
HAL Id: hal-00875201
https://hal.science/hal-00875201

Submitted on 15 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planning Personalised Museum Visits
Daniel Le Berre, Pierre Marquis, Stéphanie Roussel

To cite this version:
Daniel Le Berre, Pierre Marquis, Stéphanie Roussel. Planning Personalised Museum Visits. 23rd
International Conference on Automated Planning and Scheduling (ICAPS’13), Jun 2013, Rome, Italy.
pp.380-388. �hal-00875201�

https://hal.science/hal-00875201
https://hal.archives-ouvertes.fr

Planning Personalised Museum Visits

Daniel Le Berre and Pierre Marquis and Stéphanie Roussel
CRIL - CNRS, UMR 8188

Université d’Artois
F-62307 Lens, France

Abstract

In this paper, we consider the problem of designing per-
sonalised museum visits. Given a set of preferences and
constraints a visitor might express on her visit, the aim
is to compute the tour that best matches her require-
ments. The museum visits problem can be expressed as
a planning problem, with cost optimization. We show
how to bound the number of steps required to find an
optimal solution, via the resolution of an instance of
the shortest complete walk problem. We also point out
an alternative encoding of the museum visits problem
as an optimization problem with pseudo-Boolean con-
straints and a linear objective function. We have evalu-
ated several constraints solvers, a planner and a tailored
solver on a number of benchmarks, representing vari-
ous instances of the museum visits problem correspond-
ing to real museums. Our empirical results show the
feasibility of both the planning and the constraint pro-
gramming approaches. Optimal solutions can be com-
puted for short visits and “practically good” solutions
for much longer visits.

1 Introduction
We present a novel application of planning for the design
of personalized museum visits. The need for such person-
alized visits comes from the fact that for a large number
of museums, it is not conceivable to spend time in front of
every art piece, especially because of their number which
can be huge (exceeding thousands of items in some mu-
seums). This is why it makes sense to prepare a visit. To
make things more concrete, ask yourself about what you
would be doing if you just have one hour and a half to
spend at Le Louvre? Our purpose is to help a visitor find-
ing a “good answer” to such a question. While a few mu-
seums already offer some pieces of software enabling the
user to prepare her visit, only a limited number of prede-
fined tours are considered, and those which best match the
user preferences and constraints are pointed out. An exam-
ple of such a software can be found on Le Louvre web-
site http://www.louvre.fr/en/parcours. An ac-
curate handling of the user preferences and constraints (bear-
ing on the visit duration, the selection of specific art pieces,

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

etc.) is out of reach of such simple approaches, which may
output tours which are rather unsatisfactory from the user
point of view because they mismatch her preferences in a
significant way or do not satisfy by a large amount the ex-
pected duration constraint (predefined tours are often several
hours long).

We have developed both a planning approach and a con-
straint programming approach to the design of personalised
museum visits. Our approaches start with a number of in-
put pieces of information, including the museum topology,
and the user type, preferences and constraints. The museum
topology can be modeled as a valued, oriented graph where
each room corresponds to a vertex and each “alley” between
rooms is an arc. Arcs are valued with durations which de-
pend on the length and the nature of the corresponding “al-
ley” (it can be a corridor, a stair or a lift) and also on the
visitor type (individual, group, disabled people, etc.). The
graph must be oriented since it can be the case that a flow
direction is imposed between some rooms. The museum
topology also makes precise the location of every art piece.
In our setting, the user preferences are modeled by a util-
ity function supposed to satisfy full additive independence
(i.e., the utility of a tour is the sum of the utilities of each
art piece considered during the visit). It is obtained via an
anytime elicitation process (collaborative filtering is used to
suggest default values depending on the visitor type) and re-
sults in a mapping associating with each art piece a value
(its utility for the visitor). Some constraints on the admissi-
ble tours are directly induced from the museum topology: a
sequence of rooms is feasible only if there is an ”alley” be-
tween each pair of successive rooms. Visitors impose some
constraints: some of them are automatically triggered from
the visitor type, e.g. arcs corresponding to stairs must be ig-
nored for wheel-chaired visitors, other constraints emerge
from an interaction with her (expected duration of the tour,
inclusion/exclusion of some art pieces, etc.). From all those
data, the purpose is to output a tour which respects all the
constraints and maximizes the overall utility.

Many recommendation systems have been developed so
far to capture the artworks a visitor might be able to ap-
preciate the most (a detailed list of recommendation sys-
tems dedicated to museums is given in (Hage et al. 2010)).
Among them is the CHIP Art Recommender (Wang et al.
2010) where a visitor profile is built using rated artworks

and rated features. A major bottleneck shared by all those
recommendation tools is the tour generation issue, which is
not always considered or does not guarantee that the visi-
tor preferences are satisfied in the best way. Thus, the tour
wizard (Hage et al. 2010) associated to CHIP orders the art-
works by decreasing utility order, starting from an empty
tour, it tries to add each of them in an iterative way to the
current tour when this is possible (i.e., when the constraints
are not violated). Clearly enough, such a greedy approach
does not offer any optimality guarantee.

The museum visits problem (as informally described
above) looks quite similar to some well-known transporta-
tion problems considered in operations research (the travel-
ing salesman problem with bounded resources for instance).
Indeed, the museum visits problem can be considered as
a specific orienteering problem (Vansteenwegen, Souffriau,
and Oudheusden 2011), where the objective is to determine
visit tours in towns or countries, which maximize the user
utility. A detailed list of tools for tourist transportation prob-
lems is given in (Kabassi 2010) and one of the most recent
tools is described in (Garcia et al. 2010) and (Vansteenwegen
et al. 2011). The authors of (Jaén et al. 2011) suggest to re-
duce the museum visits problem to the orienteering problem
approach, so that solving the latter enables solving the for-
mer. However, the number of art pieces in a museum can be
much larger (by several orders of magnitude) than the num-
ber of sites interest in a town so that the solution proposed by
(Jaén et al. 2011) does not apply to large museums. The rea-
son is that existing encoding schemes for the orienteering
problem require a quadratic number of binary variables in
the number of sites. The point is that large museums present
thousands of art pieces, so that the corresponding encodings
would include millions of variables, making their resolution
out of reach of existing solvers, for space reasons.

