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OPTIMUM DESIGN ACCOUNTING FOR THE GLOBAL
NONLINEAR BEHAVIOR OF THE MODEL

By Andrej Pázman ∗

Comenius University, Bratislava, Slovakia
and

By Luc Pronzato

Laboratoire I3S, University of Nice-Sophia Antipolis/CNRS, France

Among the major difficulties that one may encounter when es-
timating parameters in a nonlinear regression model are the non-
uniqueness of the estimator, its instability with respect to small per-
turbations of the observations and the presence of local optimizers of
the estimation criterion.

We show that these estimability issues can be taken into account
at the design stage, through the definition of suitable design criteria.
Extensions of E-, c- and G-optimality criteria are considered, which,
when evaluated at a given θ0 (local optimal design), account for the
behavior of the model response η(θ) for θ far from θ0. In particular,
they ensure some protection against close-to-overlapping situations
where ‖η(θ)− η(θ0)‖ is small for some θ far from θ0. These extended
criteria are concave and necessary and sufficient conditions for op-
timality (Equivalence Theorems) can be formulated. They are not
differentiable, but when the design space is finite and the set Θ of
admissible θ is discretized, optimal design forms a linear program-
ming problem which can be solved directly or via relaxation when Θ
is just compact. Several examples are presented.

1. Introduction. We consider a nonlinear regression model with ob-
servations

yi = y(xi) = η(xi, θ̄) + εi , i = 1, . . . , N ,

where the errors εi satisfy IE(εi) = 0, var(εi) = σ2 and cov(εi, εj) = 0 for
i 6= j, i, j = 1, . . . , N , and the true value θ̄ of the vector of model parameter
θ belongs to Θ, a compact subset of Rp such that Θ ⊂ int(Θ), the closure of
the interior of Θ. In a vector notation, we write

(1) y = ηX(θ̄) + ε , with IE(ε) = 0 , Var(ε) = σ2IN ,
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2 A. PÁZMAN AND L. PRONZATO

where ηX(θ) = (η(x1, θ), . . . , η(xN , θ))⊤, y = (y1, . . . , yN )⊤, ε = (ε1, . . . , εN )⊤,
andX denotes theN -point exact design (x1, . . . , xN ). The more general non-
stationary (heteroscedastic) case where var(εi) = σ2(xi) can easily be trans-
formed into the model (1) with σ2 = 1 via the division of yi and η(xi, θ)
by σ(xi). We suppose that η(x, θ) is twice continuously differentiable with
respect to θ ∈ int(Θ) for any x ∈X , a compact subset of Rd. The model is
assumed to be identifiable over X ; that is, we suppose that

(2) η(x, θ′) = η(x, θ) for all x ∈X =⇒ θ′ = θ .

We shall denote by Ξ the set of design measures ξ, i.e., of probability
measures on X . The information matrix (for σ2 = 1) for the design X at θ
is

M(X, θ) =
N
∑

i=1

∂η(xi, θ)

∂θ

∂η(xi, θ)

∂θ⊤

and, for any ξ ∈ Ξ, we shall write

M(ξ, θ) =

∫

X

[∂η(x, θ)/∂θ] [∂η(x, θ)/∂θ⊤] ξ(dx) .

Denoting ξN = (1/N)
∑N

i=1 δxi the empirical design measure associated with
X, with δx the delta measure at x, we have M(X, θ) = N M(ξN , θ). Note
that (2) implies the existence of a ξ ∈ Ξ satisfying the Least-Squares (LS)
estimability condition

(3) η(x, θ′) = η(x, θ) ξ-almost everywhere =⇒ θ′ = θ .

Given an exact N -point design X, the set of all hypothetical means of the
observed vectors y in the sample space R

N forms the expectation surface
Sη = {ηX(θ) : θ ∈ Θ}. Since ηX(θ) is supposed to have continuous first
and second-order derivatives in int(Θ), Sη is a smooth surface in R

N with a
(local) dimension given by r = rank[∂ηX(θ)/∂θ⊤]. If r = p (which means full
rank), the model (1) is said regular. In regular models with no overlapping
of Sη, i.e. when ηX(θ) = ηX(θ′) implies θ = θ′, the LS estimator

(4) θ̂LS = θ̂NLS = argmin
θ∈Θ
‖y − ηX(θ)‖2

is uniquely defined with probability one (w.p.1). Indeed, when the distribu-
tions of errors εi have probability densities (in the standard sense) it can
be proven that η[θ̂LS(y)] is unique w.p.1, see Pázman (1984) and Pázman
(1993, p. 107). However, there is still a positive probability that the function
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OPTIMUM DESIGN ACCOUNTING FOR MODEL NONLINEARITY 3

θ −→ ‖y−ηX(θ)‖2 has a local minimizer different from the global one when
the regression model is intrinsically curved in the sense of Bates and Watts
(1980), i.e., when Sη is a curved surface in R

N , see Demidenko (1989, 2000).
Moreover, a curved surface can “almost overlap”; that is, there may exist
points θ and θ′ in Θ such that ‖θ′− θ‖ is large but ‖ηX(θ′)−ηX(θ)‖ is small
(or even equals zero in case of strict overlapping). This phenomenon can
cause serious difficulties in parameter estimation, leading to instabilities of
the estimator, and one should thus attempt to reduce its effects by choosing
an adequate experimental design. Classically, those issues are ignored at the
design stage and the experiment is chosen on the basis of asymptotic lo-
cal properties of the estimator. Even when the design relies on small-sample
properties of the estimator, like in (Pázman and Pronzato, 1992; Gauchi and
Pázman, 2006), a non-overlapping assumption is used (see Pázman (1993,
pp. 66 and 157)) which permits to avoid the aforementioned difficulties. Note
that putting restrictions on curvature measures is not enough: consider the
case dim(θ) = 1 with the overlapping Sη formed by a circle of arbitrarily
large radius and thus arbitrarily small curvature (see the example in Sect. 2
below).

Important and precise results are available concerning the construction
of subsets of Θ where such difficulties are guaranteed not to occur, see,
e.g., Chavent (1983, 1990, 1991); however, their exploitation for choosing
adequate designs is far from straightforward. Also, the construction of de-
signs with restricted curvatures, as proposed by Clyde and Chaloner (2002),
is based on the curvature measures of Bates and Watts (1980) and uses
derivatives of ηX(θ) at a certain θ; this local approach is unable to catch
the problem of overlapping for two points that are distant in the parameter
space. Other design criteria using a second-order development of the model
response, or an approximation of the density of θ̂LS (Hamilton and Watts,
1985; Pronzato and Pázman, 1994), are also inadequate.

The aim of this paper is to present new optimality criteria for optimum
design in nonlinear regression models that may reduce such effects, especially
overlapping, and are at the same time closely related to classical optimality
criteria like E-, c- or G-optimality (in fact, they coincide with those criteria
when the regression model is linear). Classical optimality criteria focus on
efficiency, i.e., aim at ensuring a precise estimation of θ, asymptotically,
provided that the model is locally identifiable at θ. On the other hand,
the new extended criteria account for the global behavior of the model and
enforce identifiability.

An elementary example is given in the next section and illustrates the mo-
tivation of our work. The criterion of extended E-optimality is considered in
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4 A. PÁZMAN AND L. PRONZATO

Sect. 3; its main properties are detailed and algorithms for the construction
of optimal designs are presented. Sections 4 and 5 are respectively devoted
to the criteria of extended c-optimality and extended G-optimality. Several
illustrative examples are presented in Sect. 6. Section 7 suggests some ex-
tensions and further developments and Sect. 8 concludes.

2. An elementary motivating example.

Example 1. Suppose that θ ∈ Θ = [0, 1] and that, for any design point
x = (t, u)⊤ ∈X = {0, π/2} × [0, umax], we have

η(x, θ) = r cos(t− u θ) ,

with r a known positive constant. We take umax = 7π/4; the difficulties
mentioned below are even more pronounced for values of umax closer to 2π.
We shall consider exclusively two-point designs X = (x1, x2) of the form

x1 = (0, u)⊤ , x2 = (π/2, u)⊤

and denote νu the associated design measure, νu = (1/2)[δx1 +δx2 ]. We shall
look for an optimal design, that is, an optimal choice of u ∈ [0, umax], where
optimality is considered in terms of information.

It is easy to see that for any design νu we have

ηX(θ) =

(

η(x1, θ)
η(x2, θ)

)

=

(

r cos(u θ)
r sin(u θ)

)

.

The expectation surface is then an arc of a circle, with central angle u,
see Figure 1 for the case u = umax = 7π/4. The model is nonlinear but
parametrically linear since the information matrix M(X, θ) for σ2 = 1 (here
scalar since θ is scalar) equals r2 u2 and does not depend on θ. Also, the
intrinsic curvature (see Sect. 6) is constant and equals 1/r, and the model
is also almost intrinsically linear if r gets large.

