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Abstract

Among the major difficulties that one may encounter when estimating
parameters in a nonlinear regression model are the non-uniqueness of the es-
timator, its instability with respect to small perturbations of the observations
and the presence of local optimizers of the estimation criterion.

We show that these estimability issues can be taken into account at the
design stage, through the definition of suitable design criteria. Extensions
of E, ¢ and G-optimality criteria are considered, which, when evaluated at a
given 0° (local optimal design), account for the behavior of the model response
n(0) for @ far from @°. In particular, they ensure some protection against
close-to-overlapping situations where ||7(6) — n(6%)|| is small for some 6 far
from 6°. These extended criteria are concave and necessary and sufficient
conditions for optimality (Equivalence Theorems) can be formulated. They
are not differentiable, but a maximum-entropy regularization is proposed to
obtain concave and differentiable alternatives. When the design space is finite
and the set © of admissible 6 is discretized, optimal design forms a linear
programming problem, which can be solved directly or via relaxation when ©
is just compact. Several examples are presented.

1 Introduction

We consider a nonlinear regression model with observations

yi = y(xi) =n(z;,0) +e;, i=1,...,N,

where the errors ¢; satisfy IE(e;) = 0, var(e;) = 0 and cov(g;, ;) = 0 for i # j,
i,j=1,...,N, and the true value 6 of the vector of model parameter # belongs to
O, a compact subset of R? such that © C int(©), the closure of the interior of ©.
In a vector notation, we write

y =nx(0) + e, with [E(e) =0, Var(e) = o?Iy, (1)



where nx (0) = (n(x1,0),...,n(zn,0)) ",y = (y1,...,yn) ", e = (e1,...,en) T, and
X denotes the N-point exact design (x1,...,2x). The more general nonstationary
(heteroscedastic) case where var(e;) = o?(x;) can easily be transformed into the
model (1) with 02 = 1 via the division of y; and n(z;,0) by o(x;). We suppose
that n(zx,0) is twice continuously differentiable with respect to 6 € int(©) for any
x € X, a compact subset of R?. The model is assumed to be identifiable over .2;
that is, we suppose that

n(z,0') =n(x,0) forallz e =0 =0. (2)

We shall denote by = the set of design measures &, i.e., of probability measures
on 2. The information matrix (for % = 1) for the design X at 0 is

N
M(X,0) =3 90 00T

=1

and, for any £ € E, we shall write M(¢,0) = f%[an(ac,@)/aﬂ [On(z,0)/007] £(dx).
Denoting &y = (1/N) Zf\il 0z, the empirical design measure associated with X,
with ¢, the delta measure at x, we have M(X,6) = N M({y,0). Note that (2)
implies the existence of a £ € = satisfying the Least-Squares (LS) estimability
condition

n(z,0") = n(z,0) &-almost everywhere = 0’ = 0. (3)

Given an exact N-point design X, the set of all hypothetical means of the
observed vectors y in the sample space RY forms the expectation surface S, =
{nx(0) : 0 € ©}. Since nx () is supposed to have continuous first and second-order
derivatives in int(0©), S, is a smooth surface in R with a (local) dimension given
by 7 = rank[0nx (0)/00"]. If r = p (which means full rank), the model (1) is said
regular. In regular models with no overlapping of S,, i.e. when nx(0) = nx (')
implies 6 = €', the LS estimator

s =0 = arg min [y — nx (6)]|* (4)

is uniquely defined with probability one (w.p.1). Indeed, when the distributions
of errors &; have probability densities (in the standard sense) it can be proven
that 7[0Ls(y)] is unique w.p.1, see Pédzman (1984) and Pazman (1993, p.107).
However, there is still a positive probability that the function § — ||y — nx (6)||?
has a local minimizer different from the global one when the regression model is
intrinsically curved in the sense of Bates and Watts (1980), i.e., when S, is a curved
surface in RY | see Demidenko (1989, 2000). Moreover, a curved surface can “almost
overlap”; that is, there may exist points § and 6’ in © such that ||¢' — 6] is large
but ||nx(0") — nx(0)] is small (or even equals zero in case of strict overlapping).
This phenomenon can cause serious difficulties in parameter estimation, leading
to instabilities of the estimator, and one should thus attempt to reduce its effects
by choosing an adequate experimental design. Classically, those issues are ignored
at the design stage and the experiment is chosen on the basis of asymptotic local
properties of the estimator. Even when the design relies on small-sample properties
of the estimator, like in (Pdzman and Pronzato, 1992; Gauchi and Pdzman, 20006),
a non-overlapping assumption is used (see Pdzman (1993, pp. 66 and 157)) which
permits to avoid the aforementioned difficulties. Note that putting restrictions on
curvature measures is not enough: consider the case dim() = 1 with the overlapping
S,, formed by a circle of arbitrarily large radius and thus arbitrarily small curvature
(see the example in Sect. 2 below).

Important and precise results are available concerning the construction of subsets
of © where such difficulties are guaranteed not to occur, see, e.g., Chavent (1983,



1990, 1991); however, their exploitation for choosing adequate designs is far from
straightforward. Also, the construction of designs with restricted curvatures, as
proposed by Clyde and Chaloner (2002), is based on the curvature measures of Bates
and Watts (1980) and uses derivatives of nx () at a certain 6; this local approach
is unable to catch the problem of overlapping for two points that are distant in the
parameter space. Other design criteria using a second-order development of the
model response, or an approximation of the density of Ors (Pronzato and Pdzman,
1994), are also inadequate.

The aim of this paper is to present new optimality criteria for optimum design
in nonlinear regression models that may reduce such effects, especially overlapping,
and are at the same time closely related to classical optimality criteria like F/, ¢ or
G-optimality (in fact, they coincide with those criteria when the regression model
is linear).

An elementary example is given in the next section and illustrates the motivation
of our work. The criterion of extended FE-optimality is considered in Sect. 3; its
main properties are detailed and algorithms for the construction of optimal designs
are presented. Sections 4 and 5 are respectively devoted to the criteria of extended
c-optimality and extended G-optimality. Several illustrative examples are presented
in Sect. 6. Section 7 suggests some extensions and further developments and Sect. 8
concludes.

