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POWER-CENTRAL ELEMENTS IN TENSOR PRODUCTS OF

SYMBOL ALGEBRAS

DEMBA BARRY

Abstract. Let A be a central simple algebra over a field F . Let k1, . . . , kr
be cyclic extensions of F such that k1 ⊗F · · · ⊗F kr is a field. We investigate
conditions under which A is a tensor product of symbol algebras where each ki is
in a symbol F -algebra factor of the same degree as ki. As an application, we give
an example of an indecomposable algebra of degree 8 and exponent 2 over a field
of 2-cohomological dimension 4.

Keywords Central simple algebra. Symbol algebra, Armature, Valuation, Co-
homological dimension
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1. Introduction

Let F be a field and let k be a Galois extension of F of degree n with cyclic group
generated by σ. For a ∈ F×, we let (k, σ, a) denote the cyclic F -algebra generated
over k by a single element y with defining relation ycy−1 = σ(c) for c ∈ k and yn = a.
If F contains a primitive n-th root of unity ζ, it follows from Kummer theory that
one may write k in the form k = F ( n

√
b) for some b ∈ F×. The algebra (k, σ, a)

is then isomorphic to the symbol algebra (a, b)n over F , that is, a central simple
F -algebra generated by two elements i and j satisfying in = a, jn = b and ij = ζji
(see for instance [P, §15. 4]). In the case n = 2, ζ = −1, one gets a quaternion
algebra over F that will be denoted (a, b).

A central division algebra decomposes into a tensor product of symbol algebras
(of degree 2 in [ART] and of degree an arbitrary prime p in [Ro]) if and only if it
contains a set whose elements satisfy some commuting properties: q-generating set
in [ART], p-central set in [Ro], and a set of representatives of an armature in [T1].
Our approach is based on these notions.

The main goal of this paper is to further investigate the decomposability of cen-
tral simple algebras; the study of power central-elements is a constant tool. Let A
be a central simple algebra over F and let k1, . . . , kr be cyclic extensions of F , of
respective degree n1, . . . , nr, contained in A such that k1 ⊗F · · · ⊗F kr is a field. It
is natural to ask: when does there exist a decomposition of A into a tensor prod-
uct of symbol algebras in which each ki is in a symbol F -subalgebra factor of A of
degree ni? Starting from A, we construct a division algebra E whose center is
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the iterated Laurent series with r indeterminates over F and show that A admits
such a decomposition if and only if E is a tensor product of symbol algebras (see
Theorem 3.1 and Corollary 3.2 for details). Note that Corollary 3.2 is very close to
a result of Tignol [T2, Prop. 2.10]. In contrast with Tignol’s result (which is stated
in terms of Brauer equivalence and only for prime exponent), Corollary 3.2 is stated
in terms of isomorphism classes and is valid for any exponent. Moreover, our ap-
proach is completely different. We will give an example, pointed out by Merkurjev,
of a division algebra which is a tensor product of three quaternion algebras, and
containing a quadratic field extension which is in no quaternion subalgebra (Corol-
lary 4.6). Using valuation theory, we give a general method for constructing tensor
products of quaternion algebras containing a quadratic field extension which is in
no quaternion subalgebra. As an application, let A be a central simple algebra of
degree 8 and exponent 2 over F , and containing a quadratic field extension which is
in no quaternion subalgebra. We use Corollary 3.2 to associate with A an example
of an indecomposable algebra of degree 8 and exponent 2 over a field of rational
functions in one variable over a field of 2-cohomological dimension 3 (see Theorem
4.8). This latter field is obtained by an inductive process pioneered by Merkurjev
[M].

We next recall some results related to our main question: let A be a 2-power
dimensional central simple algebra over F and let F (

√
d1,

√
d2) ⊂ A be a biquadratic

field extension of F . If A is a biquaternion algebra, it follows from a result of
Albert that A ≃ (d1, d

′
1) ⊗F (d2, d

′
2) where d′1, d

′
2 ∈ F× (see for instance [Ra]). As

observed above, this is not true anymore in higher degree. More generally, if A is
of degree 8 and exponent 2 and F (

√
d) ⊂ A is a quadratic field extension, there

exists a cohomological criterion associated with the centralizer of F (
√
d) in A which

determines whether F (
√
d) lies in a quaternion F -subalgebra of A (see [Ba, Prop.

4.4]). In the particular case where the 2-cohomological dimension of F is 2 and A
is a division algebra of exponent 2 over F , the situation is more favorable: it is
shown in [Ba, Thm. 3.3] that there exits a decomposition of A into a tensor product
of quaternion F -algebras in which each F (

√
di) (for i = 1, 2) is in a quaternion

F -subalgebra.
An outline of this article is the following: in Section 2 we collect from [T1] and

[TW] some results on armatures of algebras that will be used in the proofs of the
main results. Section 3 is devoted to the statements and the proofs of the main
results. The particular case of exponent 2 is analyzed (in more details) in Section 4.