Any classical optimality criterion (A-, D-, E-) indicates that one should
observe at u = umax, and setting a constraint on the intrinsic curvature is
not possible here. However, if the true value of θ is θ̄ = 0 and σ2 is large
enough, there is a chance that the LS estimator will be θ̂LS = 1, and thus
very far from θ̄, see Figure 1. The situation gets even worse if umax gets
closer to 2π, since Sη then almost overlaps.

Now, consider HE(νu, θ) = (1/2) ‖ηX (θ)−ηX(θ0)‖2/|θ−θ0|2, see (5), with
θ0 = 0. For all u ∈ [0, umax], the minimum of HE(νu, θ) with respect to θ ∈ Θ
is obtained at θ = 1, HE(νu, 1) = r2 [1−cos(u)] is then maximum in [0, umax]
for u = u∗ = π. This choice u = u∗ seems preferable to u = umax since the
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Fig 1. Expectation surface Sη for θ ∈ Θ = [0, 1], r = 1 and u = umax = 7π/4.

expectation surface Sη is then a half-circle, so that ηX(0) and ηX(1) are as far
away as possible. On the other hand, as shown in Sect. 3, minθ∈ΘHE(νu, θ)
possesses most of the attractive properties of classical optimality criteria
and even coincides with one of them in linear models.

Figure 2-left shows HE(νu, θ) as a function of θ for three values of u and
illustrates the fact that the minimum of HE(νu, θ) with respect to θ ∈ Θ is
maximized for u = u∗. Figure 2-right shows that the design with u = umax

(dashed line) is optimal locally at θ = θ0, in the sense that it yields the
fastest increase of ‖ηX(θ) − ηX(θ0)‖ as θ slightly deviates from θ0. On the
other hand, u = π maximizes minθ∈Θ ‖ηX(θ)− ηX(θ0)‖/|θ − θ0| (solid line)
and realizes a better protection against the folding effect of Sη, at the price
of a slightly less informative experiment for θ close to θ0. Smaller values of
u (dotted line) are worse than u∗, both locally for θ close to θ0 and globally
in terms of the folding of Sη.

The rest of the paper will formalize these ideas and show how to imple-
ment them for general nonlinear models through the definition of suitable
design criteria that can be easily optimized.

3. Extended (globalized) E-optimality.

3.1. Definition of φeE(·). Take a fixed point θ0 in Θ and denote

(5) HE(ξ, θ) = HE(ξ, θ; θ
0) =

‖η(·, θ) − η(·, θ0)‖2ξ
‖θ − θ0‖2 ,
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Fig 2. HE(νu, θ) (left) and ‖ηX (θ) − ηX(θ0)‖ (right) as functions of θ ∈ Θ = [0, 1] for
r = 1, u = 2 (dotted line), u = umax = 7π/4 (dashed line) and u = u∗ = π ( solid line).

where ‖·‖ξ denotes the norm in L2(ξ); that is, ‖l‖ξ =
[∫

X
l2(x) ξ(dx)

]1/2
for

any l ∈ L2(ξ). When ξ is a discrete measure, like in the examples considered
in the paper, then ‖l‖2ξ is simply the sum

∑

x:ξ({x})>0 ξ({x}) l2(x).
The extended E-optimality criterion is defined by

(6) φeE(ξ) = φeE(ξ; θ
0) = min

θ∈Θ
HE(ξ, θ) ,

to be maximized with respect to the design measure ξ.
In a nonlinear regression model φeE(·) depends on the value chosen for θ0

and can thus be considered as a local optimality criterion. On the other hand,
the criterion is global in the sense that it depends on the behavior of η(·, θ)
for θ far from θ0. This (limited) locality can be removed by considering
φMeE(ξ) = minθ0∈Θ φeE(ξ; θ

0) instead of (6), but only the case of φeE(·)
will be detailed in the paper, the developments being similar for φMeE(·),
see Sect. 7.2.

For a linear regression model with η(x, θ) = f⊤(x)θ+v(x) and Θ = R
p, for

any θ0 and any ξ ∈ Ξ we have ‖η(·, θ)− η(·, θ0)‖2ξ = (θ− θ0)⊤M(ξ)(θ − θ0),
so that

φeE(ξ) = min
θ−θ0∈Rp

(θ − θ0)⊤M(ξ)(θ − θ0)

‖θ − θ0‖2 = λmin[M(ξ)] ,

the minimum eigenvalue of M(ξ), and corresponds to the E-optimality cri-
terion.

For a nonlinear model with Θ = B(θ0, ρ), the ball with centre θ0 and
radius ρ, direct calculation shows that

(7) lim
ρ→0

φeE(ξ; θ
0) = λmin[M(ξ, θ0)] .
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OPTIMUM DESIGN ACCOUNTING FOR MODEL NONLINEARITY 7

In a nonlinear regression model with larger Θ, the determination of an
optimum design ξ∗eE maximizing φeE(ξ) ensures some protection against
‖η(·, θ) − η(·, θ0)‖ξ being small for some θ far from θ0. In particular, when
θ0 ∈ int(Θ) then φeE(ξ; θ

0) = 0 if either M(ξ, θ0) is singular or ‖η(·, θ) −
η(·, θ0)‖ξ = 0 for some θ 6= θ0. Therefore, under the condition (2), ξ∗eE
satisfies the estimability condition (3) at θ = θ0 and is necessarily non-
degenerate, i.e., M(ξ∗eE , θ

0) is nonsingular, when θ0 ∈ int(Θ) (provided that
there exists a non-degenerate design in Ξ). Notice that (7) implies that
φeE(ξ; θ

0) ≤ λmin[M(ξ, θ0)] when Θ contains some open neighborhood of θ0.
In contrast with the E-optimality criterion, maximizing φeE(ξ; θ

0) in non-
linear models does not require computation of the derivatives of η(x, θ) with
respect to θ at θ0, see the algorithms proposed in Sects. 3.3 and 3.4. Also
note that the influence of points that are very far from θ0 can be suppressed
by modification of the denominator of (5) without changing the relation
with E-optimality, see Sect. 7.1.

Before investigating properties of φeE(·) as a criterion function for opti-
mum design in the next section, we state a property relating φeE(ξ) to the
localization of the LS estimator θ̂LS .

Theorem 1 For any given θ ∈ Θ, the LS estimator θ̂LS given by (4) in the
model (1) satisfies

θ̂LS ∈ Θ ∩B

(

θ,
2 ‖y − ηX(θ)‖√
N
√

φeE(ξN ; θ)

)

,

with ξN the empirical measure associated with the design X used to observe
y.

Proof. The result follows from the following chain of inequalities

‖θ̂LS − θ‖ ≤ ‖η(·, θ̂LS)− η(·, θ)‖ξN
√

φeE(ξN ; θ)
=
‖ηX(θ̂LS)− ηX(θ)‖√

N
√

φeE(ξN ; θ)

≤ ‖y − ηX(θ̂LS)‖+ ‖y − ηX(θ)‖√
N
√

φeE(ξN ; θ)
≤ 2 ‖y − ηX(θ)‖√

N
√

φeE(ξN ; θ)
.(8)

Note that although the bound (8) is tight in general nonlinear situations
(due to the possibility that Sη overlaps), it is often pessimistic. In particular,
in the linear regression model η(x, θ) = f⊤(x)θ+v(x), direct calculation gives

‖θ̂LS − θ‖ ≤
√

λmax[(F⊤F)−1] ‖y − ηX(θ)‖ = ‖y − ηX(θ)‖√
N
√

φeE(ξN )
,
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8 A. PÁZMAN AND L. PRONZATO

where F is the N × p matrix with ith line equal to f⊤(xi). We also have
‖θ̂LS − θ‖ ≤ ‖y − ηX(θ)‖/[

√
N
√

φeE(ξN , θ)] in intrinsically linear models

(with a flat expectation surface Sη) since then ‖ηX(θ̂LS) − ηX(θ)‖ ≤ ‖y −
ηX(θ)‖.

In the following we shall omit the dependence in θ0 and simply write
φeE(ξ) for φeE(ξ; θ

0) when there is no ambiguity.