2 An elementary motivating example

Example 1 Suppose that § € © = [0,1] and that, for any design point z =
(t, u)T € 2 ={0,7/2} x [0, Umax], We have

n(xz,0) = r cos(t —ub),

with 7 a known positive constant. We take umax = 77/4; the difficulties mentioned
below are even more pronounced for values of uyax closer to 2w. We shall consider
exclusively two-point designs X = (1, z2) of the form

x1 = (0, u)T, xo = (7/2, u)T

and denote v, the associated design measure, v, = (1/2)[d5, + 04,]. We shall look
for an optimal design, that is, an optimal choice of u € [0, umax|, Wwhere optimality
is considered in terms of information.

It is easy to see that for any design v, we have

n(x1,0) r cos(u6)
nx(0) = ( n(xz2,0) > - < r sin(u ) ) '
The expectation surface is then an arc of a circle, with central angle u, see Fig. 1 for
the case u = umax = 77/4. The model is nonlinear but parametrically linear: the
information matrix M(X,0) for o = 1 (here scalar since 6 is scalar) equals 72 u?
and does not depend on 6. Also, the intrinsic curvature is constant and equals 1/r,
and the model is also almost intrinsically linear if r gets large.

Any classical optimality criterion (A-, D-, E-) indicates that one should observe
at u = umax, and setting a constraint on the intrinsic curvature is not possible here.
However, if the true value of @ is # = 0 and o2 is large enough, there is a chance
that the LS estimator will be 6, = 1, and thus very far from 0, see Fig. 1. The
situation gets even worse if umax gets closer to 2, since S, then almost overlaps.

Now, consider Hg(vy,0) = (1/2) |[Inx(0) — nx (6°)]?/]10 — 6°|%, see (5). For all
u € [0, Umax|, the minimum of Hg (v, ) with respect to § € © is obtained at § = 1,
Hg(vy,1) = r2[1 — cos(u)] is then maximum in [0, Upmay] for v = u, = 7. This
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Figure 1: Expectation surface S, for € © = [0,1], r = 1 and u = Umax = 77/4.

choice u = u, seems preferable to u = umax since the expectation surface S, is
then a half-circle, so that nx(0) and nx(1) are as far away as possible. On the
other hand, as shown in Sect. 3, mingee Hg (v, 0) possesses most of the attractive
properties of classical optimality criteria and even coincides with one of them in
linear models.

Figure 2-left shows Hg(v,,0) as a function of § for three values of u and illus-
trates the fact that the minimum of Hg(v,, 6) with respect to 6 € O is maximized
for u = u,. Figure 2-right shows that the design with u = umax (dashed line)
is optimal locally at § = 6°, in the sense that it yields the fastest increase of
Inx(8) — nx(8°) as @ slightly deviates from 6°. On the other hand, u = 7 maxi-
mizes mingee ||17x(0) —nx (0°)/160 — 6°| (solid line) and realizes a better protection
against the folding effect of S,), at the prize of a slightly less informative experiment
for @ close to #°. Smaller values of u (dotted line) are worse than u., both locally
for 6 close to 6% and globally in terms of the folding of S,,.

The rest of the paper will formalize these ideas and show how to implement
them for general nonlinear models through the definition of suitable design criteria
that can be easily optimized.

He(v,.6)
lIn, (8)-n, (6%l

Figure 2: Hg(vy,0) (left) and ||nx (6) — nx (8°)|| (right) as functions of @ € © = [0,1] for r = 1,
u = 2 (dotted line), u = umax = 7w /4 (dashed line) and u = ux = 7 (solid line).



3 Extended (globalized) F-optimality

3.1 Definition of ¢.z(+)
Take a fixed point #° in © and denote

.’9 _ .,90 2

where ||-[|; denotes the norm in .#5(§); that is, [[I|[, = [y 1(x) (dx)] Y2 for any
l € £(§). When ¢ is a discrete measure, like in the examples considered in the

paper, then ||l|\§ is simply the sum }° (1,150 6({2}) 12(z).
The extended F-optimality criterion is defined by

Pep(€) = pen(€:6°) = min Hg(¢,6), (6)

to be maximized with respect to the design measure &.

In a nonlinear regression model ¢.x(-) depends on the value chosen for ° and
can thus be considered as a local optimality criterion. On the other hand, the
criterion is global in the sense that it depends on the behavior of 7(-,8) for 6
far from 6°. This (limited) locality can be removed by considering ¢z (€) =
mingoce der(€;0°) instead of (6), but only the case of ¢ (-) will be detailed in the
paper, the developments being similar for ¢asep(-), see Sect. 7.2.

For a linear regression model with n(z,0) = f' (2)0 + v(z) and © = RP, for any
6° and any ¢ € = we have ||9(-,0) —n(-,6°)[7 = (6 — 6°) "M(£)(0 — 6°), so that

(€)= min @M )

9—60cRr |60 — 602 = AminME)],

the minimum eigenvalue of M(§), and corresponds to the E-optimality criterion.
For a nonlinear model with © = 2(6°, p), the ball with centre #° and radius p,
direct calculation shows that

lim 60 (656°) = Anin[M(E, %) ™)

In a nonlinear regression model with larger ©, the determination of an optimum
design £’ maximizing ¢.g(£) ensures some protection against ||n(-,0) — n(-, 0°)]|¢
being small for some 6 far from #°. In particular, when 8° € int(©) then ¢.g(&;0%) =
0 if either M(¢, 6°) is singular or ||n(-,8) —n(-,0°)||¢ = 0 for some @ # 6°. Therefore,
under the condition (2), 5 satisfies the estimability condition (3) at § = 6° and
is necessarily non-degenerate, i.e., M(£X;,0°) is nonsingular, when ¢° € int(©)
(provided that there exists a non-degenerate design in Z). Notice that (7) implies
that ¢ep(£;0°) < Amin[M(&,6°)] when © contains some open neighborhood of 6°.
Also note that, in contrast with the E-optimality criterion, maximizing ¢.z(¢;60°) in
nonlinear models does not require to compute the derivatives of n(z, §) with respect
to 6 at A9, see the algorithms proposed in Sects. 3.4 and 3.5.

Before investigating properties of ¢.g(:) as a criterion function for optimum
design in the next section, we state a property relating ¢.z(€) to the localization
of the LS estimator 0.

Theorem 1 For any given 6 € O, the LS estimator Ors given by (4) in the model
(1) satisfies

R 2|y — 0

eLSe@ﬂ%G ly —nx(®)] ) |

’ \/N \V4 ¢6E(§N; 9)

with En the empirical measure associated with the design X used to observe y.