All algebras considered in this paper are associative and finite-dimensional over
their center. A central simple algebra A over a field F is decomposable if A ≃
A1 ⊗F A2 for two central simple F -algebras A1 and A2 both non isomorphic to F ;
otherwise A is called indecomposable.

Throughout this article, we shall use freely the standard terminology and nota-
tion from the theory of finite-dimensional algebras and the theory of valuations on
division algebras. For these, as well as background information, we refer the reader
to Pierce’s book [P].
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2. Armatures of algebras

Armatures in central simple algebras are a major tool for the next section. The
goal of this section is to recall the notion of an armature and gather some preliminary
results that will be used in the sequel.

We write |H| for the cardinality of a set H. Let A be a central simple F -algebra.
For a ∈ A×/F×, we fix an element xa of A whose image in A×/F× is a, that is,
a = xaF

×. For a finite subgroup A of A×/F×,

F [A] =
{

∑

a∈A
caxa | ca ∈ F

}

denotes the F -subspace of A generated by {xa | a ∈ A}. Note that this subspace is
independent of the choice of representatives xa for a ∈ A. Since A is a group, F [A]
is the subalgebra of A generated by {xa | a ∈ A}. As was observed in [T1], if A is
a finite abelian subgroup of A×/F× there is an associated pairing 〈 , 〉 on A × A
defined by

〈a, b〉 = xaxbx
−1
a x−1

b .

This definition is independent of the choice of representatives xa, xb for a, b and 〈a, b〉
belongs to F× as A is abelian. Hence, 〈a, b〉 is central in A, and it follows that the
pairing 〈 , 〉 is bimultiplicative. It is also alternating, obviously. Thus, as A is finite,
the image of 〈 , 〉 is a finite subset of µ(F ) (where µ(F ) denotes the group of roots
of unity of F ). For any subgroup H of A let

H⊥ = {a ∈ A | 〈a, h〉 = 1 for all h ∈ H},
a subgroup of A. The subgroup H⊥ is called the orthogonal of H with respect to
〈 , 〉. The radical of A, rad(A), is defined to be A⊥. The pairing 〈 , 〉 is called
nondegenerate on A if rad(A) = {1A}.

For g ∈ A, we denote by (g) the cyclic subgroup of A generated by g . The set
{g1, . . . , gr} is called a base of A if A is the internal direct product

A = (g1)× · · · × (gr).

If 〈 , 〉 is nondegenerate then A has a symplectic base with respect to 〈 , 〉, i.e, a base
{g1, h1, . . . , gn, hn} such that for all i, j

〈gi, hi〉 = ci, where ord(gi) = ord(hi) = ord(ci)

〈gi, gj〉 = 〈hi, hj〉 = 1 and, if i 6= j, 〈gi, hj〉 = 1

(see [T1, 1.8]).

Definition 2.1. For any finite-dimensional F -algebra A, a subgroup A of A×/F×

is an armature of A if A is abelian, |A| = dimF A, and F [A] = A.

If A = {a1, . . . , an} is an armature of A, the above definition shows that the set
{xa1 , . . . , xan} is an F -base of A. The notion of an armature was introduced by
Tignol in [T1] for division algebras. The definition given here, slightly different from
that given in [T1], comes from [TW]. This definition allows armatures in algebras
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other than division algebras. The following examples will be used repeatedly in the
next section.

Examples 2.2. (a) ([T1]) Let A = A1 ⊗F · · · ⊗F Ar be a tensor product of symbol
F -algebras where Ak is a symbol subalgebra of degree nk. Suppose F contains a
primitive nk-th root ζk of unity for k = 1, . . . , r. So, Ak is isomorphic to a symbol
algebra (ak, bk)ζk of degree nk for some ak, bk ∈ F×. For each k, let ik, jk be a
symbol generator of (ak, bk)ζk . The image A in A×/F× of the set

{iα1

1 jβ1

1 . . . iαr
r jβr

r | 0 ≤ αk, βk ≤ nk − 1}
is an armature of A isomorphic to (Z/n1Z)

2 × · · · × (Z/nrZ)
2. We observe that

for all 1 6= a ∈ A there exists b ∈ A such that 〈a, b〉 6= 1; that is the pairing 〈 , 〉
is nondegenerate on A. Furthermore, {i1F×, j1F×, . . . , irF×, jrF×} is a symplectic
base of A.

(b) Let M be a finite abelian extension of a field F and let G be the Galois group
of M over F . Let ℓ be the exponent of G. If F contains an ℓ-th primitive root of
unity, the extension M/F is called a Kummer extension. Let

S = {x ∈ M× | xℓ ∈ F×} and Kum(M/F ) = S/F×.

It follows from Kummer theory (see for instance [J1, p.119-123]) that Kum(M/F )
is a subgroup of M×/F× and is dual to G by the nondegenerate Kummer pairing
G×Kum(M/F ) → µ(F ) given by (σ, b) = σ(xb)x

−1
b , for σ ∈ G and b ∈ Kum(M/F ).