3.2. Properties of φeE(·). As the minimum of linear functions of ξ, φeE(·)
is concave: for all ξ, ν ∈ Ξ and all α ∈ [0, 1], φeE[(1 − α)ξ + αν] ≥ (1 −
α)φeE(ξ) + αφeE(ν). It is also positively homogeneous: φeE(aξ) = aφeE(ξ)
for all ξ ∈ Ξ and a > 0, see, e.g., Pukelsheim (1993, Chap. 5). The criterion
of eE−efficiency can then be defined as

EeE(ξ) =
φeE(ξ)

φeE(ξ∗eE)
, ξ ∈ Ξ ,

where ξ∗eE maximizes φeE(ξ).
The concavity of φeE(·) implies the existence of directional derivatives

and, due to the linearity in ξ of HE(ξ, θ), we have the following, see, e.g.,
Dem’yanov and Malozemov (1974).

Theorem 2 For any ξ, ν ∈ Ξ, the directional derivative of the criterion
φeE(·) at ξ in the direction ν is given by

FφeE
(ξ; ν) = min

θ∈ΘE(ξ)
HE(ν, θ)− φeE(ξ) ,

where ΘE(ξ) = {θ ∈ Θ : HE(ξ, θ) = φeE(ξ)}.
Note that we can write FφeE

(ξ; ν) = minθ∈ΘE(ξ)

∫

X
ΨeE(x, θ, ξ) ν(dx),

where

(9) ΨeE(x, θ, ξ) =
[η(x, θ)− η(x, θ0)]2 − ‖η(·, θ) − η(·, θ0)‖2ξ

‖θ − θ0‖2 .

Due to the concavity of φeE(·), a necessary and sufficient condition for the
optimality of a design measure ξ∗eE is that

(10) sup
ν∈Ξ

FφeE
(ξ∗eE; ν) = 0 ,

a condition often called “Equivalence Theorem” in optimal design theory;
see, e.g., Fedorov (1972); Silvey (1980). An equivalent condition is as follows.
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OPTIMUM DESIGN ACCOUNTING FOR MODEL NONLINEARITY 9

Theorem 3 A design ξ∗eE ∈ Ξ is optimal for φeE(·) if and only if
(11)

max
x∈X

∫

ΘE(ξ∗eE)
ΨeE(x, θ, ξ)µ

∗(dθ) = 0 for some measure µ∗ ∈M [ΘE(ξ
∗
eE)] ,

the set of probability measures on ΘE(ξ
∗
eE).

Proof. This is a classical result for maximin design problems, see, e.g., Fe-
dorov and Hackl (1997, Sect. 2.6). We have

0 ≤ sup
ν∈Ξ

FφeE
(ξ; ν) = sup

ν∈Ξ
min

θ∈ΘE(ξ)

∫

X

ΨeE(x, θ, ξ) ν(dx)

= sup
ν∈Ξ

min
µ∈M [ΘE(ξ)]

∫

X

∫

ΘE(ξ)
ΨeE(x, θ, ξ)µ(dθ) ν(dx)

= min
µ∈M [ΘE(ξ)]

sup
ν∈Ξ

∫

X

∫

ΘE(ξ)
ΨeE(x, θ, ξ)µ(dθ) ν(dx)

= min
µ∈M [ΘE(ξ)]

max
x∈X

∫

ΘE(ξ)
ΨeE(x, θ, ξ)µ(dθ) .(12)

Therefore, the necessary and sufficient condition (10) can be written as (11).

One should notice that supν∈Ξ FφeE
(ξ; ν) is generally not obtained for ν

equal to a one-point (delta) measure, which prohibits the usage of classi-
cal vertex-direction algorithms for optimizing φeE(·). Indeed, the minimax
problem (12) has generally several solutions x(i) for x, i = 1, . . . , s, and
the optimal ν∗ is then a linear combination

∑s
i=1wiδx(i) , with wi ≥ 0 and

∑s
i=1 wi = 1; see Pronzato, Huang and Walter (1991) for developments on a

similar difficulty in T -optimum design for model discrimination. This prop-
erty, due to the fact that φeE(·) is not differentiable, has the important
consequence that the determination of a maximin-optimal design cannot be
obtained via standard design algorithms used for differentiable criteria.

To avoid that difficulty, a regularized version φeE,λ(·) of φeE(·) is con-
sidered in (Pronzato and Pázman, 2013, Sects. 7.7.3 and 8.3.2), with the
property that limλ→∞ φeE,λ(ξ) = φeE(ξ) for any ξ ∈ Ξ (the convergence
being uniform when Θ is a finite set), φeE(·) is concave and such that
supν∈Ξ FφeE,λ

(ξ; ν) is obtained when ν is the delta measure δx∗ at some
x∗ ∈ X (depending on ξ). However, although φeE,λ(·) is smooth for any
finite λ, its maximization tends to be badly conditioned for large λ.

In the next section we show that optimal design for φeE(·) reduces to linear
programming when Θ and X are finite. This is an important property. An
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10 A. PÁZMAN AND L. PRONZATO

algorithm based on a relaxation of the maximin problem is then considered
in Sect. 3.4 for the case where Θ is compact.

3.3. Optimal design via linear-programming (Θ is finite). To simplify
the construction of an optimal design, one may take Θ as a finite set,
Θ = Θ(m) = {θ(1), θ(2), . . . , θ(m)}; φeE(ξ) can then be written as φeE(ξ) =
minj=1,...,mHE(ξ, θ

(j)), with HE(ξ, θ) given by (5). If the design space X

is also finite, with X = {x(1), x(2), . . . , x(ℓ)}, then the determination of
an optimal design measure for φeE(·) amounts to the determination of a
scalar t and of a vector of weights w = (w1, w2, . . . , wℓ)

⊤, wi being allo-
cated at x(i) for each i = 1, . . . , ℓ, such that c⊤[w⊤, t]⊤ is maximized, with
c = (0, 0, . . . , 0, 1)⊤ and w and t satisfying the constraints

ℓ
∑

i=1

wi = 1 ,

wi ≥ 0 , i = 1, . . . , ℓ ,
ℓ
∑

i=1

wi hi(θ
(j)) ≥ t , j = 1, . . . ,m ,(13)

where we denoted

(14) hi(θ) =
[η(x(i), θ)− η(x(i), θ0)]2

‖θ − θ0‖2 .

This is a linear programming (LP) problem, which can easily be solved using
standard methods (the simplex algorithm for instance), even for large m and
ℓ. We shall denote by (ŵ, t̂) = LPeE(X ,Θ(m)) the solution of this problem.

We show below how a compact subset Θ of Rp with nonempty interior
can be replaced by a suitable discretized version Θ(m) that can be enlarged
iteratively.

3.4. Optimal design via relaxation and the cutting-plane method (Θ is
a compact subset of Rp). Suppose now that X is finite and that Θ is a
compact subset of Rp with nonempty interior. In the LP formulation above,
(w, t) must satisfy an infinite number of constraints:

∑ℓ
i=1 wi hi(θ) ≥ t for

all θ ∈ Θ, see (13). One may then use the method of Shimizu and Aiyoshi
(1980) and consider the solution of a series of relaxed LP problems, using
at step k a finite set of constraints only, i.e., consider θ ∈ Θ(k) finite. Once
a solution (wk, tk) = LPeE(X ,Θ(k)) of this problem is obtained, using a
standard LP solver, the set Θ(k) is enlarged to Θ(k+1) = Θ(k)∪{θ(k+1)} with
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OPTIMUM DESIGN ACCOUNTING FOR MODEL NONLINEARITY 11

θ(k+1) given by the constraint (13) most violated by wk, i.e.,

(15) θ(k+1) = argmin
θ∈Θ

HE(w
k, θ) ,

where, with a slight abuse of notation, we write HE(w, θ) = HE(ξ, θ), see
(5), when ξ allocates mass wi at the support point x(i) ∈ X for all i. This
yields the following algorithm for the maximization of φeE(·).
0) Take any vector w0 of nonnegative weights summing to one, choose ǫ > 0,

set Θ(0) = ∅ and k = 0.
1) Compute θ(k+1) given by (15), set Θ(k+1) = Θ(k) ∪ {θ(k+1)}.
2) Use a LP solver to determine (wk+1, tk+1) = LPeE(X ,Θ(k+1))
3) If ∆k+1 = tk+1−φeE(w

k+1) < ǫ, take wk+1 as an ǫ-optimal solution and
stop; otherwise k ← k + 1, return to step 1.

The optimal value φ∗
eE = maxξ∈Ξ φeE(ξ) satisfies

φeE(w
k+1) ≤ φ∗

eE ≤ tk+1

at every iteration, so that ∆k+1 of step 3 gives an upper bound on the
distance to the optimum in terms of criterion value.