Proof. The result follows from the following chain of inequalities

In(-,01s) = n(,0) ey _ Inx (OLs) — nx (0)]
Per(En;0) VN /¢er(En;0)

_ly = nx@us)ll + ly —ax @l _ 2]y —nx(9)] (8)

VN /e (Ex; 0) VN /oep(En;0)

l6rs — 6l <

Note that although the bound (8) is tight in general nonlinear situations (due to
the possibility that S,, overlaps), it is often pessimistic. In particular, in the linear
regression model 7(x,0) = £ (2)0 + v(z), direct calculation gives

ly —nx (@)

\/N V ¢6E(§N) ’

where F is the N X p matrix with ith line equal to £ 7 (z;). We also have |05 —0|| <
ly—nx O)/[VN \/ber(En, 0)] in intrinsically linear models (with a flat expectation
surface S,) since then ||nx(0rs) — nx(8)]] < |ly —nx(9)].

1625 =01l < \/ Anax[(FTF) =1 [ly —nx (0)] =

In the following we shall omit the dependence in #° and simply write ¢z (£) for
der(&;0Y) when there is no ambiguity.

3.2 Properties of ¢.x(-)

As the minimum of linear functions of £, ¢.g(-) is concave: for all {,v € E and all
o€ [Oa 1]) ¢6E[(1 - O‘)g + al/] > (1 - Q)¢€E(§) + O‘QSGE(V)'

It is also positively homogeneous: ¢eg(al) = adep(§) for all £ € = and a > 0,
see, e.g., Pukelsheim (1993, Chap. 5). The criterion of e E—efficiency can then be
defined as

beE (5)

geE(g):mv geEa

where £, maximizes ¢eg(§).
The concavity of ¢.g(-) implies the existence of directional derivatives and we
have the following, see, e.g., Dem’yanov and Malozemov (1974).

Theorem 2 For any &, v € 2, the directional derivative of the criterion ¢.g(-) at
& in the direction v s given by

Fy.(§v) = eerg;% Hg(v,0) — ¢ee(E),

where Op(€) = {0 € © : Hg(£,0) = ¢ep(£)}.

Note that we can write Fy,, (§;v) = mingee,(e) [ o Yer(w,0,&) v(dx), where

z.0) —n(xz, 012 = ||In(-,0) — n(-, 0|2
%E(z,e,g):[n( ,0) —n( ,9|)61_9|0|;r2(,9) 0,0z o)

Due to the concavity of ¢.g(-), a necessary and sufficient condition for the optimality
of a design measure £ is that

sup Fy, (§p3v) = 0, (10)

veEE

a condition often called “Equivalence Theorem” in optimal design theory; see, e.g.,
Fedorov (1972); Silvey (1980); Pdzman (1986). An equivalent condition is as follows.



Theorem 3 A design £ € Z is optimal for ¢er(-) if and only if

max/ Uep(z,0,8) pn*(d0) =0 for some measure u* € #[Or(E:E)], (11)
the set of probability measures on O (Elx).

Proof. This is a classical result for maximin design problems, see, e.g., Fedorov and
Hackl (1997, Sect. 2.6). We have

0<supFy,(6v) = sup min / 5 (2,0,6) w(dx)

vEE veE 0€OE(E)

— sup min //O W (2,0,€) p(d0) v(dx)

vEE REM[OR(E)]

= min en(x,0 dé) v(dx
HWEM[OE(E ]ue_/ /@E(g) £(,6,8) u(df) v(dx)

min max/ © U.p(z,0,8) n(dh). (12)
Op(

pEMOR (L)) z€X
Therefore, the necessary and sufficient condition (10) can be written as (11). [ |

One should notice that sup, c= Fp, ,, (§; V) is generally not obtained for v equal to
a one-point (delta) measure, which prohibits the usage of classical vertex-direction
algorithms for optimizing ¢.g(-). Indeed, the minimax problem (12) has generally
several solutions (¥ for x, i = 1,...,s, and the optimal v* is then a linear com-
bination >} ; w;d,c), with w; > 0 and Y7, w; = 1; see Pronzato et al. (1991)
for developments on a similar difficulty in 7T-optimum design for model discrim-
ination. This property, due to the fact that ¢.g(-) is not differentiable, has the
important consequence that the determination of a maximin-optimal design cannot
be obtained via standard design algorithms used for differentiable criteria.

To avoid that difficulty, a regularized version ¢eg x(-) of ¢eg(-) is considered
below, with the property that sup,cz Fy, 5 ,(§;v) is obtained when v is the delta
measure 0.+ at some z* € £ (depending on £). Moreover, as shown in Sect. 3.4,
optimal design for ¢.g(-) reduces to linear programming when © and £ are finite.
An algorithm based on a relaxation of the maximin problem will then be considered
in Sect. 3.5 for the case where © is compact.

3.3 Maximum-entropy regularization

The criterion ¢.g(-) can be equivalently defined by

e = i Hg(€,0) 1(d9),
oer(©) = min [ He(c.0)n(a0)
where Hg (&, 0) is given by (5) and .Z (©) denotes the set of probability measures on
O. We use the approach of Li and Fang (1997) and regularize ¢.g(€) through a pe-
nalization of measures p having small (Shannon) entropy, with a penalty coefficient
1/ that sets the amount of regularization introduced. Define

ber () = min {/ Hg(&,0)7(0)do + — /@7‘(‘(9) log[n(6)] dG} , A>0,

TED(O)

where 2(0) is the set of probability density functions on ©. This minimization
problem has the solution

exp[-AHE(¢, 0)]

™ (0) = o exp[—AHg(€,0)] 6’




which, after straightforward calculation, gives the regularized criterion

6ep7(6) = =5 108 [ exp{~Ap(6.0)} db. (13)

It satisfies imy_o0 Per A (€) = Pep(€) for any £ € = and the convergence is uniform
when © is a finite set, see Pronzato and Pdzman (2013, Chap. 8). Moreover, ¢eg,x(-)
is concave, its directional derivative at £ in the direction v is

[y Joexp {=XHg(£,0)} Vep(x,0,£) o v(dx)
Joexp{-AHE(&,0)} df ’

with Uep(z,0,£) given by (9). The criterion ¢.g x(-) is also differentiable (unlike
¢er(+)) and a necessary and sufficient condition for the optimality of £* maximizing

¢eE,A(') is that

Fy.p\(&v) = (14)

sup [ exp{—-AHg(£*,0)} Vep(x,0,£)d0=0.

rzeZ JO
In practice, the integrals on 6 in (13, 14) can be replaced by finite sums in order to
facilitate computations. In that case, supposing that © = {#(V 92 ... (™)1 one
has

_1 1ngexp{ AHp(,0)} < 6o (€)

<—— 1og—Zexp{ AHEg(€, 9(1)} (15)

see Pronzato and Pdzman (2013, Chap. 8), and the accuracy of the approximation
of ¢ (§) is about log(m)/A; see Fig. 4 for an illustration.