Whence, Kum(M/F ) is isomorphic (not canonically in general) to G. As observed in
[TW, Ex. 2.4], the subgroup Kum(M/F ) is the only armature of M with exponent
dividing ℓ.

Let A be an armature of a central simple F -algebra A and let {a1, b1, . . . , an, bn}
be a symplectic base of A with respect to 〈 , 〉. We shall denote by F [(ak)× (bk)] the
subalgebra of A generated by the representatives xak and xbk of ak and bk. It is clear
that F [(ak) × (bk)] is a symbol subalgebra of A of degree nk = ord(ak) = ord(bk)
and generated by xak and xbk . It is shown in [TW, Lemma 2.5] that A ≃ F [(a1) ×
(b1)]⊗F · · · ⊗F F [(an)× (bn)].

Actually, the notion of an armature is a generalization and refinement of the
notion of a quaternion generating set (q-generating set) introduced in [ART]. Indeed,
a central simple algebra A over F has an armature if and only if A is isomorphic to
a tensor product of symbol algebras over F (see [TW, Prop. 2.7]).

Note that if the exponent of A is a prime p, we may consider A as a vector space
over the field with p elements Fp. Identifying the group of p-th roots of unity with
Fp by a choice of a primitive p-th root of unity, we may suppose the pairing has
values in Fp. So, two elements a, b ∈ A are orthogonal if and only if 〈a, b〉 = 0. We
need the following proposition:

Proposition 2.3. Let V be a vector space over Fp of dimension 2n and let 〈 , 〉
be a nondegenerate alternating pairing on V . Let {e1, . . . , er} be a base of a totally
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isotropic subspace of V with respect to 〈 , 〉. There are f1, . . . , fr, er+1, fr+1, . . . , en, fn
in V such that {e1, f1, . . . , en, fn} is a symplectic base of V .

Proof. We argue by induction on the dimension of the totally isotropic subspace
spanned by e1, . . . , er. If r = 1, since the pairing is nondegenerate, there is f1 ∈ V
such that 〈e1, f1〉 6= 0 . Denote by U = span(e1, f1) the subspace spanned by e1, f1.
We have V = U ⊥ U⊥ since the restriction of 〈 , 〉 to U is nondegenerate. We take
for {e2, f2, . . . , en, fn} a symplectic base of U⊥.

Assume the statement for a totally isotropic subspace of dimension r − 1. Let
W = span(e2, . . . , er); we have W ⊂ W⊥. First, we find f1 ∈ W⊥ such that
〈e1, f1〉 6= 0. For this, consider the induced pairing, also denoted by 〈 , 〉, on W⊥/W
defined by 〈x + W,y + W 〉 = 〈x, y〉 for x, y ∈ W⊥. It is well-defined, and non-
degenerate since (W⊥)⊥ = W . The element e1 + W being non-zero in W⊥/W ,
there is f1 + W ∈ W⊥/W such that 0 6= 〈e1, f1〉 = 〈e1 + W,f1 + W 〉. Letting
U = span(e1, f1), we have V = U ⊥ U⊥ and e2, . . . , er ∈ U⊥. Induction yields
f2, . . . , fr, er+1, fr+1, . . . , en, fn ∈ U⊥ such that {e2, f2, . . . , en, fn} is a symplectic
base of U⊥. Then {e1, f1, . . . , en, fn} is a symplectic base of V . �

3. Decomposability

Let A be a central simple algebra over F and let t1, . . . , tr be independent inde-
terminates over F . For i = 1, . . . , r, let ki be a cyclic extension of F of degree ni

contained in A. We assume that M = k1⊗F · · · ⊗F kr is a field and denote by G the
Galois group of M over F . So [M : F ] = n1 . . . nr and G = 〈σ1〉 × · · · × 〈σr〉, where
〈σi〉 is the Galois group of ki over F , and the order of G is n1 . . . nr. Every element
σ ∈ G can be expressed as σ = σm1

1 . . . σmr
r (0 ≤ mi < ni). We shall denote by

C = CAM the centralizer of M in A. Let t1, . . . , tr be independent indeterminates
over F . Consider the fields

L′ = F (t1, . . . , tr) and L = F ((t1)) . . . ((tr))

and the following central simple algebras over L′ and L respectively

N ′ = (k1 ⊗F L′, σ1 ⊗ id, t1)⊗L′ · · · ⊗L′ (kr ⊗F L′, σr ⊗ id, tr)

and

N = (k1 ⊗F L, σ1 ⊗ id, t1)⊗L · · · ⊗L (kr ⊗F L, σr ⊗ id, tr).

We let

R′ = A⊗F N ′ and R = A⊗F N.