In the following, the museum visits problem is modeled as
a planning problem with cost optimization. We also model it
as an optimization problem with pseudo-Boolean constraints
and a linear objective function. We note that the correspond-
ing decision problem is NP-complete, which justifies to
tackle it using “classical” planning or constraint program-
ming techniques. We model first the museum visits prob-
lem as a planning problem with two actions (moving from
on room to another one and looking at an artwork), a time
constraint and an optimization function. We also point out
a specific constraint programming encoding scheme for the
museum visits problem, where each art piece corresponds
to a Boolean variable; it allows us to escape from the size
issue raised up by the encoding scheme suited to the orien-
teering problem, as discussed above. Our encoding scheme
requires the computation of a bound on the number of visit
steps, which is performed via the resolution of an instance
of a shortest complete walk problem. We prove that the de-
cision problem associated with the shortest complete walk
problem NP-complete, so it makes sense to solve it as well
using constraint programming techniques.

We have evaluated several state-of-the-art constraint
solvers, a planner and a tailored solver on a number of
benchmarks, representing various instances of the museum
visits problem corresponding to real museums. Our empir-

ical results show the feasibility of both the planning and
the constraint programming approaches. Optimal solutions
can be computed for short visits using linear programming,
and “practically good” solutions for much longer visits look
reachable using a hybrid approach combining a constraint
programming solver with incremental horizon handling as
in planning.

The rest of the paper is organized as follows. In Section
2 we define the museum visits problem in formal terms and
identify the complexity of the corresponding decision prob-
lem. In Section 3 we describe the methodology followed
to solve the museum visits problem; especially, we present
both a planning encoding and a constraint programming en-
coding suited to this problem. In Section 4 we present the
benchmarks generated to evaluate our approaches and some
empirical results are also pointed out. Finally, in Section 5,
we conclude the paper and present some perspectives for fur-
ther research.

2 The Museum Visits Problem
The museum topology is modeled as a so-called museum
graph:

Definition 1 A museum graph is a 5-tuple
G = 〈V,A, E ,S,w〉 where:

• V is a set of vertices, each vertex representing a room of
the museum.

• A is a set of arcs. An arc ai,j between two vertices i and
j belongs to A iff it is possible in the museum to go di-
rectly from room i to room j (i.e., without going through
a third room). Observe that we do not consider edges but
oriented arcs. This is because large museums can impose
some flow directions.

• w is a mapping w : A → N∗ where w(ai,j) represents
the duration to go from room i to room j. We suppose that
this duration is strictly greater than 0: going from a room
to another one is not instantaneous.

• E is a subset of V representing entrances of the museum.
• S is a subset of V representing exits of the museum.

It is assumed that G has a complete walk, i.e., a walk start-
ing at one entrance, finishing at one exit and including all
the vertices. Formally, a complete walk is a finite sequence
of vertices (v1, v2, . . . , vn−1, vn) of V with v1 ∈ E , vn ∈ S,
for all i ∈ J1;n− 1K, avi,vi+1

∈ A and for all v ∈ V , there
exists i ∈ J1;nK such that vi = v. In museum terms, this sim-
ply means that there exists a tour of the museum which starts
at an entrance, finishes at an exit and includes every room
of the museum. Obviously enough, this assumption holds for
every existing museum.

A toy example is given in Figure 1(a). The set of vertices
is V = {1, 2}, the set of arcs is A = {a1,2}, the set of
entrances is E = {1} (represented by a thick circle), the set
of exits is S = {2} (represented by a double circle), the
function w is such that w(a1,2) = 5. Such a graph has a
unique complete walk which is (1, 2).

Note that a complete walk can be a non-simple path (a
simple path is a walk in which all edges are distinct) hence a

1 2
5

(a) Graph mu-
seum G

P r(pi) u(pi) t(pi)
p1 1 5 3
p2 1 15 8
p3 2 11 3

(b) Art pieces

Figure 1: A toy museum

non-elementary path (an elementary path is a walk in which
all vertices are distinct).

Definition 2 A museum visit instance is a 6-tuple
〈G,P, r,u, t, TMAX〉 where:
• G = 〈V,A, E ,S,w〉 is a museum graph.
• P is a finite set of art pieces.
• r is a mapping P → V . For each art piece p ∈ P , r(p) is

the room where p is located.
• u is a mapping P → N. For each art piece p ∈ P , u(p)

represents the satisfaction brought by p to the visitor. The
higher u(p), the more satisfied the visitor.

• t is a mapping P → N. For each art piece p ∈ P , t(p)
(denoted tp) represents the duration that the visitor would
spend by visiting p.

• TMAX is a non-negative integer representing the maxi-
mum amount of time (in time units) the visitor is willing
to spend in the museum.

An example is given at Figure 1(b).

Definition 3 A solution to a museum visit instance
〈G,P, r,u, t, TMAX〉 is a pair sol = 〈walk ,O〉 where walk
is a sequence (v1, . . . , vn) of vertices V and O a subset of
P such that:

1. v1 ∈ E , vn ∈ S and ∀i ∈ J1;n− 1K, avi,vi+1
∈ A

2. if p ∈ O then r(p) ∈ walk

3.
∑n−1

i=1 w(avi,vi+1) +
∑

p∈O t(p) ≤ TMAX

With each sol = 〈walk ,O〉, is associated score(sol) =∑
p∈O u(p). A best solution to 〈G,P, r,u, t, TMAX〉 is a

maximal solution in terms of score.