The algorithm can be interpreted in terms of the cutting-plane method.
Indeed, from (5) and (14) we have HE(w, θ(j+1)) =

∑ℓ
i=1wi hi(θ

(j+1)) for
any vector of weights w. From the definition of θ(j+1) in (15) we obtain

φeE(w) ≤ HE(w, θ(j+1)) = HE(w
j, θ(j+1)) +

ℓ
∑

i=1

hi(θ
(j+1)){w −wj}i

= φeE(w
j) +

ℓ
∑

i=1

hi(θ
(j+1)){w −wj}i ,

so that the vector with components hi(θ
(j+1)), i = 1, . . . , ℓ, forms a subgra-

dient of φeE(·) at wj, which we denote ∇φeE(w
j) below (it is sometimes

called supergradient since φeE(·) is concave). Each of the constraints

ℓ
∑

i=1

wi hi(θ
(j+1)) ≥ t ,

used in the LP problem of step 2, with j = 0, . . . , k, can be written as

∇⊤φeE(w
j)w = φeE(w

j) +∇⊤φeE(w
j)(w −wj) ≥ t .
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12 A. PÁZMAN AND L. PRONZATO

Therefore, wk+1 determined at step 2 maximizes the piecewise-linear ap-
proximation

min
j=0,...,k

{φeE(w
j) +∇⊤φeE(w

j)(w −wj)}

of φeE(w) with respect to the vector of weights w, and the algorithm cor-
responds to the cutting-plane method of Kelley (1960).

The only difficult step in the algorithm corresponds to the determination
of θ(k+1) in (15) when Θ is a compact set. We found that the following simple
procedure is rather efficient. Construct a finite grid, or a space-filling design,
G 0 in Θ. Then, for k = 0, 1, 2, . . .

(16)



























(i) compute θ̂k+1 = argminθ′∈G k HE(w
k, θ′) ;

(ii) perform a local minimization of HE(w
k, θ)

with respect to θ ∈ Θ , initialized at θ̂k+1;

let θ(k+1) denote the solution ;

(iii) set G k+1 = G k ∪ {θ(k+1)} .

The optimal value φeE(ξ
∗
eE) can then be approximated by HE(w

k+1, θ(k+2))
when the algorithm stops (step 3).

The method of cutting planes is known to have sometimes rather poor con-
vergence properties, see, e.g., Bonnans et al. (2006, Chap. 9), Nesterov (2004,
Sect. 3.3.2). A significant improvement consists in restricting the search for
wk+1 at step 2 to some neighborhood of the best solution obtained so far,
which forms the central idea of bundle methods, see Lemaréchal, Nemirovskii
and Nesterov (1995), Bonnans et al. (2006, Chaps. 9-10). In particular, the
level method of Nesterov (2004, Sect. 3.3.3) adds a quadratic-programming
step to each iteration of the cutting planes algorithm presented above; one
may refer for instance to Pronzato and Pázman (2013, Sect. 9.5.3) for an
application of the level method to design problems. Notice that any lin-
ear constraint on w can easily be taken into account in addition to those
in (13), so that the method directly applies to optimal design with linear
cost-constraints, see, e.g., Fedorov and Leonov (2014, Sect. 4.2).

4. Extended (globalized) c-optimality.

4.1. Definition and properties. Consider the case where one wants to
estimate a scalar function of θ, denoted by g(θ), possibly nonlinear. We
assume that

c = c(θ) =
∂g(θ)

∂θ

∣

∣

∣

∣

θ=θ0
6= 0 .
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OPTIMUM DESIGN ACCOUNTING FOR MODEL NONLINEARITY 13

Denote

(17) Hc(ξ, θ) = Hc(ξ, θ; θ
0) =

‖η(·, θ)− η(·, θ0)‖2ξ
|g(θ)− g(θ0)|2

and consider the design criterion defined by

(18) φec(ξ) = min
θ∈Θ

Hc(ξ, θ) ,

to be maximized with respect to the design measure ξ.
When η(x, θ) and the scalar function g(θ) are both linear in θ, with g(θ) =

c⊤θ, we get

φec(ξ) = min
θ∈Θ, c⊤(θ−θ0)6=0

(θ − θ0)⊤M(ξ)(θ − θ0)

[c⊤(θ − θ0)]2

and therefore φec(ξ) = [c⊤M−(ξ)c]−1, using the well-known formula c⊤M−c =
maxα6=0(c

⊤α)2/(α⊤Mα), c.f. Harville (1997, eq. 10.4). Also, for a nonlinear
model with Θ = B(θ0, ρ) and a design ξ such that M(ξ, θ0) has full rank,
one has

lim
ρ→0

φec(ξ) = [c⊤M−1(ξ, θ0)c]−1 ,

which justifies that we consider φec(ξ) as an extended c-optimality criterion.
At the same time, in a nonlinear situation with larger Θ the determination
of an optimal design ξ∗ec maximizing φec(ξ) ensures some protection against
‖η(·, θ) − η(·, θ0)‖2ξ being small for some θ such that g(θ) is significantly

different from g(θ0). The condition (2) guarantees the existence of a ξ ∈ Ξ
such that φec(ξ) > 0 and thus the LS estimability of g(θ) at θ0 for ξ∗ec, that
is,

η(x, θ) = η(x, θ0) ξ∗ec-almost everywhere =⇒ g(θ) = g(θ0) ,

see Pronzato and Pázman (2013, Sect. 7.4.4). When Θ contains an open
neighborhood of θ0, then φec(ξ) ≤ [c⊤M−(ξ, θ0)c]−1.

Similarly to φeE(·), the criterion φec(·) is concave and positively homoge-
neous; its concavity implies the existence of directional derivatives.

Theorem 4 For any ξ, ν ∈ Ξ, the directional derivative of the criterion
φec(·) at ξ in the direction ν is given by

Fφec(ξ; ν) = min
θ∈Θc(ξ)

Hc(ν, θ)− φec(ξ) ,

where Θc(ξ) = {θ ∈ Θ : Hc(ξ, θ) = φec(ξ)}.
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14 A. PÁZMAN AND L. PRONZATO

A necessary and sufficient condition for the optimality of ξ∗ maximizing
φec(·) is that supν∈Ξ Fφec(ξ

∗; ν) = 0, which yields an Equivalence Theorem
similar to Th. 3.

When both Θ and X are finite, an optimal design for φec(·) is obtained by
solving a LP problem. Compared with Sect. 3.3, we simply need to substitute
Hc for HE and use hi(θ) = [η(x(i), θ) − η(x(i), θ0)]2/|g(θ) − g(θ0)|2, i =
1, . . . , ℓ, instead of (14). Also, a relaxation method similar to that in Sect. 3.4
can be used when Θ is a compact subset of Rp.

5. Extended (globalized) G-optimality. Following the same lines
as above, we can also define an extended G-optimality criterion by

φeG(ξ) = min
θ∈Θ

‖η(·, θ) − η(·, θ0)‖2ξ
maxx∈X [η(x, θ)− η(x, θ0)]2

.

The fact that it corresponds to the G-optimality criterion for a linear model
can easily be seen, noticing that in the model (1) with η(x, θ) = f⊤(x)θ+v(x)
we have

{

sup
x∈X

N

σ2
var
[

f⊤(x)θ̂LS

]

}−1

= inf
x∈X

[f⊤(x)M−1(ξN )f(x)]−1

= inf
x∈X

inf
u∈Rp,u⊤f(x)6=0

u⊤M(ξN )u

[f⊤(x)u]2

= inf
u∈Rp

u⊤M(ξN )u

maxx∈X [f⊤(x)u]2
,

where ξN denotes the empirical design measure corresponding to X, as-
sumed to be nonsingular, and the second equality follows from Harville
(1997, eq. 10.4). The equivalence theorem of Kiefer and Wolfowitz (1960) in-
dicates thatD- andG-optimal designs coincide; therefore,D-optimal designs
are optimal for φeG(·) in linear models. Moreover, the optimum (maximum)
value of φeG(ξ) equals 1/p with p = dim(θ).

In a nonlinear model, a design ξ∗eG maximizing φeG(ξ) satisfies the estima-

bility condition (3) at θ = θ0. Indeed, maxx∈X

[

η(x, θ)− η(x, θ0)
]2

> 0 for
any θ 6= θ0 from (2), so that there exists some ξ ∈ Ξ such that φeG(ξ) > 0.
Therefore, φeG(ξ

∗
eG) > 0, and ‖η(·, θ)−η(·, θ0)‖2ξ∗eG = 0 implies that η(x, θ) =

η(x, θ0) for all x ∈X , that is, θ = θ0 from (2). Notice that when Θ contains
an open neighborhood of θ0, then φeG(ξ) ≤ 1/p for all ξ ∈ Ξ.