In this section our goal is to prove the following results:

Theorem 3.1. Let M be a finite group with a nondegenerate alternating pairing
M×M → µ(F ). Suppose C is a division subalgebra of A, and F contains a primitive
exp(M)-th root of unity. Then, the following are equivalent:

(i) The division algebra Brauer equivalent to R′ (respectively R) has an armature
isomorphic to M.
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(ii) The algebra A has an armature isomorphic to M and containing Kum(M/F )
as a totally isotropic subgroup.

In the particular case where A is of degree pn and exponent p (for a prime number
p) and each ki is a cyclic extension of F of degree p, we have:

Corollary 3.2. Assume that A is of degree pn and exponent p. Suppose C is a
division subalgebra of A, F contains a primitive p-th root of unity, and ni = p for
i = 1, . . . , r. Then, the following are equivalent:

(i) The division algebra Brauer equivalent to R′ (respectively R) is decomposable
into a tensor product of symbol algebras of degree p.

(ii) The algebra A decomposes as

A ≃ (k1, σ1, δ1)⊗F · · · ⊗F (kr, σr, δr)⊗F Ar+1 ⊗F · · · ⊗F An

for some δ1, . . . , δr ∈ F× and some symbol algebras Ar+1, . . . , An of degree
p.

Moreover, if these conditions are satisfied then the division algebras Brauer equiva-
lent to R′ and R decompose respectively as

(k1 ⊗F L′, σ1 ⊗ id, δ1t1)⊗L′ · · · ⊗L′ (kr ⊗F L′, σr ⊗ id, δrtr)⊗F Ar+1 ⊗F · · · ⊗F An

and

(k1 ⊗F L, σ1 ⊗ id, δ1t1)⊗L · · · ⊗L (kr ⊗F L, σr ⊗ id, δrtr)⊗F Ar+1 ⊗F · · · ⊗F An.

As opposed to part (i), it is not enough in part (ii) of Theorem 3.1 to assume
simply that A has an armature to get an armature in the division algebra Brauer
equivalent to R′ orR. The following example shows that the existence of an armature
and the existence of an armature containing Kum(M/F ) are different.

Example 3.3. Denote by Q2 the field of 2-adic numbers, and let A be a division
algebra of degree 4 and exponent 4 over F = Q2(

√
−1). Such an algebra is a

symbol (see [P, Th., p. 338]). Note that M = F (
√
2,
√
5) is a field since the

set {−1, 2, 5} forms a Z/2Z-basis of Q×
2 /Q

×2
2 (see for instance [L, Lemma 2.24, p.

163]). It also follows by [P, Prop., p. 339] that A⊗M is split. Hence, since [M : F ]
divides deg(A), we deduce that M ⊂ A. Moreover, it is clear that the centralizer
of M in A is M. The algebra A being a symbol, it has an armature A isomorphic
to (Z/4Z)2 (see Example 2.2). Assume that A contains Kum(M/F ) ≃ (Z/2Z)2.
Since A2 = {a2 | a ∈ A} = Kum(M/F ), the algebra A is a symbol of the form
A = (c, d)4 with c.F×2, d.F×2 ∈ {2.F×2, 5.F×2, 2.5.F×2}. It follows that A⊗ A is
either Brauer equivalent to the quaternion algebra (2, 5) or (2, 2.5) or (5, 2.5). Since
(2, 5) ≃ (−1,−1) over Q2, the algebra (2, 5) is split over F ; that is A ⊗ A is split.
Therefore the exponent of A must be 2; impossible. Therefore A has no armature
containing Kum(M/F ).

Now, let E be the division algebra Brauer equivalent to A ⊗ (2, t1) ⊗ (5, t2). As
we will see soon (Lemma 3.4 and Lemma 3.5), deg(E) = exp(E) = 4. But E has
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no armature, that is, E is not a symbol. Indeed, suppose E has an armature B.
If B ≃ (Z/2Z)4 then E is a biquaternion algebra, so exp(E) = 2; contradiction.
Therefore B is isomorphic to (Z/4Z)2. It follows then by Theorem 3.1 that A has
an armature containing the amature Kum(M/F ) of M . This is impossible as we
showed above; therefore E has no armature.

3.1. Brauer classes of R′ and R. For the proof of the results above, we need an
explicit description of the division algebras Brauer equivalent to R′ and R. First, we
fix some notation: recall that we denoted by G = 〈σ1〉 × · · · × 〈σr〉 the Galois group
of M over F . By the Skolem-Noether Theorem, for each σi there exists zi ∈ A× such
that σi(b) = zibz

−1
i for all b ∈ M . Notice that zni

i =: ci ∈ C and zizjz
−1
i z−1

j =: uij ∈
C for all i, j. For all σ = σm1

1 . . . σmr
r ∈ G, we set zσ = zm1

1 . . . zmr
r (0 ≤ mi < ni).

Setting c(σ, τ) = zσzτ (zστ )
−1, a simple observation shows for all σ, τ

(3.1) c(σ, τ) ∈ C and zσb = σ(b)zσ for all b ∈ M.

