula, center: Gaussian copula, bottom: AMH copula. The

theoretical values of ρ are displayed on the horizontal axes.

22