Again, directional derivatives can easily be computed and an optimal de-
sign can be obtained by linear programming when Θ and X are both finite,
or with the algorithm of Sect. 3.4 when X is finite but Θ has nonempty
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OPTIMUM DESIGN ACCOUNTING FOR MODEL NONLINEARITY 15

interior. Note that there are now m× ℓ inequality constraints in (13), given
by

ℓ
∑

i=1

wi hi(θ
(j), x(k)) ≥ t , j = 1, . . . ,m , k = 1, . . . , ℓ ,

where now

hi(θ, x) =
[η(x(i), θ)− η(x(i), θ0)]2

[η(x, θ)− η(x, θ0)]2
.

Also note that in the algorithm of Sect. 3.4 we need to construct two se-
quences of sets, Θ(k) and X (k), with Θ(k+1) = Θ(k)∪{θ(k+1)} and X (k+1) =
X (k) ∪ {x̂(k+1)} at step 2, and (15) replaced by

{θ(k+1), x̂(k+1)} = arg min
{θ,x}∈Θ×X

‖η(·, θ)− η(·, θ0)‖2ξk
[η(x, θ)− η(x, θ0)]2

with ξk the design measure corresponding to the weights wk.

6. Examples. We shall use the common notation

ξ =

{

x1 · · · xm
w1 · · · wm

}

for a discrete design measure with m support points xi and such that
ξ({xi}) = wi, i = 1, . . . ,m. In the three examples considered we indicate
the values of the parametric, intrinsic and total measure of curvatures at θ0

(for σ = 1), see Tables 1, 2 and 3. They are not used for the construction
of optimal designs, and the examples illustrate the fact that they provide
information on the local behavior only (at θ0), so that a small curvature
does not mean good performance in terms of extended optimality. They are
given by

Cint(ξ, θ) = sup
u∈Rp−{0}

‖[I − Pθ]
∑p

i,j=1 ui[∂
2η(·, θ)/∂θi∂θj ]uj‖ξ

u⊤M(ξ, θ)u
,

Cpar(ξ, θ) = sup
u∈Rp−{0}

‖Pθ
∑p

i,j=1 ui[∂
2η(·, θ)/∂θi∂θj ]uj‖ξ

u⊤M(ξ, θ)u
,

Ctot(ξ, θ) = sup
u∈Rp−{0}

‖∑p
i,j=1 ui[∂

2η(·, θ)/∂θi∂θj]uj‖ξ
u⊤M(ξ, θ)u

,

≤ Cint(ξ, θ) + Cpar(ξ, θ) ,

with Pθ the projector

(Pθf) (x
′) =

∂η(x′, θ)

∂θ⊤
M−1(ξ, θ)

∫

X

∂η(x, θ)

∂θ
f(x) ξ(dx) ,
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16 A. PÁZMAN AND L. PRONZATO

and correspond to the original measures of nonlinearity of Bates and Watts
(1980) for σ = 1, with an adaptation to the use of a design measure ξ
instead of an exact design (x1, . . . , xN ). The connection with the curvature
arrays of Bates and Watts (1980) is presented in (Pázman, 1993, Sect. 5.5);
a procedure for their numerical computation is given in (Bates and Watts,
1980; Ratkowsky, 1983).

All computations are performed in Matlab on a bi-processor PC (2.5
Ghz) with 64 bits, equipped with 32 Go RAM. Classical optimal designs
(D-, E- and c-optimality) are computed with the cutting-plane method,
see Pronzato and Pázman (2013, Sect. 9.5.3); LP problems are solved with
simplex algorithm; we use sequential quadratic programming for the local
minimization of H(wk, θ) that yields θ(k+1) in (16)-(ii).

Example 2. This example is artificial and constructed to illustrate the pos-
sible pitfall of using a local approach (here E-optimal design) for designing
an experiment. The model response is given by

η(x, θ) = θ1{x}1 + θ31(1− {x}1) + θ2{x}2 + θ22(1− {x}2) , θ = (θ1, θ2)
⊤ ,

with x ∈ X = [0, 1]2 and {x}i denoting the i-th component of x. We
consider local designs for θ0 = (1/8, 1/8)⊤ . One may notice that the set
{∂η(x, θ)/∂θ

∣

∣

θ0
: x ∈X } is the rectangle [3/64, 1]× [1/4, 1], so that optimal

designs for any isotonic criterion function of the information matrix M(ξ)
are supported on the vertices (0, 1), (1, 0) and (1, 1) of X . The classical D-
and E-optimal designs are supported on three and two points respectively,

ξ∗D,θ0 ≃







(

0
1

) (

1
0

) (

1
1

)

0.4134 0.3184 0.2682







, ξ∗E,θ0 ≃







(

0
1

) (

1
0

)

0.5113 0.4887







.

When only the design points x1 = (0 1)⊤ and x2 = (1 0)⊤ are used, the
parameters are only locally estimable. Indeed, the equations in θ′

η(x1, θ
′) = η(x1, θ)

η(x2, θ
′) = η(x2, θ)

give not only the trivial solutions θ′1 = θ1 and θ′2 = θ2 but also θ′1 and θ′2
as roots of two univariate polynomials of the fifth degree (with coefficients
depending on θ). Since these polynomials always admit at least one real
root, at least one solution exists for θ′ that is different from θ. In particular,
the vector θ0

′
= (−0.9760 , 1.0567)⊤ gives approximately the same values

as θ0 for the responses at x1 and x2.
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Direct calculations indicate that, for any θ, the maximum of ‖η(·, θ) −
η(·, θ0)‖2ξ with respect to ξ ∈ Ξ is reached for a measure supported on

(0, 0), (0, 1), (1, 0) and (1, 1). Also, the maximum of [η(x, θ) − η(x, θ0)]2

with respect to x is attained on the same points. We can thus restrict our
attention to the design space X = {(0, 0), (0, 1), (1, 0), (1, 1)}. We take
Θ = [−3, 4] × [−2, 2] and use the algorithm of Sect. 3.4, with the grid G 0

of (16)-(iii) given by a random Latin hypercube design with 10 000 points
in [0, 1]2 renormalized to Θ (see, e.g., Tang (1993)), to determine optimal
designs for φeE(·) and φeG(·). When initialized with the uniform measure on
the four points of X , and with ǫ = 10−10, the algorithm stops after 46 and
15 iterations, respectively requiring 0.67 s and 0.28 s in total, and gives the
designs

ξ∗eE,θ0 ≃







(

0
0

) (

0
1

) (

1
1

)

0.32 0.197 0.483







,

ξ∗eG,θ0 ≃







(

0
0

) (

0
1

) (

1
0

) (

1
1

)

0.258 0.258 0.258 0.226







.

The performances of the designs ξ∗D, ξ
∗
E , ξ

∗
eE and ξ∗eG are given in Table 1.

The values φeE(ξ
∗
E) = φeG(ξ

∗
E) = 0 indicate that E-optimal design is not

suitable here, the model being only locally identifiable for ξ∗E. The paramet-
ric, intrinsic and total measures of curvature at θ0 (for σ2 = 1) are also
indicated in Table 1, see Pronzato and Pázman (2013, p. 223). Notice that
the values of these curvature at θ0 do not reveal any particular difficulty
concerning ξ∗E , but that the lack of identifiability for this design is pointed
out by the extended optimality criteria.

This example is very particular and situations where the model is locally,
but not globally, identifiable are much more common: in that case, (2) is
only satisfied locally, for θ′ in a neighborhood of θ, and one may refer, e.g.,
to Walter (1987); Walter and Pronzato (1995) for a precise definition and
examples. The lack of global identifiability would then not be detected by
classical optimal design, but the maximum of φeE(·) and φeG(·) would be
zero for Θ large enough, showing that the model is not globally identifiable.

Example 3. Consider the regression model (one-compartment with first-
order absorption input) used in (Atkinson et al., 1993),

(19) η(x, θ) = θ1[exp(−θ2x)− exp(−θ3x)] , θ = (θ1, θ2, θ3)
⊤ , x ∈ R

+ ,
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18 A. PÁZMAN AND L. PRONZATO

Table 1

Performances of designs ξ∗D, ξ∗E, ξ
∗

eE and ξ∗eG and curvature measures at θ0 in Example
2; det1/3 = φD(ξ) = {det[M(ξ, θ0)]}1/3, λmin = φE(ξ) = λmin[M(ξ, θ0)]. The optimal

(maximum) values of the criteria are indicated in boldface.