Intuitively, the first condition constrains the walk to start
at an entrance and to finish at an exit. The second condition
ensures that every art piece of the solution is in a room of
the walk. The third condition guarantees that the total time
spent in the museum (duration of the walk and duration in
front of each art piece of O) does not exceed the limit given
by the visitor.

Solving a museum visits problem consists in com-
puting a best solution given a museum visit instance.
Given the museum graph of Figure 1(a) and the set of
art pieces of Figure 1(b), an museum visit instance is
I = 〈G, {p1, p2, p3}, r,u, t, 15〉. A solution of this in-
stance is 〈(1, 2), {p1}〉. The score of this solution is 5. The
reader can check that a best solution for the instance I is
〈(1, 2), {p1, p3}〉. No solution has a score higher than 16.

The decision problem MUSEUM associated with the mu-
seum visits problem (which is basically an optimization
problem) consists in determining whether a solution having
a score greater than or equal to u, where u is a given in-
teger, exists, given a museum visit instance. This problem

E 2 3 S
0 5 0

0

(a) Graph museum GE,S

P rE,S(pi) u(pi) t(pi)
p1 2 5 3
p2 2 15 8
p3 3 11 3

(b) Art pieces

Figure 2: The toy museum, updated

is computationally difficult in the sense that no polynomial-
time (deterministic) algorithm exists for it, unless P = NP;
indeed, MUSEUM is NP-complete. It is easy to show that
MUSEUM remains NP-hard under the restriction when set
V contains a unique room since, in such a case, it can be
viewed as (the decision version of) a knapsack problem.
The complexity of MUSEUM justifies resorting to planning
or constraint programming as an approach suited to the res-
olution of the museum visits problem.

3 Solving the Museum Visits Problem
In order to make the encoding scheme easier to grasp, we
add to the museum graph two specific vertices E and S to
V , which respectively represent a virtual entrance and a vir-
tual exit (“sink”). For each entrance e of E , we add an arc
aE,e to A such that w(aE,e) = 0. For each exit s of S, we
add an arc as,S to A such that w(as,S) = 0. We also add
an arc aS,S to A such that w(aS,S) = 0. This allows us to
consider a unique entrance and a unique exit. The updated
set of arcs and the updated weight function are respectively
denoted by AE,S and wE,S. We consider now that solution
walks begin at E and finish at S instead of beginning at any
entrance and finishing at any exit. As well, we can re-use the
notion of complete walk: a complete walk now begins at E
and finishes at S.

The updated set of vertices, the updated set of arcs and
the updated weight function are respectively denoted VE,S,
AE,S and wE,S. The updated graph is denoted GE,S. The room
mapping r can also be modified by the introduction of E and
S. The updated mapping is denoted rE,S.

The update of the toy museum example given at Fig-
ure 1 is presented at Figure 2. A complete walk in this
museum is now (E, 2, 3,S). The update of instance I is
IE,S = 〈GE,S,P, rE,S,u, t, 15〉 and the best solution for this
instance is solE,S = 〈(E, 2, 3,S), 16〉. Notice that the only
difference with the best solution of I is the presence of E
and S respectively at the beginning and at the end of the so-
lution walk.

3.1 Planning modeling
The museum visits problem can be easily modeled as a plan-
ning problem with two actions. The action move allows the
visitor to move from one room r1 to another room r2 and
the action look-artwork allows the visitor to look at an
artwork. In both cases, a precondition is to make sure that
the remaining time is sufficient to execute the action, while
an effect is to decrease the value of the remaining available
time. The remaining time is modeled using numeric expres-

sions as offered by PDDL 2.1 (Fox and Long 2003). The
complete PDDL domain is given below.

(define (domain museum)
(:requirements :typing :numerical-fluents)
(:types room artwork)
(:predicates (visitor-at ?r - room)

(inroom ?a - artwork ?r - room)
(unseen ?a - artwork)
(connected ?r1 ?r2 - room))

(:functions (total-utility)
(remaining-time)
(utility ?a - artwork)
(time-look ?a - artwork)
(time-move ?r1 ?r2 - room))

(:action move
:parameters (?r1 ?r2 - room)
:precondition (and (visitor-at ?r1)

(connected ?r1 ?r2)
(>= remaining-time (time-move ?r1 ?r2)))

:effect (and (not (visitor-at ?r1))
(visitor-at ?r2)
(decrease (remaining-time)
(time-move ?r1 ?r2))))

(:action look-artwork
:parameters (?a - artwork ?r - room)
:precondition (and (inroom ?a ?r)

(visitor-at ?r)
(unseen ?a)

(>= remaining-time (time-look ?a)))
:effect (and (not (unseen ?a))

(increase (total-utility)
(utility ?a))

(decrease (remaining-time) (time-look ?a))
)))

The example given at Figure 2 can then be described the
following way:

(define (problem museum)
(:domain museum)
(:objects
rE r2 r3 rS - room
a1 a2 a3 - artwork)

(:init
(= (total-utility) 0)
(= (remaining-time) 15)
(= (utility a1) 5)
(= (utility a2) 15)
(= (utility a3) 11)
(= (time-look a1) 3)
(= (time-look a2) 8)
(= (time-look a3) 3)
(= (time-move rE r2) 0)
(= (time-move r2 r3) 5)
(= (time-move r3 rS) 0)
(= (time-move rS rS) 0)
(connected rE r2)(connected r2 r3)
(connected r3 rS)(connected rS rS)
(unseen a1)(unseen a2)(unseen a3)
(inroom a1 r2)(inroom a2 r2)(inroom a3 r3)
(visitor-at rE))