In fact, c(σ, τ) can be calculated from the elements uij and ci.
Let yi be a generator of (ki ⊗ L′, σi ⊗ 1, ti), that is an element satisfying the

relations yi(d ⊗ l)y
−1

i = σi(d) ⊗ l for all d ∈ ki and l ∈ L′ and yni

i = ti. For
σ = σm1

1 . . . σmr
r ∈ G with 0 ≤ mi < ni, we set yσ = ym1

1 . . . ymr
r . The algebras N ′

and N being crossed products, we may write

N ′ =
⊕

σ∈G
(M ⊗ L′)yσ and N =

⊕

σ∈G
(M ⊗ L)yσ

and the yσ satisfy

(3.2) yσyτ (yστ )
−1 ∈ M ⊗ L and yσ(b⊗ l) = (σ(b) ⊗ l)yσ

for all b ∈ M and l ∈ L. Set f(σ, τ) = yσyτ (yστ )
−1. The elements f(σ, τ) are in fact

in L′. Indeed, let yσ = yα1

1 . . . yαr
r and yτ = yβ1

1 . . . yβr
r with 0 ≤ αi, βi < ni . We get

(3.3) f(σ, τ) = yσyτ (yστ )
−1 = tε11 . . . tεrr

where εi = 0 if αi + βi < ord(σi) = ni and εi = 1 if αi + βi ≥ ord(σi). Note that
f(σ, τ) = f(τ, σ) for all σ, τ ∈ G.

Now, let e be the separability idempotent of M , that is, the idempotent e ∈
M ⊗F M determined uniquely by the conditions that

(3.4) e · (x⊗ 1) = e · (1⊗ x) for all x ∈ M

and the multiplication map M ⊗F M → M carries e to 1 (see for instance [P, §14.
3]). For σ ∈ G, let

eσ = (id ⊗ σ)(e) ∈ M ⊗F M.

The elements (eσ)σ∈G form a family of orthogonal primitive idempotents of M⊗F M
(see [P, §14. 3] ) and it follows, by applying id⊗ σ to each side of (3.4), that

(3.5) eσ · (x⊗ 1) = eσ · (1⊗ σ(x)) for x ∈ M.

We need the following lemma:

Lemma 3.4. Notations are as above.
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(1) The elements zσ ⊗ yσ are subject to the following rules
(i) For all σ, τ ∈ G, there exists u ∈ CL such that

(zσ ⊗ yσ)(zτ ⊗ yτ ) = (u⊗ 1)(zστ ⊗ yστ ).

(ii) (zσ ⊗ yσ)(c ⊗ 1) = ((zσcz
−1
σ ) ⊗ 1)(zσ ⊗ yσ) for all c ∈ C. Moreover,

zσcz
−1
σ ∈ C for all σ ∈ G.

(2) The sums

E′ =
∑

σ∈G
CL′zσ ⊗ yσ and E =

∑

σ∈G
CLzσ ⊗ yσ

are direct and are central simple subalgebras of R′ and R respectively. More-
over, the algebras R′ and R are Brauer equivalent to E′ and E respectively,
and degE′ = degE = degA.

Proof. (1) The statement of (i) follows from relations (3.1), (3.2) and the fact that
f(σ, τ) ∈ L′. Since the elements 1 ⊗ yσ centralize CL ⊗ 1, the statement of (ii) is
clear.

(2) Suppose
∑

σ∈G cσzσ ⊗ yσ = 0 with cσ ∈ CL′ (or CL). Pick such a sum with
a minimal number of non-zero terms. There are at least two non-zero elements, say
cρzρ⊗ yρ, cτzτ ⊗ yτ , in the sum. Let b ∈ M be such that ρ(b) 6= b and τ(b) = b. One
has

(b⊗ 1)
(

∑

σ∈G
cσzσ ⊗ yσ

)

(b⊗ 1)−1 −
∑

σ∈G
cσzσ ⊗ yσ = 0

and the number of non-zero terms is nontrivial and strictly smaller; contradiction.
Whence we have the direct sums E′ =

⊕

σ∈G CL′zσ ⊗ yσ and E =
⊕

σ∈G CLzσ ⊗ yσ.
It is clear that E′ ⊂ R′ and E ⊂ R. On the other hand, the computation rules of the
part (1) show that E′ and E are generalized crossed products (see [A, Th. 11.11] or
[J2, §1.4]). Hence, the same arguments as for the usual crossed products show that
E′ and E are central simple algebras over L′ and L respectively. Moreover, since
dimC = 1

n1...nr
dimA, we have degE′ = degE = degA.

Now, it remains to show that R′ and R are respectively Brauer equivalent to E′

and E. For this we work over L; the same arguments apply over L′. For zσ ⊗ yσ as
above, consider the inner automorphism

Int(zσ ⊗ yσ) : R −→ R.