ξ det1/3 λmin φeE φeG Cpar Cint Ctot

ξ∗D 0.652 0.273 3.16 · 10−3 0.108 1.10 0.541 1.22
ξ∗E 0.625 0.367 0 0 1.19 0 1.19
ξ∗eE 0.453 8.45 · 10−2

8.78 · 10−3 9.74 · 10−2 3.33 2.69 4.28
ξ∗eG 0.540 0.195 5.68 · 10−3

0.340 1.33 1.26 1.83

with nominal parameters θ0 = (21.80 , 0.05884 , 4.298)⊤. The D- and E-
optimal designs for θ0 are respectively given by

ξ∗D,θ0 ≃
{

0.229 1.389 18.42
1/3 1/3 1/3

}

,

ξ∗E,θ0 ≃
{

0.170 1.398 23.36
0.199 0.662 0.139

}

,

see Atkinson et al. (1993).
We take Θ as the rectangular region [16, 27]×[0.03, 0.08]×[3, 6] and use the

algorithm of Sect. 3.4 to compute an optimal design for φeE(·); the grid G 0

of (16)-(iii) is taken as a random Latin hypercube design with 10 000 points
in [0, 1]3 renormalized to Θ. The number of iterations and computational
time depend on ℓ, the number of elements of X . For instance, when X is
the finite set {0.2, 0.4, 0.6, . . . , 24} with ℓ = 120, and the required precision ǫ
equals 10−10, the algorithm initialized at the uniform measure on the three
points 0.2, 1 and 23 converges after 42 iterations in about 26 s. By refining
X iteratively around the support points of the current optimal design, after
a few steps we obtain

ξ∗eE,θ0 ≃
{

0.1785 1.520 20.95
0.20 0.66 0.14

}

.

A similar approach is used below for the construction of optimal designs for
φec(·) and in Example 4 for φeE(·). The performances of the designs ξ∗D, ξ

∗
E

and ξ∗eE are indicated in Table 2. One may notice that the design ξ∗eE is best
or second best for φD(·), φE(·) and φeE(·) among all locally optimal designs
considered.

The intrinsic curvature is zero for ξ∗D, ξ
∗
E and ξ∗eE (since they all have

3 = dim(θ) support points) and the parametric curvatures at θ0 are rather
small (the smallest one is for ξ∗eE). This explains that, the domain Θ being
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OPTIMUM DESIGN ACCOUNTING FOR MODEL NONLINEARITY 19

not too large, the values of φeE(ξ) do not differ very much from those of
φE(ξ) = λmin[M(ξ, θ0)].

Consider now the same three functions of interest as in (Atkinson et al.,
1993): g1(θ) is the area under the curve,

g1(θ) =

∫ ∞

0
η(x, θ) dx = θ1 (1/θ2 − 1/θ3) ;

g2(θ) is the time to maximum concentration,

g2(θ) =
log θ3 − log θ2

θ3 − θ2
,

and g3(θ) is the maximum concentration

g3(θ) = η[g2(θ), θ] .

We shall write ci = ci(θ
0) = ∂gi(θ)/∂θ|θ0 and denote ξci,θ0 the (locally)

optimal design for gi(θ) which maximizes φci(ξ; θ
0) = [c⊤i M

−(ξ, θ0)ci]
−1,

for i = 1, 2, 3. The ξ∗ci,θ0 are singular and are approximately given by

ξ∗c1,θ0 ≃
{

0.2327 17.63
0.0135 0.9865

}

,

ξ∗c2,θ0 ≃
{

0.1793 3.5671
0.6062 0.3938

}

,

ξ∗c3,θ0 ≃
{

1.0122
1

}

,

see Atkinson et al. (1993).
For each function gi, we restrict the search of a design ξeci optimal in the

sense of the criterion φec(·) to design measures supported on the union of
the supports of ξ∗D,θ0 , ξ

∗
E,θ0 and ξ∗ci,θ0 . We then obtain the following designs

ξ∗ec1,θ0 ≃
{

0.2327 1.389 23.36
9 · 10−4 1.2 · 10−2 0.9871

}

,

ξ∗ec2,θ0 ≃
{

0.1793 0.229 3.5671 18.42
5.11 · 10−2 0.5375 0.3158 9.56 · 10−2

}

,

ξ∗ec3,θ0 ≃
{

0.229 1.0122 1.389 18.42
8.42 · 10−2 0.4867 0.4089 2.02 · 10−2

}

.
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The performances of ξ∗ci and ξ∗eci, i = 1, . . . , 3, are indicated in Table 2,
together with the curvature measures at θ0 for ξ∗eci (which are nonsingular).
For each function gi of interest, the design ξ∗eci performs slightly worse than
ξ∗ci in terms of c-optimality, but, contrarily to ξ∗ci , it allows us to estimate the
three parameters θ and guarantees good estimability properties for gi(θ) for
all θ ∈ Θ. Notice that, apart from the c-optimality criteria φci(·), all criteria
considered take the value 0 at the c-optimal designs ξ∗ci . The construction
of an optimal design for φec(·) thus forms an efficient method to circumvent
the difficulties caused by singular c-optimal design in nonlinear models, see
(Pronzato and Pázman, 2013, Chap. 3 & 5). One may also refer to (Pronzato,
2009) for alternative approaches for the regularization of singular c-optimal
designs.

We conclude this example with a comparison with the average-optimal
designs of (Atkinson et al., 1993), that aim at taking uncertainty on θ0

into account. Consider a prior distribution π(·) on the two components of
θ that intervene nonlinearly in η(x, θ), and let IEπ{·} denote the expecta-
tion for π(·). Atkinson et al. (1993) indicate that when π equals πA uni-
form on [θ02 − 0.01, θ02 + 0.01] × [θ03 − 1, θ03 + 1], the design that maximizes
IEπ{log det[M(ξ, θ)]} is

ξ∗AD−A ≃
{

0.2288 1.4170 18.4513
1/3 1/3 1/3

}

,

and the designs that minimize IEπ{c⊤i (θ)M−(ξ, θ)ci(θ)}, i = 1, 2, 3, are

ξ∗Ac1−A ≃
{

0.2449 1.4950 18.4903
0.0129 0.0387 0.9484

}

,

ξ∗Ac2−A ≃
{

0.1829 2.4639 8.8542
0.6023 0.2979 0.0998

}

,

ξ∗Ac3−A ≃
{

0.3608 1.1446 20.9218
0.0730 0.9094 0.0176

}

.

When π equals πB uniform on [θ02 − 0.04, θ02 + 0.04] × [θ03 − 4, θ03 + 4], the
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average-optimal designs are

ξ∗AD−B ≃
{

0.2034 1.1967 2.8323 7.8229 20.1899
0.2870 0.2327 0.1004 0.0678 0.3120

}

,

ξ∗Ac1−B ≃
{

0.2909 1.7269 13.0961 39.58
0.0089 0.0365 0.2570 0.6976

}

,

ξ∗Ac2−B ≃
{

0.2513 0.9383 2.7558 8.8381 26.6564
0.2914 0.2854 0.1468 0.2174 0.0590

}

,

ξ∗Ac3−B ≃
{

0.3696 1.1383 2.4370 6.0691 24.0831
0.0971 0.3584 0.3169 0.1634 0.0641

}

.

Their performances are indicated in the bottom part of Table 2. Notice that
the average-optimal designs for the vague prior πB are supported on more
than three points and thus allow model checking; this is the case too for the
two designs ξ∗ec2 and ξ∗ec3 . However, contrary to average-optimal design, the
number of support points of optimal designs for extended optimality criteria
does not seem to increase with uncertainty measured by the size of Θ: for
instance, when Θ = [θ01−5, θ01+5]× [θ02−0.04, θ02+0.04]× [θ03−4, θ03+4], the
optimal design for φeE(·) is still supported on three points, approximately
0.1565, 1.552 and 19.73, receiving weights 0.268, 0.588 and 0.144 respectively.

All average-optimal designs considered yield reasonably small curvatures
at θ0, although larger than those for ξ∗E,θ0 and ξ∗eE,θ0. The performances
of ξ∗AD−A and ξ∗AD−B are close to those of ξ∗D,θ0 , and the most interesting

features concern designs for estimation of functions of interest gi(θ). The
designs ξ∗ci,θ0 cannot be used if θ 6= θ0 and are thus useless in practice. The
average-optimal designs ξ∗Aci−B perform significantly worse than ξ∗eci,θ0 in

terms of φeci(·) for i = 1, 2 and 3 and in terms of φci(·) for i = 2 and 3.
On the other hand, the designs ξ∗Aci−A, constructed for the precise prior πA,
perform significantly better than ξ∗eci,θ0 in terms of φci(·) for all i. Figure 3

presents φc3(ξ; θ) as a function of θ, for the three designs ξ∗Ac3−A (dashed
line), ξ∗Ac3−B (dash-dotted line) and ξ∗ec3,θ0 (solid line), when θ1 = θ01, θ3 = θ03
(left) and θ1 = θ01, θ2 = θ02 (right). Note that the projection on the last two
components of θ of the set Θ used for extended c-optimality is intermedi-
ate between the supports of πA and πB. Although average-optimal designs
ξ∗Aci−A,B and extended-optimal designs ξ∗eci,θ0 pursue different objectives, the
example indicates that they show some resemblance in terms of precision of
estimation of gi(θ). The situation would be totally different in absence of
global identifiability for gi(θ), a problem that would not be detected by
average-optimal designs, see the discussion at the end of Example 2.
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Table 2. Performances of different designs and curvature measures at θ0 for the model (19) with θ0 = (21.80 , 0.05884 , 4.298)⊤ and
Θ = [16, 27] × [0.03, 0.08] × [3, 6]; det1/3 = φD(ξ) = {det[M(ξ, θ0)]}1/3, λmin = φE(ξ) = λmin[M(ξ, θ0)]. The optimal (maximum) values
of the criteria are on the main diagonal and indicated in boldface. The bottom part of the table corresponds to the average-optimal designs
of (Atkinson et al., 1993).