(:goal (and (visitor-at rS)))
(:metric maximize (total-utility)))

3.2 Constraint programming modeling
Let us now present a constraint programming encoding of
the museum visits problem, which associates with each in-
stance a set of pseudo-Boolean constraints and a linear ob-
jective function, such that every variable assignment max-
imizing the function corresponds to a best solution of the
input instance. Let K denote the maximum number of move
steps allowed for the visitor. In the encoding scheme, we
consider three types of binary decision variables:
• xp for p ∈ P . xp = 1 if the artwork p belongs to the

solution subset of art pieces, xp = 0 otherwise;
• xp,k for p ∈ P , k ∈ J1;KK. xp,k = 1 if the artwork p

belongs to the solution subset of art pieces and r(p) is the
kth element of the solution walk, i.e., the art piece p is
visited at step k, xp,k = 0 otherwise;

• ci,j,k for i, j ∈ V2
E,S such that ai,j ∈ AE,S and

k ∈ J1;KK. ci,j,k = 1 if room i and room j are re-
spectively at positions kth and (k + 1)th in the solution
walk, i.e., the solution walk arc aij is taken just after step
k, ci,j,k = 0 otherwise.

max
∑
p∈P

u(p).xp (1)

K−1∑
k=2

∑
ai,j∈A

w(ai,j).ci,j,k

+
∑
p∈P

t(p).xp ≤ TMAX (2)

∀k ∈ J1;KK,
∑

ai,j∈A
ci,j,k = 1 (3)

∀ai,j ∈ A,∀k ∈ J1;K − 1K, ci,j,k ≤
∑

aj,l∈A
cj,l,k+1 (4)

∀k ∈ J2;KK,∀p ∈ P, xp,k ≤
∑

ar(p),j∈A
cr(p),j,k (5)

∑
aE,j∈A

cE,j,1 = 1 (6)

∑
ai,S∈A

ci,S,K = 1 (7)

∀p ∈ P, xp =

K∑
k=2

xp,k (8)

The objective function (1) measures the visitor satisfaction.
Constraint (2) ensures that the total amount of time spent in
the museum is not larger than TMAX. We sum from k ≥ 2
because ∀aE,j ∈ A,w(aE,j) = 0. Constraint (3) represents
non-ubiquity, i.e., the fact that the visitor cannot be at two
locations at the same time. Constraint (4) guarantees that
the visitor comes out from any room she has come in, so
that the solution found is a walk in the museum. Constraint
(5) ensures that art pieces can be seen only if the visitor is
in the corresponding room. Constraint (6) forces the walk to
begin in E at step 1. Constraint (7) guarantees that the visitor
is in S just after step K. The last constraint (8) ensures that
i) an artwork is only visited once, and ii) an artwork utility
is taken into account in the objective function iff the artwork
has been visited at some k.

With this encoding, the number of variables equals to
(|P| + |A|) × K. The number of constraints equals to
|A| × (K − 1) + |P| × (2K − 1) + K + 3. In real mu-
seums, the number of art pieces is usually much larger than
the number or alleys or the length of the shortest complete
walk. Hence, the size of the encoding mainly is linear in the
number of art pieces.

As we will see on the following, the encoding size of a
museum visit instance may have a strong impact on the ef-
ficiency of its resolution: the smaller, the better. In order to
maintain the encoding size as small as possible, it is impor-
tant to derive a “good” upper bound for K.

3.3 Computing move bounds

A simple, user-dependent, bound on the number of moves to
be considered is given by K1 = b TMAX

min−time−movec+2. For
instance, if the maximal time dedicated to the visit is 15 and
each move (except those from the virtual entrance and to the
virtual exit) lasts at least 2, then any admissible plan cannot
contain more than 9 moves (including those from the virtual
entrance and to the virtual exit). While this bound proves
efficient when TMAX is rather small, it does not prove useful
otherwise.

This explains why we also focused on another, more so-
phisticated and user-independent, bound K2 and we con-
sider as the actual bound the minimum of the two: K =
min(K1,K2). The rationale for K2 is that the number of
moves to be considered to reach an optimal plan cannot ex-
ceed the minimal number of moves required to visit each
room of the museum. This calls for the computation of the
length K2 of a shortest complete walk of the graph museum:

Definition 4 F-SCW is the following function problem:

• Input: an updated museum graph GE,S

• Output: the length K2 of a shortest complete walk of GE,S

By definition, K2 equals to the smallest integer u such
that there exists a complete walk of length u in GE,S and that
there does not exist a complete walk of length u− 1 in GE,S.
Hence, determining K2 can be achieved by finding out in
an iterative way the maximal value u for which a complete
walk of length u exists. The corresponding decision problem
(determining whether a complete walk of length ≤ u exists
in a given oriented graph with a unique source and a unique
sink) is referred to as SCW (shortest complete walk). As far
as we know, SCW has never been addressed in the graph/OR
literature.

If u denotes the tested length, we consider |VE,S|.u binary
variables bv,i, v ∈ VE,S and i ∈ J1;uK. bv,i equals 1 if room
v is visited at step i, 0 otherwise. For readability reasons,
we denote n the mapping VE,S → 2VE,S that associates with
each room v of VE,S the set {n|av,n ∈ AE,S}, i.e., the set of
rooms directly accessible from room v.

The problem of determining whether a complete walk of
length u exists in the graph consists in determining whether
the following set of constraints is satisfiable:

∀v ∈ VE,S,

u∑
i=1

av,i ≥ 1 (9)

∀v ∈ VE,S,∀i ∈ J1;u− 1K, av,i ≤
∑

n∈n(v)

an,i+1 (10)

∀i ∈ J1;uK,
∑

v∈VE,S

av,i = 1 (11)

aE,1 = 1 (12)
aS,u = 1 (13)

Constraint (9) enforces every room to be visited at least
once. Constraint (10) ensures the walk connectivity: if a
room v is visited at step j then the room visited at step j+1
must be directly accessible from v. Constraint (11) enforces
that a unique room is visited at each step. Finally, constraints
(12) and (13) respectively ensure that the walk begins in E
at step 1 and ends in S at step u. For a given u, the encoding
contains u.(|VE,S|+ 1) + 2 constraints.