Notice that Int(zσ ⊗yσ)(eτ ) is in M ⊗M and is a primitive idempotent for all τ ∈ G
(since eτ is primitive). Moreover, for x ∈ M ,

Int(zσ ⊗ yσ)(eτ ) · (x⊗ 1) = (zσ ⊗ yσ)eτ (z
−1
σ ⊗ y−1

σ ) · (x⊗ 1)

= (zσ ⊗ yσ)eτ · (σ−1(x)⊗ 1)(z−1
σ ⊗ y−1

σ )

= (zσ ⊗ yσ)eτ · (1⊗ τσ−1(x))(z−1
σ ⊗ y−1

σ )

= (1⊗ τ(x)) · Int(zσ ⊗ yσ)(eτ ).

Therefore Int(zσ⊗yσ)(eτ ) = eτ by comparing with the definition of e and the relation
(3.5). Hence, each eτ centralizes E in R. On the other hand, since the degree of
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the centralizer CRE of E in R is n1 . . . nr and (eτ )τ∈G ⊂ CRE, the algebra CRE is
split. So R is Brauer equivalent to E. �

Lemma 3.5. Notations are as in Lemma 3.4. If C is a division algebra then there
exists a unique valuation on E which extends the (t1, . . . , tr)-adic valuation on L.
Consequently E′ and E are division algebras.

Proof. The (t1, . . . , tr)-adic valuation on L being Henselian, it extends to a unique
valuation to each division algebra over L (see for instance [W1]). It follows that there
is a valuation on CL extending the (t1, . . . , tr)-adic valuation on L. More precisely
this valuation is constructed as follows: writing CL as

CL =

{

∑

i1∈Z
· · ·

∑

ir∈Z
ci1...ir t

i1
1 . . . tirr

∣

∣

∣

∣

∣

∣

ci1...ir ∈ C and
{(i1, . . . , ir) | ci1...ir 6= 0 is well-ordered
for the right-to-left lexicographic ordering}

}

,

computations show that the map v : C×
L → Zr defined by

v
(

∑

i1∈Z
· · ·

∑

ir∈Z
ci1...ir t

i1
1 . . . tirr

)

= min{(i1, . . . , ir) | ci1...ir 6= 0}

is a valuation. Clearly v extends the (t1, . . . , tr)-adic valuation on L. Recall that N
is a division algebra over L (see e.g. [W2, Ex. 3.6]). We also denote by v the unique
extension of the (t1, . . . , tr)-valuation to N . Since yni

i = ti, we have

v(yi) = (0, . . . , 0,
1

ni
, 0, . . . , 0) ∈ 1

n1
Z× . . . × 1

nr
Z.

Hence, for yσ = ymi

1 . . . ymr
r where σ = σm1

1 . . . σmr
r (with 1 ≤ mi < ni), we have

v(yσ) = (m1

n1
, . . . , mr

nr
). It then follows that

(3.6) v(yσ) 6≡ v(yτ ) mod Zr if σ 6= τ.

Now, define a map w : E× → 1
n1
Z× . . .× 1

nr
Z as follows: for any σ ∈ G and any

c ∈ C×
L , set

w(czσ ⊗ yσ) = v(c) + v(yσ).

For any s ∈ E×, s has a unique representation s =
∑

σ∈G cσzσ⊗yσ with the cσ ∈ CL

and some cσ 6= 0. Define

w(s) = min
σ∈G

{w(cσzσ ⊗ yσ) | cσ 6= 0}.

It follows by (3.6) that w(cσzσ ⊗ yσ) 6= w(cτ zτ ⊗ yτ ) for σ 6= τ . Thus, there is a
unique summand cιzι ⊗ yι of s such that w(s) = w(cιzι ⊗ yι); this cιzι ⊗ yι is called
the leading term of s.

We are going to show that w is a valuation on E. Let s′ =
∑

σ∈G dσzσ ⊗ yσ ∈ E×

with dσ ∈ CL and s + s′ 6= 0. Let (cρ + dρ)zρ ⊗ yρ be the leading term of s+ s′. If
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cρ 6= 0 and dρ 6= 0, we have

w((cρ + dρ)zρ ⊗ yρ) = v(cρ + dρ) + v(yρ)

≥ min(v(cρ) + v(yρ), v(dρ) + v(yρ))

= min(w(cρzρ ⊗ yρ), w(dρzρ ⊗ yρ))

≥ min(w(s), w(s′)).

Thus, w(s+s′) = w((cρ+dρ)zρ⊗yρ)) ≥ min(w(s), w(s′)). This inequality still holds
if cρ = 0 or dρ = 0.

By the usual argument, we also check that

(3.7) if w(s) 6= w(s′) then w(s + s′) = min(w(s), w(s′)).