ξ det1/3 λmin φeE φc1 φec1 φc2 φec2 φc3 φec3 Cpar Cint Ctot

ξ∗D 11.74 0.191 0.178 1.56 · 10−4 6.68 · 10−5 23.43 18.31 0.361 0.356 0.526 0 0.526

ξ∗E 8.82 0.316 0.274 6.07 · 10−5 3.08 · 10−5 15.89 10.35 0.675 0.667 0.370 0 0.370

ξ∗eE 9.05 0.311 0.281 6.45 · 10−5 3.01 · 10−5 16.62 11.03 0.656 0.644 0.358 0 0.358

ξ∗c1
0 0 0 4.56 · 10

−4 0 0 0 0 0

ξ∗ec1
0.757 2.70 · 10−3 1.92 · 10−3 2.26 · 10−4

2.17 · 10
−4 8.55 · 10−2 6.12 · 10−2 1.12 · 10−2 1.09 · 10−2 6.51 0 6.51

ξ∗c2
0 0 0 0 0 35.55 0 0 0

ξ∗ec2
7.86 7.20 · 10−2 5.99 · 10−2 4.55 · 10−5 1.81 · 10−5 28.82 27.20 0.157 0.145 1.12 0.028 1.12

ξ∗c3
0 0 0 0 0 0 0 1 0

ξ∗ec3
4.06 0.162 0.137 9.70 · 10−6 4.19 · 10−6 6.77 4.36 0.890 0.865 1.11 0.263 1.14

ξ∗AD−A 11.74 0.191 0.177 1.56 · 10−4 6.68 · 10−5 23.53 18.43 0.360 0.355 0.522 0 0.522

ξ∗Ac1−A 2.74 2.07 · 10−2 1.69 · 10−2 4.36 · 10−4 1.50 · 10−4 1.12 0.864 4.06 · 10−2 4.01 · 10−2 1.82 0 1.82

ξ∗Ac2−A 6.71 7.22 · 10−2 6.66 · 10−2 2.21 · 10−5 6.67 · 10−6 35.16 20.31 0.175 0.175 0.909 0 0.909

ξ∗Ac3−A 3.31 0.118 8.23 · 10−2 8.06 · 10−6 3.86 · 10−6 4.37 3.17 0.937 0.838 1.82 0 1.82

ξ∗AD−B 11.08 0.179 0.159 1.62 · 10−4 6.99 · 10−5 21.15 15.93 0.338 0.335 0.505 0.056 0.507

ξ∗Ac1−B 2.18 2.23 · 10−2 1.46 · 10−2 2.34 · 10−4 1.56 · 10−4 0.791 0.644 5.37 · 10−2 4.89 · 10−2 2.12 0.133 2.13

ξ∗Ac2−B 9.45 0.162 0.134 8.07 · 10−5 3.03 · 10−5 20.05 16.28 0.385 0.358 0.753 0.118 0.761

ξ∗Ac3−B 6.16 0.149 9.92 · 10−2 5.07 · 10−5 2.06 · 10−5 6.60 6.13 0.615 0.587 1.22 0.256 1.25
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Fig 3. φc3(ξ; θ) as a function of θ, for θ1 = θ01 and θ3 = θ03 ( left) and θ1 = θ01, θ2 = θ02
( right); ξ = ξ∗Ac3−A in dashed line, ξ = ξ∗Ac3−B in dash-dotted line and ξ = ξ∗ec3,θ0 in
solid line.

Example 4. For the same regression model (19), we change the value of θ0

and the set Θ and take θ0 = (0.773 , 0.214 , 2.09)⊤ and Θ = [0, 5]× [0, 5]×
[0, 5], the values used by Kieffer and Walter (1998). With these values, from
an investigation based on interval analysis, the authors report that for the
16-point design

ξ0 =

{

1 2 · · · 16
1/16 1/16 · · · 1/16

}

and the observations y given in their Table 13.1, the LS criterion ‖y −
ηX(θ)‖2 has a global minimizer (the value we have taken here for θ0) and
two other local minimizers in Θ. The D- and E-optimal designs for θ0 are
now given by

ξ∗D,θ0 ≃
{

0.42 1.82 6.80
1/3 1/3 1/3

}

,

ξ∗E,θ0 ≃
{

0.29 1.83 9.0
0.4424 0.3318 0.2258

}

.

Using the same approach as in Example 3, with the grid G 0 of (16)-(iii)
obtained from a random Latin hypercube design with 10 000 points in Θ,
we obtain

ξ∗eE,θ0 ≃
{

0.38 2.26 7.91
0.314 0.226 0.460

}

.

To compute an optimal design for φeG(·), we consider the design space
X = {0, 0.1, 0.2, . . . , 16} (with 161 points) and use the algorithm of Sect. 3.4
with the grid G 0 of (16)-(iii) taken as a random Latin hypercube design
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Table 3

Performances of different designs and curvature measures at θ0 for the model (19) with
θ0 = (0.773 , 0.214 , 2.09)⊤ and Θ = [0, 5]3; det1/3 = φD(ξ) = {det[M(ξ, θ0)]}1/3,
λmin = φE(ξ) = λmin[M(ξ, θ0)]. The optimal (maximum) values of the criteria are

indicated in boldface.

ξ det1/3 λmin φeE φeG Cpar Cint Ctot

ξ0 1.85 · 10−2 1.92 · 10−4 2.28 · 10−5 5.66 · 10−3 180.7 15.73 181.3
ξ∗D 5.19 · 10−2 1.69 · 10−3 2.64 · 10−4 6.70 · 10−2 58.0 0 58.0
ξ∗E 4.51 · 10−2

2.04 · 10−3 1.32 · 10−4 7.95 · 10−2 50.7 0 50.7
ξ∗eE 4.73 · 10−2 1.53 · 10−3

2.92 · 10−4 0.114 54.6 0 54.6
ξ∗eG 4.11 · 10−2 1.31 · 10−3 1.69 · 10−4

0.244 69.7 10.7 69.9

with 105 points. The same design space is used to evaluate φeG(·) for the
four designs above. For ǫ = 10−10, the algorithm initialized at the uniform
measure on X converges after 34 iterations in about 52 s and gives

ξ∗eG,θ0 ≃
{

0.4 1.9 5.3 16
0.278 0.258 0.244 0.22

}

.

The performances and curvature measures at θ0 of ξ0, ξ
∗
D, ξ

∗
E , ξ

∗
eE and ξ∗eG

are given in Table 3. The large intrinsic curvature for ξ0, associated with the
small values of φeE(ξ

0) and φeG(ξ
0), explains the presence of local minimizers

for the LS criterion and thus the possible difficulties for the estimation of θ.
The values of φeE(·) and φeG(·) reported in the table indicate that ξ∗D, ξ

∗
E ,

ξ∗eE or ξ∗eG would have caused less difficulties.

7. Further extensions and developments.

7.1. An extra tuning parameter for a smooth transition to usual design
criteria. The criterion φeE(ξ; θ

0) can be written as
(20)
φeE(ξ; θ

0) = max{α ∈ R : ‖η(·, θ)− η(·, θ0)‖2ξ ≥ α ‖θ− θ0‖2 , for all θ ∈ Θ} .

Instead of giving the same importance to all θ whatever their distance to θ0,
one may wish to introduce a saturation and reduce the importance given to
those θ very far from θ0, that is, consider

φeE|K(ξ; θ0) = max

{

α ∈ R : ‖η(·, θ)− η(·, θ0)‖2ξ ≥ α
‖θ − θ0‖2

1 +K ‖θ − θ0‖2 ,

for all θ ∈ Θ}(21)
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for some K ≥ 0. Equivalently, φeE|K(ξ; θ0) = minθ∈ΘHE|K(ξ, θ), with

HE|K(ξ, θ) = ‖η(·, θ)− η(·, θ0)‖2ξ
[

K +
1

‖θ − θ0‖2
]

.