That SCW is solved using a constraint programming ap-
proach is justified by:

Proposition 1 SCW is NP-complete.

Proof 1
• SCW is obviously in NP: it can easily be checked in poly-

nomial time that the guessed sequence (v1, . . . , vn) is a
complete walk of the input graph satisfying n ≤ u.

• SCW is NP-hard. We reduce in polynomial time the prob-
lem of deciding whether an oriented graph with a unique
source and a unique sink has a Hamiltonian path (i.e., a
path starting from the source, finishing at the sink and in-
cluding every vertex of the graph exactly once) to SCW.
This Hamiltonian path problem is known as NP-hard
(Karp 1972). The reduction is obvious: the input graph
is unchanged and the value of u is assigned to the num-
ber n of vertices in the graph. Indeed, no complete walk
of size < n may exist, hence every complete walk of size
n (when it exists) is a shortest complete walk. Further-
more, by construction, a complete walk of size n also is
a Hamiltonian path of the graph, and the converse also
holds.

The following result shows that F-SCW belongs to the
same complexity class as the traveling salesman problem.

Proposition 2 F-SCW is in FP NP[O(n2)].

Proof 2 Let w = (v1, . . . , vK2
) be a shortest complete

walk of the input graph GE,S. We show that K2 is at most
quadratic in the number of vertices of GE,S. w may contain
two kinds of vertices: multi-occurrent vertices are those ver-
tices appearing more than once in w and mono-occurrent
vertices appearing exactly once. If w contains only mono-
occurrent vertices, then its length K2 is bounded by the
number of vertices of GE,S, and the conclusion follows. In
the remaining case, let vj be the last occurrence of a multi-
occurrent vertex v in w and let vi (1 ≤ i < j) be the pre-
vious occurrence of v in w. If the subpath (vi+1, . . . , vj) of
w contains only vertices that already occur in the sequence
(v1, . . . , vi), then w = (v1, . . . , vK2

) cannot be a shortest

complete walk of GE,S since (v1, . . . , vi, vj+1, . . . , vK2) is
a complete walk of GE,S (it contains the same vertices as
w) but is shorter than w. Hence there must exist at least one
vertex vi,j of the sequence (vi+1, . . . , vj) which does not oc-
cur in (v1, . . . , vi). Thus, with every pair vi, vj of successive
multi-occurrent vertex v in w, we can associate a vertex vi,j
of GE,S which does not occur in w before rank i. Hence the
number of such pairs is bounded by the number of vertices
of GE,S. Therefore the number of occurrences of any vertex v
in w cannot exceed the number of vertices in GE,S. This im-
plies that K2 is at most quadratic in the number of vertices
of GE,S, so that |AE,S|2 can be used as the initial value of u.

4 Experimental Results
4.1 Benchmarks design
No benchmarks for the museum visits problem are currently
available. The authors of (Jaén et al. 2011) have re-used ori-
enteering problem benchmarks. However, those benchmarks
do not represent real museum visit instances (they were
not designed in this objective). Furthermore, our modeling
needs more information than the ones needed by the ori-
enteering problem. Thus, we have designed several bench-
marks to test our encoding schemes.

We have considered two museums: a small one, the
“Palais des Beaux Arts de Lille” (Bea 2012), and a much
bigger one, the “National Gallery” (Nat 2012) of London.
The characteristics of Palais des Beaux Arts are: 53 rooms,
121 alleys, 1 entrance, 1 exit and 486 artworks. The char-
acteristics of National Gallery are: 119 rooms, 304 alleys, 4
entrances, 4 exits and 1783 artworks.

We used those two museums to test our encoding scheme
of the shortest complete walk problem. For this problem, the
input is the museum graph as presented in Section 2. Starting
with the floor plans available on museum websites, we used
the dot language specified in (Gansner and North 2000) to
represent the museum topology,1 as shown on Figure 3.