It remains to show that w(ss′) = w(s) + w(s′). For σ, τ ∈ G, recall that

(zσ ⊗ yσ)(zτ ⊗ yτ ) = c(σ, τ)f(σ, τ)(zστ ⊗ yστ )

for some c(σ, τ) ∈ C× and some f(σ, τ) ∈ L×. It follows that, for cσ, dτ ∈ C×
L ,

w((cσzσ ⊗ yσ)(dτ zτ ⊗ yτ )) = w(cσ(zσdτ z
−1
σ )(zσ ⊗ yσ)(zτ ⊗ yτ )) (Lemma 3.4)

= w(cσ(zσdτ z
−1
σ )c(σ, τ)f(σ, τ)(zστ ⊗ yστ ))

= v(cσ) + v(dτ ) + v(f(σ, τ)yστ )

= v(cσ) + v(yσ) + v(dτ ) + v(yτ )

= v(cσzσ ⊗ yσ) + v(dτ zτ ⊗ yτ ).(3.8)

Hence, we have

w(ss′) = w
(

∑

σ,τ

(cσzσ ⊗ yσ)(dτ zτ ⊗ yτ )
)

≥ min
σ,τ

{w((cσzσ ⊗ yσ)(dτ zτ ⊗ yτ )) | cσ , dτ 6= 0}

= min
σ,τ

{w(cσzσ ⊗ yσ) + w(dτ zτ ⊗ yτ ) | cσ , dτ 6= 0}

≥ w(s) + w(s′).(3.9)

Let cρzρ ⊗ yρ and dιzι ⊗ yι be the leading terms of s and s′ respectively. Set s1 =
s− cρzρ ⊗ yρ and s′1 = s′ − dιzι ⊗ yι. So,

w(s) = w(cρzρ ⊗ yρ) < w(s1) and w(s′) = w(dιzι ⊗ yι) < w(s′1).

Writing

ss′ = (cρzρ ⊗ yρ)(dιzι ⊗ yι) + s1(dιzι ⊗ yι) + (cρzρ ⊗ yρ)s
′
1 + s1s

′
1,

it follows by (3.8) and (3.9) that the first summand in the right side of the above
equality has valuation strictly smaller than the other three. Hence, by (3.7) and
(3.8), one has ss′ 6= 0 and

w(ss′) = w((cρzρ ⊗ yρ)(dιzι ⊗ yι)) = w(s) + w(s′).

Therefore w is a valuation on E. Since E = E′ ⊗L′ L, the restriction of w to E′ is
also a valuation. The uniqueness of w follows from its existence by [W1]. �
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Let D be a division algebra with a valuation. The residue division algebra of D
is denoted by D.

We keep the notations above. Now, suppose C is a division subalgebra of A
and denote by ΓE and ΓL the corresponding value groups of E and L respectively.
Furthermore, assume that E has an armature A. The diagram

1 // L× //

v

��

E× //

w

��

E×/L× //

��

1

0 // ΓL
// ΓE

// ΓE/ΓL
// 0

induces a homomorphism

w′ : A ⊂ E×/L× −→ ΓE/ΓL.

Put A0 = kerw′ and let a ∈ A0. The above diagram shows that there exists a
representative xa of a such that w(xa) = 0. Define

¯ : A0 −→ E
×
/L

×
= C×/F×

by

a = xaL
× 7−→ ā = x̄aF

×

where xa is such that w(xa) = 0 and x̄a is the residue of xa. If ya is another
representative of a such that w(ya) = 0, there is h ∈ L× with w(h) = 0 such that
ya = xah. Hence ȳa = x̄ah̄, that is ȳa = x̄aF

×, so ¯ is well defined. We have:

Proposition 3.6. Assume that C is a division algebra and A is an armature of E
as above. Then

(1) The map ¯ : A0 −→ C×/F× is an injective homomorphism.
(2) The image A0 of A0 is an armature of C over F .

Proof. (1) Let a = xaL
× and b = xbL

× be such that w(xa) = w(xb) = 0. Choosing
xab = xaxb, we have w(xab) = 0. Therefore x̄ab = x̄ax̄b; this shows that ¯ is a
homomorphism.

Let c ∈ ker¯ with c 6= 1 and let xc ∈ E× be a representative of c such that
w(xc) = 0. Let x̄c = α ∈ F×; then xc = α + x′c for some x′c ∈ E with w(x′c) > 0.
The pairing 〈 , 〉 being nondegenerate on A, there exists d ∈ A such that 〈d, c〉 = ζ
for some 1 6= ζ ∈ µ(F ). Thus,

xdxcx
−1
d = ζx̄c = ζα.

On the other hand,

xdxcx
−1
d = xdαx

−1
d + xdx

′
cx

−1
d = α+ xdx

′
cx

−1
d .

Hence, we get

xdxcx
−1
d = α since w(xdx

′
cx

−1
d ) > 0; contradiction.

Therefore the map ¯ is injective. Consequently, we have |A0| = |A0|.