As in Sect. 3.1, we obtain φeE|K(ξ) = λmin[M(ξ)] in a linear model and, for a
nonlinear model with Θ = B(θ0, ρ), limρ→0 φeE|K(ξ; θ0) = λmin[M(ξ, θ0)] for
any K ≥ 0. Moreover, in a nonlinear model with no overlapping φeE|K(ξ; θ0)
can be made arbitrarily close to λmin[M(ξ, θ0)] by choosing K large enough,
whereas choosing K not too large ensures some protection against ‖ηX(θ)−
ηX(θ0)‖ being small for some θ far from θ0. Also, properties of φeE(·) such
as concavity, positive homogeneity, existence of directional derivatives, see
Sect. 3.2, remain valid for φeE|K(·), for any K ≥ 0. The maximization of
φeE|K(·) forms a LP problem when both X and Θ are finite, see Sect. 3.3,
and a relaxation procedure (cutting-plane method) can be used when Θ is
a compact subset of Rp, see Sect. 3.4.

A similar approach can be used with extended c- and G-optimality, which
gives φec|K(ξ) = minθ′∈ΘHc|K(ξ, θ′) with

Hc|K(ξ, θ) = ‖η(·, θ) − η(·, θ0)‖2ξ
[

K +
1

|g(θ)− g(θ0)|2
]

,

and

φeG|K(ξ) = min
θ∈Θ

{

‖η(·, θ) − η(·, θ0)‖2ξ
[

K +
1

maxx∈X [η(x, θ)− η(x, θ0)]2

]}

,

for K a positive constant.

7.2. Worst-case extended optimality criteria. The criterion defined by

φMeE(ξ) = min
θ0∈Θ

φeE(ξ; θ
0) = min

(θ,θ0)∈Θ×Θ
HE(ξ, θ; θ

0) ,

see (6), (5), accounts for the global behavior of η(·, θ) for θ ∈ Θ and oblit-
erates the dependence on θ0 that is present in φeE(ξ; θ

0). The situation is
similar to that in Sect. 3, excepted that we consider now the minimum of
HE with respect to two vectors θ and θ0 in Θ × Θ. All the developments
in Sect. 3 obviously remain valid (concavity, existence of directional deriva-
tive, etc.), including the algorithmic solutions of Sects. 3.3 and 3.4. The
same is true for the worst-case versions of φec(·) and φeG(·), respectively
defined by φMec(ξ) = min(θ,θ0)∈Θ×Θ Hc(ξ, θ; θ

0), see (17), and by φMeG(ξ) =

min(θ,θ0)∈Θ×Θ{‖η(·, θ) − η(·, θ0)‖2ξ/maxx∈X

[

η(x, θ)− η(x, θ0)
]2} , and for

imsart-aos ver. 2013/03/06 file: Extended-optimality_AOS-REV.tex date: March 31, 2014
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the worst-case versions of the extensions of previous section that include
an additional tuning parameter K.

Note that the criterion φMeE(·) may direct attention to a particularly
pessimistic situation. Indeed, for Θ a compact set with nonempty interior
and µ the Lebesgue measure on Θ, one may have minθ0∈Θ φeE(ξ; θ

0) = 0 for
all designs ξ although µ{θ0 ∈ Θ : φeE(ξ

′; θ0) > 0} = 1 for some design ξ′.
This corresponds to a situation where the model is structurally identifiable,
in the sense that the property (2) is generic but is possibly false for θ in
a subset of zero measure, see, e.g., Walter (1987)). Example 2 gives an
illustration.

Example 2 (continued). When the three polynomial equations θ′1 − θ′1
3 =

θ1 − θ31, θ
′
2 − θ′2

2 = θ2 − θ22, θ
′
1
3 + θ′2

2 = θ31 + θ22 are satisfied, then η(x, θ′) =
η(x, θ) for all x. Since these equations have solutions θ′ 6= θ in Θ × Θ,
φMeE(ξ) = 0 for all ξ ∈ Ξ. On the other hand, maxξ∈Ξ φeE(ξ; θ

0) > 0 w.p.1
when θ0 is randomly drawn with a probability measure having a density
with respect to the Lebesgue measure on Θ.

In a less pessimistic version of worst-case extended E-optimality we may
thus consider a finite set Θ0 ⊂ Θ for θ0, obtained for instance by random
sampling in Θ, and maximize minθ0∈Θ0 φeE(ξ; θ

0).

8. Conclusions. Two essential ideas have been presented. First, clas-
sical optimality criteria can be extended in a mathematically consistent way
to criteria that preserve a nonlinear model against overlapping, and at the
same time retain the main features of classical criteria, especially concavity.
Moreover, they coincide with their classical counterpart for linear models.
Second, designs that are nearly optimal for those extended criteria can be
obtained by standard linear programming solvers, supposing that the ap-
proximation of the feasible parameter space Θ by a finite set is acceptable.
A relaxation method, equivalent to the cutting-plane algorithm, can be used
when Θ is a compact set with nonempty interior. Linear constraints on the
design can easily be taken into account. As a by-product, this also provides
simple algorithmic procedures for the determination of E-, c- or G-optimal
designs in linear models with linear cost constraints.

As it is usually the case for optimal design in nonlinear models, the
extended-optimality criteria are local and depend on a guessed value θ0 for
the model parameters. However, the construction of a globalized, worst-case,
version enjoying the same properties is straightforward (Sect. 7.2).

Finally, we recommend the following general procedure for optimal de-
sign in nonlinear regression. (i) Choose a parameter space Θ correspond-
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ing to the domain of interest for θ, select (e.g., randomly) a finite sub-
set Θ0 in the interior of Θ; (ii) for each θ0 in Θ0 compute an optimal
design ξ∗eE,θ0 maximizing φeE(ξ; θ

0) and a E-optimal design ξ∗E,θ0 maxi-

mizing φE(ξ; θ
0) = λminM(ξ, θ0); (iii) if φeE(ξ

∗
eE,θ0; θ

0) is close enough to

φE(ξ
∗
E,θ0 ; θ

0) for all θ0 in Θ0, one may consider that the risk of overlapping,
or lack of identifiability in Θ, is weak and classical optimal design that fo-
cuses on the precision of estimation can be used; otherwise, a design that
maximizes minθ0∈Θ0 φeE(ξ; θ

0) should be preferred. When the extended G-
optimality criterion φeG(·; θ0) is substituted for φeE(·; θ0), the comparison in
(iii) should be between φeG(ξ

∗
eG,θ0 ; θ

0) and 1/dim(θ), see Sect. 5. Extended

c-optimality can be used when one is interested in estimating a (nonlinear)
function of θ, the comparison in (iii) should then be with c-optimality.
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J. Volaufová, eds.) 130–136.

Pronzato, L. and Pázman, A. (1994). Second-order approximation of the entropy in
nonlinear least-squares estimation. Kybernetika 30 187–198. Erratum 32(1):104, 1996.

Pronzato, L. and Pázman, A. (2013). Design of Experiments in Nonlinear Models.
Asymptotic Normality, Optimality Criteria and Small-Sample Properties. Springer, LNS
212, New York, Heidelberg.

Pukelsheim, F. (1993). Optimal Experimental Design. Wiley, New York.
Ratkowsky, D. A. (1983). Nonlinear Regression Modelling. Marcel Dekker, New York.
Shimizu, K. and Aiyoshi, E. (1980). Necessary conditions for min-max problems and

algorithm by a relaxation procedure. IEEE Transactions on Automatic Control 25 62–
66.

Silvey, S. D. (1980). Optimal Design. Chapman & Hall, London.
Tang, B. (1993). Orthogonal Array-Based Latin Hypercubes. Journal of the American

Statistical Association 88 1392–1397.
Walter, E., ed. (1987). Identifiability of Parametric Models. Pergamon Press, Oxford.
Walter, E. and Pronzato, L. (1995). Identifiabilities and nonlinearities. In Nonlinear

Systems. Modeling and Estimation (A. J. Fossard and D. Normand-Cyrot, eds.) 3, 111–
143. Chapman & Hall, London.

Department of Applied Mathematics

and Statistics

Faculty of Mathematics, Physics

and Informatics,

Comenius University, Bratislava, Slovakia

E-mail: pazman@fmph.uniba.sk

Laboratoire I3S,

Bât. Euclide, Les Algorithmes, BP 121

2000 route des Lucioles

06903 Sophia Antipolis cedex, France

E-mail: pronzato@i3s.unice.fr

imsart-aos ver. 2013/03/06 file: Extended-optimality_AOS-REV.tex date: March 31, 2014