Main.2

Main.0

Sainsbury.2

Sainsbury.1

Sainsbury.0

Sainsbury.m1

Sainsbury.m2

Main Vestibule

Central Hall

1

Shops

1

Lift Main

1

Room 1

1

46

1

Main Stairs

1

Vestibule Stairs

1

S

0

1

Sunley Room

1

13

1

39

1

1

Lift Central

1 1

1

Lift E

1

1

Annenberg Lift

1

Couloir Sainsbury

9

1

Entrance

1

1

1

29.E

2

30

1

5

11

1

6

7

11

8

11

11 1

10

1

15

1

1

11 1

12

1

14

1

1

1

1

1

1

Stairs 13

1

1

29.C

1

1

16

1

17

1

29.O

1

15 Stairs

1

1

1

1

1

17a

1

18

19

1

21

1

22

1

24

1

1

Learning Gallery

1 1

20

1 1

1

1

1

1

23

11

1

1

1

25

11

28

1

26

27

1

Lift 15 Stairs

1

1

1

1

1

1

1

1

1

1

1

1

2

1

2

1

231

1

32

2

1

2

33

2

37

1

2

34

22

35

1

41

2

1

36

11

1

38

1

40

1

1

1

1

1

1

1

1

44

1

2

42

11

43

11

1

1

1

45

11

1

1

1

1

1

1

Annenberg Stairs

1

1

1 1

1

15 Stairs (Stairs)

1

1

1

Lift A

1

1

Creative Space

1

Orange Lift

1 1

Orange Stairs

1 1

Education Stairs

1

1

Education Lift

1

1

Stairs E

1

1

To Vest Stairs

1

1

Stairs A

1

A

Education Center Foyer

1 1 1

B

D

1

C

1

1

1

E

1

G

11

1 1Espresso Bar

1

1

11

0

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1 1

Annenberg Court

1

1

1

1

1

1 1

Shops

1

1

1

1

1

0

1

1

1

1

51

52

1

60

1

11

53

1 1

54

1

59

1

1

55

11

56

1

57

1

1

1

58

1

65

1

1

1

1

1

1

63

1 1

1

61

11

62

11

1

1

1

64

11

1

1

1

66

1 1

Lift

1

Lift

1

Stairs

1

Stairs

1

11

1 1 1

Entrance

1

Stairs

1

National Dining Room

11 1

Lift

1

1

1 1

1

Entrance

1

Stairs

1

1

1

Lift

1

Wing Foyer

1

0

1

11 1

Entrance

1

Lift

11

1

Stairs

1

Theatre

1

1

1 1

1

Entrance

1

1 1

Temporary exhibitions

1

1

1 1

E

0

0

00

0

Figure 3: National Gallery Museum topology

Beyond knowing the museum topology, generating mu-
seum visit instances requires also to know in which rooms

1Note that we have used subgraphs to model different build-
ings or different floors of the museum. The visualization has been
realized using Graphviz.

artworks are located. For the Beaux Arts museum, we did
not have access to the real museum database but went on-
site and estimated the number of artworks in each room. We
created the National Gallery artworks database from the in-
formation available on the website of this museum. Then,
we enriched dot files representing the topology of each mu-
seum with the different elements needed for the museum
visit instances, i.e., the artworks information, the maximum
time bound and the length of the shortest complete walk.
Many visitors profiles can be envisioned, associated with
many different utility distributions. We considered three dis-
tribution types, which differ according to the balance abil-
ity they offer. The first one, unif, corresponds to users with
weak preferences on art pieces (i.e., utility compensations
are often feasible). To be more precise, a random integer
between 0 and 1000 is associated to each artwork follow-
ing a uniform distribution. The second utility profile (fibo)
corresponds to users with mild preferences. We consider 20
utility levels and the utility values for these levels match the
first integers of Fibonacci sequence. The artworks number
for each of these levels is the same one. Finally, the third
profile (luby) corresponds to users with marked preferences
on art pieces. It is based on a Luby sequence as presented
in (Luby, Sinclair, and Zuckerman 1993). The higher the
level, the fewer the number of artworks. u(pi) = 2k−1 if
i = 2k − 1, u(pi) = u(pi−2k−1+1) otherwise.

In order to generate a wide family of profiles, we fixed the
percentage of artworks that do not interest the visitor at all
(null) and the percentage of artworks that the visitor consid-
ers being the most interesting ones (master). Independently
of the function used to define the visitor satisfaction, non-
interesting artworks are attributed a null utility and the most
interesting artworks are given the maximum utility value.
We used the same percentages 0, 10, 20 and 50 for both
kinds of artwork, leading to 16 different combinations.

Another parameter to be made precise is the time the vis-
itor is willing to spend in front of each artwork. This time
depends on the utility given to an artwork: it seems reason-
able to spend more time in front of a very interesting art
piece and less time in front of a less interesting one. Never-
theless, this time cannot be null. We consider two cases. In
the first case, times to spend in front of artworks and times to
go from one room to another are approximately the same. In
the second case, times to spend in front of artworks are twice
as long as times to go from a room to an adjacent room in the
museum. The objective is to observe the impact of different
visit rhythms on the behavior of the solvers.

Finally, the complexity of the museum visit instance also
depends on the total duration of the visit. Thus, we consid-
ered durations of 15, 60, 120, 180 and 300 time units. We
generated 480 = |0, 10, 20, 5|2×|0, 10, 20, 50|×|1.0, 2.0|×
|unif, fibo, luby| × |15, 60, 120, 180, 300| benchmarks for
each museum, for a total of 960 benchmarks.

4.2 Empirical results
We used the format of the pseudo-Boolean competition
(Manquinho and Roussel 2006) to allow us to try different
solvers. We ran the pseudo-Boolean solver SAT4J (Le Berre
and Parrain 2010) version 2.3.2 and CLASP (Gebser et al.

2007) 2.1.0 two open source CDCL solvers with native
pseudo-Boolean constraints. We also tried CPLEX 12 (CPL
2012) using the PB competition front end to CPLEX written
by Vasco Manquinho. Those instances have been generated
with steps bound K = min(K1,K2) with K2 = 67 for
Beaux Arts museum and K2 = 192 for National Gallery.2
The museum visits instances (without the steps bound) have
been encoded as planning instances in PDDL. We ran LPG
(Gerevini, Saetti, and Serina 2003) on those instances us-
ing the parameters -n 100 -seed 1234 where n repre-
sents the number of plans to compute and seed is the number
used to initialize the random number generator. The other
programs used their default settings. All programs ran on a
cluster of bi-Xeon 3.0 GHz processors with 2GB of RAM
running Centos. The timeout was set to 900s per instance.