3.4 Optimal design via linear-programming (O is finite)

To simplify the construction of an optimal design, one may take © as a finite
set, @ = O™ = {H(V) 9 9" $.p(€) can then be written as ¢op(€£) =
minj—1 . m Hp(€,09), with Hg(&,0) given by (5). If the design space 2 is also
finite, with 2" = {1, 2®) ... 2O}, then the determination of an optimal design
measure for ¢.g(-) amounts to the determination of a scalar ¢t and of a vector of

weights w = (wy, wa, ..., wy) ", w; being allocated at z( for each i =1,...,¢, such
that c"[w', ¢ is maximized, with ¢ = (0,0,...,0,1)" and w and ¢ satisfying the
constraints

sz (@)Y >t j=1,...,m, (16)

where we denoted © @ aovi2
[77(1' ! ,9) _77(35 ! ,9 )]
hi(0) = . 17

This is a linear programming (LP) problem, which can easily be solved using stan-
dard methods (the simplex algorithm for instance), even for large m and ¢. We
shall denote by (W,) = LP.g(2",0™) the solution of this problem.

We show below how a compact subset © of R? with non empty interior can be
replaced by a suitable discretized version ©(™) that can be enlarged iteratively.




3.5 Optimal design via relaxation and the cutting-plane method
(© is a compact subset of RP)

Suppose now that 2 is finite and that © is a compact subset of R? with nonempty
interior. In the LP formulation above, (w,t) must satisfy an infinite number of
constraints: Zle w; hi(0) >t for all @ € O, see (16). One may then use the method
of Shimizu and Aiyoshi (1980) and consider the solution of a series of relaxed LP
problems, using at step k a finite set of constraints only, i.e., consider § € ©*)
finite. Once a solution (w*,t*) = LP.g(2",©®) of this problem is obtained, using
a standard LP solver, the set @) is enlarged to ©F+1 = @®) U {§(-+1)} with
6(5+1) given by the constraint (16) most violated by w*, i.e.,

g+ — in Hg(w", 0 1
argglelél E(W ) )a ( 8)

where, with a slight abuse of notation, we write Hg(w,0) = Hg(&,0), see (5), when
¢ allocates mass w; at the support point (9 € 2 for all 4. This yields the following
algorithm for the maximization of ¢.g(+).

0) Take any vector w” of nonnegative weights summing to one, choose ¢ > 0, set
0 =g and k=0.

1) Compute #*+1) given by (18), set @+D = @) y {p(k+1)},
2) Use a LP solver to determine (w*+1 t*+1) = LP,p(2", ©*+1)

3) If Apyq = tFt! — gop(WhFH!) < ¢, take wht! as an e-optimal solution and stop;
otherwise k < k + 1, return to step 1.

The optimal value ¢%, = maxeez dep(§) satisfies
ep(WHHY) < gty <+

at every iteration, so that Agy; of step 3 gives an upper bound on the distance to
the optimum in terms of criterion value.

The algorithm can be interpreted in terms of the cutting-plane method. Indeed,
from (5) and (17) we have Hp(w,0U+1)) = Zle w; hi (0UFTD) for any vector of
weights w. From the definition of #U+1) in (18) we obtain

4

bep(w) < Hp(w,0UtD) = Hp(wl, 0U+D) 4+ Z hi (09D {w — wi};
i=1
. é . .
= ¢ep(w)) + Z hi(G(Hl)){w —wi}i,
i=1
so that the vector with components h;(#U+1), i =1,...,¢, forms a subgradient of

der(+) at w’, which we denote V. g(w’) below (it is sometimes called supergradient
since ¢.g(-) is concave). Each of the constraints

L
> wi hi(99TV) > ¢,
=1

used in the LP problem of step 2, with j = 0,...,k, can be written as

VTgbeE(wj)w = gbeE(wj) + VT¢6E(Wj)(W — Wj) >t.



k+1 determined at step 2 maximizes the piecewise-linear approximation

min {¢ep(w!) + V7 dep(w)(w — wi)}
7=0,..., k

Therefore, w

of ¢.p(w) with respect to the vector of weights w, and the algorithm corresponds
to the cutting-plane method of Kelley (1960).

The only difficult step in the algorithm corresponds to the determination of
0(+1) in (18) when © is a compact set. We found that the following simple proce-
dure is rather efficient. We compute

gr+t = argemiélk Hp(wk, 0, 9" =gk u D))y k=0,1,2... (19)
‘e

where #*+1) is taken as the result of a local minimization of Hp(w¥,6) with respect
to 6 € O, initialized at #*7! and where ¢ is a finite grid, or a space-filling design,
in ©. The optimal value ¢.z(£*) can then be approximated by Hp(wFt!, 0(F+2)
when the algorithm stops (step 3).

The method of cutting planes is known to have sometimes rather poor con-
vergence properties, see, e.g., Bonnans et al. (2006, Chap. 9), Nesterov (2004,
Sect. 3.3.2). A significant improvement consists in restricting the search for w+!
at step 2 to some neighborhood of the best solution obtained so far, which forms
the central idea of bundle methods, see Lemaréchal et al. (1995), Bonnans et al.
(2006, Chaps. 9-10). In particular, the level method of Nesterov (2004, Sect. 3.3.3)
adds to each iteration of the cutting planes algorithm presented above a quadratic-
programming step; one may refer for instance to Pronzato and Pdzman (2013,
Sect. 9.5.3) for an application of the level method to design problems.

4 Extended (globalized) c-optimality

4.1 Definition and properties

Consider the case where one wants to estimate a scalar function of 8, denoted by
g(0), possibly nonlinear. We assume that
99(8)

0=09

Denote
. .00y ||77(59) _U(aeo)”?

and consider the design criterion defined by
= min H, 21
Pec(§) Ierém: (§,0), (21)

to be maximized with respect to the design measure &.