An optimal solution could be computed for 265 out of
960 benchmarks (Table 2), all but one solved by CPLEX.
Most of them are “small” instances (TMAX = 15). The
pseudo-Boolean solvers were able to provide an answer
(not necessarily optimal) for most benchmarks. Such be-
havior is expected, since CPLEX takes advantage of cut-
ting planes to prove optimality but cannot always provide
an answer because it does not explore the Boolean search
space. On the other hand, the pseudo-Boolean solvers work
on the Boolean search space, guided by the objective func-
tion. CLASP solved many more benchmarks than SAT4J,
especially on large NG benchmarks. Notably, while LPG
did not find any optimal plan, it was able to provide a plan
for all benchmarks. We assumed that it was because LPG
was looking for solutions with increasing plan length. To
check that assumption, we built a dedicated solver called
PMV based on SAT4J, because PMV requires a tight inte-
gration with the SAT solver and we have a strong expertise
with SAT4J; PMV solves the museum visits problem with
increasing steps k using a quick timeout, until the bound
is reached. We used a timeout of 5 seconds for the first 10
steps, 20 seconds for the following 10 steps and finally 80
seconds per remaining step. That increasing timeout is made
to adapt the solver to the increasing search space. The solver
also has a timeout for optimizing the solution found, equals
to 1

5 of the global timeout. PMV was also able to provide a
solution for all benchmarks, and interestingly outperformed
all other approaches.

Figures 4 and 5 reports for each solver under considera-
tion the number of benchmarks for which a solution of given
quality (or, dually, of given “regret”) has been found. The
“regret” of a solution s is assessed by u∗−u(s)

u∗ , where u∗ is
the utility of the best solution found. On this figure, values
are aggregated so that the “column” OPT (resp. BEST) cor-
responds to the instances for which no better solution has

2We generated benchmarks for the (decision version of the)
shortest complete walk problem and ran CPLEX and CLASP on
them using a timeout of 24 hours. We considered 16 step bounds
for the BA museum (k = 65 to k = 80) and 76 for NG (k = 125
to k = 200). While the value of K2 could be computed for BA,
K̂2 = 192 is the best upper bound of K2 we could compute for
NG. They confirm that this problem is difficult, especially for large
museums.

Museum CPLEX CLASP SAT4J LPG PMV
Encoding Pseudo Boolean PDDL Custom

Number of optimal solutions found (265 out of 960)
BA 131 88 57 - -
NG 133 3 3 - -

Number of solutions found (960 out of 960)
BA 132 452 408 480 480
NG 134 473 183 480 480

Table 1: Solutions in terms of solver

been found and the solution found has been proved (resp.
not proved) optimal, while the “column” 10 (resp. 20, 50 and
50+) corresponds respectively to the number of instances for
which the “regret” of the solution found is strictly greater
than 0% and less than 10% (resp. strictly greater than 10%
and less than 20%, strictly greater than 20% and less than
50%, and greater than 50%).

regret

#benchmarks

OPT BEST 10 25 50 50+

100

200

300

400

CLASP
CPLEX
SAT4J
LPG
PMV

Figure 4: Quality of solutions found on BA museum

In the light of our experiments, finding out optimal tours
is not that hard in practice when short-time visits are consid-
ered. To be more precise, when TMAX= 15, CPLEX found
optimal solutions for all instances (96 BA instances + 96 NG
instances). CLASP also exhibited quite good behavior for
the BA museum: it found and proved optimal 88 solutions,
and found 7 additional optimal solutions without proving
them as optimal; however, for the NG museum, its perfor-
mances decreased significantly: it found and proved optimal
3 solutions, and found 6 additional optimal solutions with-
out proving them as optimal. SAT4J presents a similar per-
formance profile; for the BA museum: it found and proved
optimal 57 solutions, and found 7 additional optimal solu-
tions without proving them as optimal; for the NG museum:
it found and proved optimal 3 solutions, and found 1 addi-
tional optimal solutions without proving it as optimal. LPG
found 56 optimal solutions for the BA museum and 10 op-
timal solutions for the NG museum. Finally, PMV found 82
optimal solutions for the BA museum and 15 optimal solu-
tions for the NG museum. For larger values of TMAX, the
number of optimal solutions found decreases: 13 BA and 11

regret

#benchmarks

OPT BEST 10 25 50 50+

100

200

300

CLASP
CPLEX
SAT4J
LPG
PMV

Figure 5: Quality of solutions found on NG museum
#best solutions

unif fibo luby unif fibo luby
BA NG

80

160

LPG
PMV

Figure 6: Best solutions depending on the utility profile

NG instances are proven optimal by CPLEX for TMAX=60,
9 BA and 3 NG for TMAX=120, 7 BA for TMAX=180 and fi-
nally 3 BA for TMAX=300. However, non optimal solutions
can still be computed for those large TMAX.

Globally speaking, PMV showed rather impressive per-
formances compared to the other algorithms when the pur-
pose is to determine “practically good” solutions. On the
one hand, the utility value of solutions found by this algo-
rithm are typically very close to the optimal utility value.
Of course, this can be measured only for those instances
for which optimal solutions can be computed, and they are
not so numerous when the time bound is large. On the other
hand, whatever the museum, PMV appears by and large as
the best performer; indeed, it outputs the best solution found
or a solution close to it for a large majority of instances.

It is interesting to note that LPG and PMV behave dif-
ferently on benchmarks with unif profile. Figure 6 depicts
the number of best solutions found by LPG and PMV for
each utility profile and each museum. We limit ourselves
to those solvers because they were able to provide a solu-
tion for all benchmarks, unlike the other ones. LPG performs
much better than PMV on unif profiles for the NG museum.
After checking the plans produced by LPG on this profile,
we found that LPG was able to produce plans with very few
moves. This can be explained by the fact that one room close
to an entrance of NG contains many artworks. Since PMV
is utility driven and the profile is uniform, it is unlikely that
PMV chooses directly artworks in the same room, and such
wrong choices cannot be corrected during its limited timeout
at a given k.

5 Conclusion
In this paper, we have defined the museum visits problem
and modeled it both as a planning problem and a constraint
programming problem. Even if the action space is simple,
the planning formulation of MUSEUM looks quite natu-
ral. The PDDL encoding is much more concise than the
constraint-based one we obtained, and as such, it is easier to
grasp. In our opinion, the fact that MUSEUM is an optimiza-
tion problem does not prevent from viewing it as a planning
problem as well: from a computational point of view, many
planning problems are optimization ones. In some sense, our
empirical results suggest that, from the practical side, the
right way to consider MUSEUM is both as a planning prob-
lem and as a CP one.

Our encoding scheme requires as many Boolean variables
as artwork pieces and rooms per step in the museum; it thus
improves the encoding scheme which is reached by consid-
ering the museum visits problem as an orienteering prob-
lem; indeed, this last encoding scheme requires a number
of Boolean variables which is quadratic with the number
of artwork pieces, which makes it impractical (for space
reasons) for many museums. We generated benchmarks de-
rived from two real museums.3 We experimented with sev-
eral constraints solvers and a planner on those benchmarks,
allowing us to show the feasibility of the approach. The plan-
ning approach provides very good results on those problems:
LPG was always able to provide a plan within the timeout.
Such good results could also be achieved using the con-
straints encoding via an incremental approach, tailored for
this problem. Interestingly, the museum visits problem pro-
vides challenging optimization benchmarks for the commu-
nity. CPLEX seems to be the right choice to get an optimal
solution. However, in practice, optimality is not a hard re-
quirement, and using a planner or a pseudo-Boolean solver
allows us to retrieve quickly reasonably good solutions.

This work calls for a number of perspectives. Generating
more accurate visitor profiles (especially, in terms of utility
distributions and time spent in front of the art pieces) would
be useful to discard profiles which are quite unlikely and
may lead to artificial, yet practically hard instances; this gen-
eration nevertheless requires to perform a time-consuming
data collection and analysis. Another perspective is to re-
lax the full additive independence assumption on the util-
ity function, in order to take account of possible syner-
getic effects. Generalized additive independence could be
targeted, requiring sophisticated and complex optimization
techniques to be designed and implemented. Our perspective
is to take advantage of collaborative filtering techniques and
feedback analyses to improve our preference elicitation pro-
cedure and derive utility models that are quite good in prac-
tice. Taking into account graph decomposition techniques
within PMV is also an important issue to consider. Finally,
partnering with a museum is on-going. A prototype, Tech-
A-Way, has already been developed.

3Some sample benchmarks in OPB and PDDL formats and
some sample dot files for the two museums are available at http:
//www.cril.fr/PMV/.

6 Acknowledgments
We would like to thank the anonymous reviewers for
their helpful comments and Vincent Vidal for his advices
on state-of-the-art planners. This work has partly been
supported by the Conseil Régional du Nord/Pas-de-Calais
and an EC FEDER grant.

References
2012. Palais des Beaux Arts de Lille website.
http://www.pba-lille.fr/.
2012. IBM CPLEX Optimizer. http://www-
01.ibm.com/software/integration/optimization/cplex-
optimizer/.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Gansner, E. R., and North, S. C. 2000. An open graph
visualization system and its applications to software engi-
neering. SOFTWARE - PRACTICE AND EXPERIENCE
30(11):1203–1233. http://www.graphviz.org/.
Garcia, A.; Arbelaitz, O.; Linaza, M. T.; Vansteenwegen, P.;
and Souffriau, W. 2010. Personalized tourist route genera-
tion. In Proceedings of the 10th International Conference on
Current Trends in Web Engineering (ICWE’10), 486–497.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007. Conflict-driven answer set solving. In Proceedings of
the 20th International Joint Conference on Artificial Intelli-
gence (IJCAI’07), 386–392.
Gerevini, A.; Saetti, A.; and Serina, I. 2003. Planning
through stochastic local search and temporal action graphs
in LPG. Journal of Artificial Intelligence Research 20:239–
290.
Hage, W. v.; Stash, N.; Wang, Y.; and Aroyo, L. 2010. Find-
ing your way through the Rijksmuseum with an adaptive
mobile museum guide. In Proceedings of the 7th Extended
Semantic Web Conference (ESWC’10), 46–59.
Jaén, J.; Mocholı̀, J. A.; Català, A.; and Navarro, E. 2011.
Digital ants as the best cicerones for museum visitors. Ap-
plied Soft Computing 11(1):111–119.
Kabassi, K. 2010. Personalizing recommendations for
tourist. Telematics and Informatics 27(1):51–66.
Karp, R. M. 1972. Reducibility Among Combinatorial Prob-
lems. In Miller, R. E., and Thatcher, J. W., eds., Complexity
of Computer Computations. Plenum Press. 85–103.
Le Berre, D., and Parrain, A. 2010. The Sat4j library, release
2.2 system description. Journal on Satisfiability, Boolean
Modeling and Computation 7:59–64.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of Las Vegas algorithms. Information Processing
Letters 47:173–180.
Manquinho, V. M., and Roussel, O. 2006. The first evalua-
tion of pseudo-Boolean solvers (PB’05). Journal on Satisfia-
bility, Boolean Modeling and Computation 2(1-4):103–143.

2012. The National Gallery (London) website.
http://www.nationalgallery.org.uk/.
Vansteenwegen, P.; Souffriau, W.; Berghe, G. V.; and Oud-
heusden, D. V. 2011. The city trip planner: An expert system
for tourists. Expert Systems with Applications 38(6):6540–
6546.
Vansteenwegen, P.; Souffriau, W.; and Oudheusden, D. V.
2011. The orienteering problem: A survey. European Jour-
nal of Operational Research 209(1):1–10.
Wang, Y.; Wang, S.; Stash, N.; Aroyo, L.; and Schreiber,
G. 2010. Enhancing content-based recommendation with
the task model of classification. In Proceedings of the 17th
International Conference on Knowledge Engineering and
Management by the Masses (EKAW’10), 431–440.