When 7(x,0) and the scalar function g(f) are both linear in 6, with g(§) = c'9,
we get
0 —0%TM(€)(0 —6°

Pec(§) = min ( l ( )0( b )
€O, cT (§—69)70 [cT (0 —09))

and therefore ¢..(¢) = [¢"M~(£)c]™!, using the well-known formula ¢'M~c =
maxazo(c' @)?/(a"Ma), c.f. Harville (1997, eq. 10.4); see also Pronzato and Pédzman
(2013, Lemma 5.6). Also, for a nonlinear model with © = (0, p) and a design &
such that M(€, 6°) has full rank, one has

lim 6. (§) = [ "M (,07)e]
p—
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which justifies that we consider ¢..(§) as an extended c-optimality criterion. At the
same time, in a nonlinear situation with larger © the determination of an optimal
design £, maximizing ¢..(§) ensures some protection against [7(-,0) — n(-,0°)|2
being small for some @ such that g(6) is significantly different from g(6°). The
condition (2) guarantees the existence of a £ € = such that ¢..(§) > 0 and thus the
LS estimability of g(0) at 6° for 7., that is,

n(x,0) = n(x,0°) & .~almost everywhere = g(0) = g(6°),

see Pronzato and Pdzman (2013, Sect. 7.4.4). When © contains an open neighbor-
hood of 09, then ¢..(¢) < [c"TM~(£,0%)c] L.

Similarly to ¢eg(-), the criterion ¢..(-) is concave and positively homogeneous;
its concavity implies the existence of directional derivatives.

Theorem 4 For any &, v € Z, the directional derivative of the criterion ¢ec(-) at &
in the direction v is given by

F.. (Ea v) = Oen(laicr(lg) HC(”? 9) - ¢eC(§) )

where ©.() ={0 € © : H.(£,0) = ¢ec(€)}.

A necessary and sufficient condition for the optimality of £* maximizing de.(-)
is that sup,cz Fy,.(§*;v) = 0, which yields an Equivalence Theorem similar to
Th. 3. A regularized version of ¢..(-) can be obtained through maximum-entropy
regularization,

Pee (&) = 7% 1og/®exp{f)\Hc(§,9)} de. (22)

The regularized criterion ¢e. (-) is concave, differentiable with respect to &. Its
directional derivative at £ in the direction v is

o Jo o {AHE,0)} Wee(w,6.€) df v(dx)
Joexp{—AH(&,0)} do ’

Foeen (&) (23)

where

[77(1'5 9) - 77(1'5 90)]2 - Hn(v 9) - 77(5 90)”?

|9(0) — g(6°)]?
A necessary and sufficient condition for the optimality of £* maximizing ¢ec A (-) is
that

lI/ec(ma 0, 5) =

sup / exp{—AH.(£*,0)} Vee(x,0,67)d0 = 0.
zeZ JOe

Again, in order to facilitate computations, the integrals in (22, 23) can be replaced
by finite sums.

When both © and £ are finite, an optimal design for ¢..(-) is obtained by
solving a LP problem. Compared with Sect. 3.4, we simply need to substitute H,
for Hg and use h;(0) = [n(z®,0) —n(z®,0°)]2/]9(0) —g(0°)|?,i = 1,...,¢, instead
of (17). Also, a relaxation method similar to that in Sect. 3.5 can be used when ©
is a compact subset of RP.

5 Extended (globalized) G-optimality

Following the same lines as above, we can also define an extended G-optimality

criterion by
. H77(a9)_77(a90)”2
¢ecz(§) = min 3
60 maxge 2 [77(1'5 9) - 77(1'5 90)]

3 -

11



The fact that it corresponds to the G-optimality criterion for a linear model can
easily be seen, noticing that in the model (1) with n(z,0) = " (2)0 + v(z) we have

—1
{ms:g/ %var {fT(z)éLs}} = inf [fT (@M (&) ()]
= inf 7HTM(£N)H
z€X ueRr,uT f(z)#£0 [fT(:L')u]2
u'M(¢én)u
uekr maxge o [f T (z)uy]

2

where £y denotes the empirical design measure corresponding to X, assumed to
be nonsingular, and the second equality follows from Harville (1997, eq. 10.4).
The equivalence theorem of Kiefer and Wolfowitz (1960) indicates that D- and
G-optimal designs coincide; therefore, D-optimal designs are optimal for ¢.c(-) in
linear models. Moreover, the optimum (maximum) value of ¢.c(£) equals 1/p with
p = dim(9).

In a nonlinear model, a design £, maximizing ¢.c(§) satisfies the estimability
condition (3) at § = ¢°. Indeed, for any 6 # 6°, max,c o [n(z,0) — 77(30,90)]2 >
0 from (2), so that there exists some £ € Z such that ¢.c(§) > 0. Therefore,
bec:(E35) > 0, and ||n(-,0) — 7)(~,90)||§ZG = 0 implies that n(x,0) = n(z,6°) for all
xr € ', that is, § = 0" from (2). Notice that when © contains an open neighborhood
of 69, then ¢ (&) < 1/p for all £ € =.

Again, directional derivatives can easily be computed and a regularized version
can be constructed similarly to the cases of extended E and c-optimality; an optimal
design can be obtained by linear programming when © and % are both finite, or
with the algorithm of Sect. 3.5 when %" is finite but © has nonempty interior. Note
that there are now m X ¢ inequality constraints in (16), given by

¢

S wihi (09, 2By >t j=1,... m, k=1,....¢,

i=1
where now ) _
[n(x(z)v 9) — 77(1'(1) ) 90)]2

[77(35; 9) - 77(35, 90)]2

Also note that in the algorithm of Sect. 3.5 we need to construct two sequences of
sets, %) and 2 with @*+1) = @) y {#(-+1)Y and 27 (k+1D) = g7 (k) U {z(-+1)1
at step 2, and that (18) is replaced by

. _ (. A2
{9(k+1),.’i'(k+1)} = arg min Hn( 79) 77( 59 )Hg;
{0.z}eOx 2 [77(1"9) - 77(1"90)]

with & the design measure corresponding to the weights w*.

6 Examples

We shall use the usual notation

o xl PR xm
e={m
for a discrete design measure with m support points z; and such that £({z;}) = w;,

i=1,...,m.
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Example 2 The example is artificial and constructed to illustrate the possible
pitfall of using a local approach (here E-optimal design) for designing an experiment.
The model response is given by

n(x,0) = 01{x}1 + 03(1 — {x}1) + Oa{x}2 + 03 (1 — {x}2), 6= (61,62)",

with x € 2" = [0,1]? and {x}; denoting the i-th component of x. We consider local
designs for 8° = (1/8,1/8)T. One may notice that the set {On(x, 9)/89|90 xe 2}
is the rectangle [3/64, 1] x [1/4, 1], so that optimal designs for any isotonic criterion
function of the information matrix M(§) are supported on the vertices (0, 1), (1, 0)
and (1, 1) of Z. The classical D- and E-optimal designs are supported on three
and two points respectively,

Go={ (1) (o) )V og o f(V) (o)

0.4134 0.3184 0.2682 0.5113  0.4887

When only the design points x; = (0 1)7 and x2 = (1 0)" are used, the
parameters are only locally estimable. Indeed, the equations in ¢’

U(leol) = U(leo)
n(x2,0") = n(x2,0)

give not only the trivial solutions 6 = 6, and 6, = 62 but also 6] and 6} as roots
of two univariate polynomials of the fifth degree (with coefficients depending on 6).
Since these polynomials always admit at least one real root, at least one solution ex-
ists for 6 that is different from 6. In particular, the vector 60" = (—0.9760, 0.3094) "
gives approximately the same values as §° for the responses at x; and Xs.

Direct calculations indicate that, for any 6, the maximum of |[(-,8) —n(-,6°)|2
with respect to & € = is reached for a measure supported on (0, 0), (0, 1), (1, 0)
and (1, 1). Also, the maximum of [n(z, 0) — n(x, 8°)]> with respect to z is attained
on the same points. We can thus restrict our attention to the design space Z° =
{(0, 0), (0, 1), (1, 0), (1, 1)}. We take © = [—3,4] x [-2, 2] and use the algorithm
of Sect. 3.5, with the grid 4% of (19) given by a random Latin hypercube design
with 10 000 points in [0, 1]? renormalized to © (see, e.g., Tang (1993)), to determine
optimal designs for ¢.g(-) and ¢ec(-). When initialized with the uniform measure
on those four points, and with ¢ = 107!°, the algorithm stops after 45 and 12
iterations, respectively, and gives the designs

(v) (1) (1)
§:E,60 ~ 0 1 1 ,
0.32 0.197 0.483
0 0 1 1
&g = (0) <1) <0) <1>
0.258 0.258 0.258 0.226

The performances of the designs &7, €5, (I and £ are given in Table 1. The
values ¢ (€5) = ¢ec(€)) = 0 indicate that E-optimal design is not suitable here,
the model being only locally identifiable for £7,. The parametric, intrinsic and total
measures of curvature at §° (for o2 = 1) are also indicated in Table 1, see Pronzato
and Pdzman (2013, p. 223). Notice that the values of these curvature at ° do not
reveal any particular difficulty concerning &7, but that the lack of identifiability for
this design is pointed out by the extended optimality criteria.

13



& detl/s Amin ¢eE ¢€G Cpar Cint Ciot

& 1 0.652  0.273 3.16-10=%  0.108 1.10 0.541 1.22
& 1 0.625  0.367 0 0 1.19 0 1.19
*p | 0453 8.45-1072 8.78-1073% 9.74-107% | 3.33 2.69  4.28
>c | 0.540  0.195 5.68-107%  0.340 1.33 1.26 1.83

Table 1: Performances of designs &7, 5, i and £, and curvature measures
at 0° in Example 2; det’® = ¢p(¢) = {det[M(£,00)]}/3, Amin = op(€) =
Amin[M(€,0°)]. The optimal (maximum) values of the criteria are indicated in
boldface.

Example 3 Consider the regression model (one-compartment with first-order ab-
sorption input) used in (Atkinson et al., 1993),

77(:67 9) = 91[6){})(*92:0) - exp(793z)] ) 0= (917 925 93)T , TE R+ ) (24)

with nominal parameters §° = (21.80, 0.05884, 4.298)". The D- and E-optimal
designs for 60 are respectively given by

¢ - 0.229 1.389 18.42
Do = /3 1/3  1/3 [~
¢ - 0.170 1.398 23.36
B8 = 0.199 0.662 0.139 [’
see Atkinson et al. (1993).
We take © as the rectangular region [16,27] x [0.03,0.08] x [3,6] and use the
algorithm of Sect. 3.5 to compute an optimal design for ¢.z(-); the grid 4° of (19)
taken as a random Latin hypercube design with 10 000 points in [0, 1]? renormalized

to ©. We obtain
¢ {0.1785 1.520 20.95}

eB60° =\ 020 0.66 0.14

The performance of the designs &7, €7 and £ are indicated in Table 2. One may
notice that the design £’ is best or second best for £}, £ and &), among all
designs considered.

The intrinsic curvature is zero for £}, &}, and £ (since they all have 3 = dim(9)
support points) and the parametric curvatures at % are rather small (the smallest
one is for £!). This explains that, the domain © being not too large, the values of
ber(€) do not differ very much from those of ¢ (€) = Amin[M(€, 0°)].

Consider now the same three functions of interest as in (Atkinson et al., 1993):
91(0) is the area under the curve,

01(6) = / .8y dx = 6y (1/6> — 1/63) -

g2(0) is the time to maximum concentration,

_ logfs —log 02

92(9) 93 _ 92 )

and g3(0) is the maximum concentration

g3(0) = nlg2(0),0] .
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We shall write ¢; = 9g;(0)/90|g0 and denote & = &% (0°) the (locally) optimal
design for g;(#) which maximizes ¢, () = [¢] M~ (£,0%c;] 7, for i = 1,2,3. The
&.. are singular and are approximately given by

e o [ 02827 1763
end® =1 0.0135 0.9865 [
o o~ [ 01793 35671
20 = ] 0.6062 0.3938 [

R X
c3,00  — 1 )

see Atkinson et al. (1993).

For each function g;, we restrict the search of a design &, optimal in the sense
of the criterion ¢..(:) to design measures supported on the union of the supports of
5300, 5}3190 and 5:1_700. We then obtain the following designs

¢ N 0.2327 1.389 23.36

ec1,00 9-107% 1.2-1072 0.9871 [’

e N 0.1793 0.229 3.5671 18.42
ec2,600 5.11-1072 0.5375 0.3158 9.56-10"2 |’

{ 0.229 1.0122  1.389 18.42 }

Sees.0 ™ 8.42-1072 0.4867 0.4089 2.02-10~2

The performances of £ and &7., ¢ = 1,...,3, are indicated in Table 2, to-
gether with the curvature measures at 6° for &%, (which are nonsingular). For each
function g; of interest, the design &7, performs slightly worse than £ in terms of
c-optimality, but, contrarily to £ , it allows us to estimate the three parameters 6
and guarantees good estimability properties for g;(6) for all # € ©. Notice that,
apart from the c-optimality criteria ¢, (-), all criteria considered take the value 0
at the optimal designs &} . The construction of an optimal design for ¢e.(-) thus
forms an efficient method to circumvent the difficulties caused by singular c-optimal
design in nonlinear models, see (Pronzato and Pdzman, 2013, Chap. 3 & 5). One
may also refer to (Pronzato, 2009) for alternative approaches for the regularization
of singular c-optimal designs.

Example 4 For the same regression model (24), we change the value of 6° and
the set © and take 6° = (0.773, 0.214, 2.09)" and © = [0,5] x [0,5] x [0, 5], the
values used by Kieffer and Walter (1998). With these values, from an investigation
based on interval analysis, the authors report that for the 16-point design

_ 1 2 - 16
S = 1/16 1/16 --- 1/16

and the observations y given in their Table 13.1, the LS criterion ||y — nx(6)|?
has a global minimizer (the value we have taken here for 6°) and two other local
minimizers in ©. The D- and E-optimal designs for #° are now given by

e N 0.42 1.82 6.80

Dee = /3 1/3 1/3 [~

¢ N 0.29 1.83 9.0
Boo = 0.4424 0.3318 0.2258 [ -
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91

5 detl/s )\min ¢eE ¢c1 ¢ec1 ¢cz ¢ecz ¢03 ¢€C3 Cpar Cint Ctot
35 11.74 0.191 0.178 1.56-107%*  6.68-107°  23.43 18.31 0.361 0.356 0.526 0 0.526
13 8.82 0.316 0.274 6.07-107°>  3.08-107°  15.89 10.35 0.675 0.667 0.370 0 0.370
z | 9.05 0.311 0.281 6.45-107°  3.01-107° 16.62 11.03 0.656 0.644 0.358 0 0.358
- 0 0 0 4.56-107% 0 0 0 0 0
e, | 0757 270 1073 1.92-107® 226-107* 2.17-107* 855-1072 6.12-1072 1.12-1072 1.09-1072 | 6.51 0 6.51
e |0 0 0 0 0 35.55 0 0 0
¢, 1078 7.20-1072 5.99-1072 4.55-107° 1.81-107°  28.82 27.20 0.157 0.145 112 0.028 1.12
e |0 0 0 0 0 0 0 1 0
ves | 406 0.162 0.137 9.70-10=¢ 4.19-107%  6.77 4.36 0.890 0.865 1.11 0.263 1.14

Table 2: Performances of different designs and curvature measures at ° for the model (24) with §° = (21.80, 0.05884, 4.298)" and © = [16,27] x
[0.03,0.08] x [3,6]; det'/® = ¢p (&) = {det[M(&, 0°)]}/3, Amin = £(€) = Amin[M(&, °)]. The optimal (maximum) values of the criteria are on the
main diagonal and indicated in boldface.



5 detl/s Amin ¢eE ¢€G Cpar Cint Ciot

€& | 1.85-1072  1.92.10~* 2.28-10~° 5.66-1073 | 180.7 15.73 181.3

&, |519-1072 1.69-107% 2.64-107* 6.70-1072 | 58.0 0 58.0
&, |451-1072 204-107% 1.32-107* 7.95-1072 | 50.7 0 50.7
e | 4.73-107%2  1.53-107%  2.92-107* 0.114 546 0 54.6
Yo | 411-1072 1.31-107%  1.69-107*  0.244 69.7 10.7  69.9

Table 3: Performances of different designs and curvature measures at 6° for the
model (24) with 8% = (0.773, 0.214, 2.09)T and © = [0,5]3; det’/® = ¢p(¢) =
{det[M(&,60°)]}3, Amin = 0£(€) = Amin[M(£, 0%)]. The optimal (maximum) values
of the criteria are indicated in boldface.

Using the same approach as above, with the grid ¢° of (19) obtained from a random
Latin hypercube design with 10000 points in ©, we obtain

¢ N 0.38 226 7.91
eB,09 7 0.314 0.226 0.460 [ -

To compute an optimal design for ¢.c(-), we consider the design space 2" =
{0,0.1,0.2,...,16} (with 161 points) and use the algorithm of Sect. 3.5 with the

grid 49 of (19) taken as a random Latin hypercube design with 10° points. The
same design space is used to evaluate ¢.(-) for the four designs above. We then

obtain
¢ N 0.4 1.9 5.3 16
eG,0° = ) 0.278 0.258 0.244 0.22 [ -

The performances and curvature measures at 6° of &, &5, &5, & and £, are
given in Table 3. The large intrinsic curvature for &y, associated with the small
values of ¢z (£°) and ¢.q(£°), explains the presence of local minimizers for the LS
criterion and thus the possible difficulties for the estimation of #. The values of
der(+) and ¢ () reported in the table indicate that £, {5, & or £ would have
caused less difficulties.

7 Further extensions and developments

7.1 An extra tuning parameter for a smooth transition to
usual design criteria

The criterion ¢ (£;60°) can be written as
ber(&0°) = max{a € R : ||In(-,0) — n(-,HO)Hg > al§—6%2, forall € ©}. (25)

Instead of giving the same importance to all § whatever their distance to 6°, one
may wish to introduce a saturation and reduce the importance given to those 8 very
far from #°, that is, consider

16— 6°]

90y — . 0412
berx (&0 )max{oé eR:|n(,0) —n(-,67)e = TEIK0- 0P

for all@G@} .

(26)
Equivalently, ¢.g|x (§; 0°) = mingeo Hpk(&,0), with

He11c6:6) = (. 0) = 00 | K+ 15—
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Notice that, for any K > 0 and any § € Z, ¢.px (; 0%) > bejo(&; 0°) = ¢er(&;6°).
The bound (8) used in Th. 1 then becomes

2|y —nx @)
[N ¢epix (§n;0) — 4K |ly — nx (6)[|?]'/2

10s — 0|| < (27)

in a general nonlinear situation and

ly —nx (0|
[N ¢erix (En:0) — K |ly — nx (0)]]2]1/2

for an intrinsically linear model. Notice that this bound is obviously worse than
that in Th. 1 for linear models (since then ¢.px ({n) = ¢er(§n)), but (27) can be
tighter than (8) in nonlinear models, as illustrated in the example below.

As in Sect. 3.1, we obtain ¢.gjx () = Amin[M(£)] in a linear model and, for
a nonlinear model with © = Z(6°, p), lim,—0 Per(r (&5 60°) = Amin[M(&,6°)] for
any K > 0. Moreover, in a nonlinear model with no overlapping ¢. gk (£; 6°) can
be made arbitrarily close to Amin[M(&,6°)] by choosing K large enough, whereas
choosing K not too large ensures some protection against |[nx (68) — nx (6°)| being
small for some 6 far from 6°. Also, properties of ¢z (-) such as concavity, positive
homogeneity, existence of directional derivatives, see Sect. 3.2, remain valid for
bep|i(+), for any K > 0. The maximization of ¢.p|x(-) forms a LP problem
when both 2" and © are finite, see Sect. 3.4, and a relaxation procedure (cutting-
plane method) can be used when © is a compact subset of RP, see Sect. 3.5. A
regularization similar to that in Sect. 3.3 yields the differentiable approximation

|0rs — ]| <

bem (€)= —(1/2) log /O exp { A (6,0)) d0

with K and A\ positive.
A similar approach can be used with extended ¢- and G-optimality, which gives
Gec|x (§) = ming co He i (&,0") with

Hore(6,0) = (- 0) — (- 092 [m g;] ,
and

K+

Gecix (€) = min { In(-,0) —n(-,0°)|Z

for K a positive constant.

Example 1 (continued) Consider again the introductory example of Sect. 2,
with Hp g (v, 0) = (1/2) [[nx(0) — nx (0°)||*(K +1/]60 — 0°?) and 6° = 0. We have
Hp g (v, 0) = r?u?/2 and Hpx (vu,1) = (K + 1)7%[1 — cos(u)]. Therefore, the
minimum of Hpg g (v, 0) is at § = 0 when

_ a® +2 cos(u) — 2
K> K. (u) = 2[1 — cos(u)]

and at 6 = 1 for K < K, (u), with K,(tumax) =~ 50.598. Direct calculations indicate
that ¢.p|x(vu) is maximum for u, = 7 when K < 7?/4 —1 ~ 1.4674 and for
Uy = Uy (K) solution of K, (u) = K otherwise, with u.(5) ~ 4.2129.

Note that ¢} p ;= depr(Vu.) = 2(K + 1)r? for all K € [0,7%/4 — 1], so that
the bound (27) is more precise than (8) when ||y — nx (0)|| < r for N = 2.
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Figure 3-left shows Hpx(vy,0) as a function of 6 for u = u.(0) = 7 (dashed
line) and u = u.(5) (solid line); compared with the case K = 0 considered in
Sect. 2 where the minimum was at § = 1 for all u, for K > 72/4 — 1 the optimal
u.(K) is now such that the values of H at 0 and 1 coincide. Figure 3-right presents
Inx (0) —nx (0°)||* as a function of |§ — 6°|? for the same values of u (u = u,(0) in
dashed line and u = u.(5) in solid line): u.(0) is optimal in the sense of (25), the
curve in dash-dotted line indicates that u.(5) is optimal for (26).

4
35
u=u,(5) -
3 e
o e
= ’
= .
(=} 25 ’ -
[«>) A
= S
> e
=, i
| k4
~ R
) o
X 15 R
= s
= S
1 r .
an
J o
‘
05 f ¢
/
4
. . . . . . . . .
4 . . . . . . . . . y :
0 01 02 03 04 05 06 07 08 09 1 0 or 020304 0502 06 o708 08 !

Figure 3: Left: Hpx(vu,0) as a function of & € © = [0,1]; right: [lnx (8) — nx(6°)||*> and
2¢eE|5(Vu, (5)) 10 — 6912/(1 + K|6 — 6°|2) (dash-dotted line) as functions of |§ — 69|2; u = u.(5)
(solid line) and u = ux(0) = 7 (dashed line); r =1 and K = 5.

Figure 4 presents ¢.p|x (V) (solid line) and the bounds (15) (dashed lines) as
functions of u for A = 1 (left) and A = 10 (right) when K = 5 and the discrete
sums in (15) are calculated for ® = {0,0.01,0.02,...,0.99,1} (m = 101). Notice
that ¢.p i (V) is not differentiable at u,(K) whereas the upper and lower bounds
are differentiable for all w.

7.2 Worst-case extended optimality criteria

The criterion defined by

. = min ¢.p(&;0°) = i Hg(€,0:0°
drer(€) ;}}érést(f, ) 0o o e(£,6;6°),

q:'eE|K(Vu)
(peElK(vu)

Figure 4: ¢.g(vu) (solid line) and upper and lower bounds (15) (dashed lines) as functions of u
for A =1 (left) and A = 10 (right).
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see (6), (5), accounts for the global behavior of 7(-,0) for § € ©. The situation
is similar to that in Sect. 3, excepted that we consider now the minimum of Hg
with respect to two vectors # and 6° in © x ©. All the developments in Sect. 3
obviously remain valid (concavity, existence of directional derivative, definition of a
regularized criterion, etc.), including the algorithmic solutions of Sects. 3.4 and 3.5.

The same is true for the worst-case versions of ¢.(-) and ¢ (-), respectively
defined by ¢prec(§) = mingggoycoxe He(€,0;0%), see (20), and by drea(§) =

. 2
mln(eveo)EGXQ{Hn('v 9)777(7 90)”2/ maxge [77(1'5 9) - 77(1'5 90)} } ; and for the worst-
case version of the extensions of previous section that include an additional tuning
parameter K.

8 Conclusions

Two essential ideas have been presented. First, classical optimality criteria can be
extended in a mathematically consistent way to criteria that preserve a nonlinear
model against overlapping, and at the same time retain the main features of classical
criteria, especially concavity. Moreover, they coincide with their classical counter-
part for linear models. Second, designs that are nearly optimal for those extended
criteria can be obtained by standard linear programming solvers, supposing that
the approximation of the feasible parameter space by a finite set is acceptable. As
a by-product, it also provides simple algorithmic procedures for the determination
of E-, c- or G-optimal designs in linear models.
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