12 D. BARRY

(2) We first show that |A0| ≤ dimF C: since C = E, it suffices to prove that
(x̄a)a∈A0

are linearly independent over F . Let
∑

a∈A0
λax̄a = 0, with λa ∈ F , be a

zero linear combination such that the set

S = {a ∈ A0 | λa 6= 0}

is not empty and of least cardinality. For s ∈ S, let xs be a representative of s in
E× such that w(xs) = 0. We have

x̄s

(

∑

a∈A0

λax̄a

)

x̄−1
s =

∑

a∈A0

〈a, s〉λax̄a = 0 =
∑

a∈A0

λax̄a.

Then the linear combination
∑

a∈A0
(1− 〈a, s〉)λax̄a is zero and the number of non-

zero coefficients is less than the cardinality of S because 〈s, s〉 = 1. Therefore,
〈a, s〉 = 1 for all a, s ∈ S; this implies that x̄s and x̄s′ commute for all s, s′ ∈
S. It follows from [T1, Lemma 1.5] that the elements x̄s, for s ∈ S, are linearly
independent; contradicting the fact that S is not empty. Combining with the part
(1), we get

|A0| = |A0| ≤ dimC =
1

n1 . . . nr
|A|.

On the other hand, since |w′(A)| = |A|
|A0| , we have |w′(A)| ≥ n1 . . . nr. We already

know that |w′(A)| ≤ n1 . . . nr because w′(A) ⊂ ΓE/ΓL and |ΓE/ΓL| = n1 . . . nr. It
follows that |w′(A)| = n1 . . . nr and |A0| = dimF C. Since we showed that (x̄a)a∈A0

are linearly independent, the subgroup A0 is an armature of C over F . �

3.2. Proof of the main result. Recall that the division algebras Brauer equivalent
to R′ and R are respectively E′ and E by Lemma 3.4.

Proof of Theorem 3.1. (i) ⇒ (ii): we give the proof for E; the proof for E′ follows
because if E′ has an armature then E = E′ ⊗L′ L has an isomorphic armature.
Assume that E has an armature A. Let c ∈ A and let cρzρ ⊗ yρ be the leading term
of a representative xc of c in E. That is, xc = cρzρ⊗yρ+x′c with w(xc) = w(cρzρ⊗yρ)
and w(x′c) > w(xc). Define the map

ν : A −→ A×/F×

by

c = xc.L
× 7−→ cρzρ.F

×.

If yc is another representative of c, we have yc = ℓxc for some ℓ ∈ L×. Note that
the leading term of yc is the leading term of ℓ multiplied by cρzρ ⊗ yρ (see the
proof of Lemma 3.5); moreover, the leading term of ℓ lies in F×. One deduces that
ν(xc.L

×) = ν(yc.L
×). So ν is well-defined.

We show that ν(A) is an armature of A: first, we claim that ν is an injective
homomorphism. Indeed, let a, b ∈ A with respective representatives xa and xb. Let
cσzσ ⊗ yσ and dτzτ ⊗ yτ be the leading terms of xa and xb respectively. As showed
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in the proof of Lemma 3.5, the leading term of xaxb is (cσzσ ⊗ yσ)(dτ zτ ⊗ yτ ). On
the other hand, it follows by (3.1), (3.2), (3.3) and Lemma 3.4 that

(cσzσ ⊗ yσ)(dτ zτ ⊗ yτ ) = cσ(zσdτz
−1
σ )f(σ, τ)c(σ, τ)zστ ⊗ yστ

for some f(σ, τ) ∈ L× and some c(σ, τ) ∈ C×, and zσdτ z
−1
σ ∈ C.

Since xab = xaxb mod L× (because a, b ∈ A), we may take xaxb as a representative
of ab, so

xab = xaxb = cσ(zσdτz
−1
σ )c(σ, τ)zστ ⊗ yστ + x′ab with w(x′ab) > w(xab).

Hence, it follows by the definition of ν that

ν(ab) = cσ(zσdτz
−1
σ )c(σ, τ)zστ mod F×

= (cσzσ)(dτ zτ ) mod F×

= ν(a)ν(b).

Therefore, ν is a homomorphism.
For the injectivity, we start out by proving that the pairing 〈 , 〉 is an isometry

for ν: by definition

〈a, b〉 = xaxbx
−1
a x−1

b = ζ for some ζ ∈ µ(F ).

Hence

xaxb = (cσzσ⊗yσ)(dτ zτ ⊗yτ )+(xaxb)
′ = ζxbxa = ζ(dτzτ ⊗yτ )(cσzσ⊗yσ)+ζ(xbxa)

′,

with w((xaxb)
′) = w((xbxa)

′) > w(xaxb). Since yσ and yτ commute, it follows that

(cσzσ)(dτ zτ ) = ζ(dτzτ )(cσzσ).

Therefore

〈ν(a), ν(b)〉 = (cσzσ)(dτ zτ )(cσzσ)
−1(dτ zτ )

−1 = ζ.

The pairing 〈 , 〉 is then an isometry for ν. Now, to see that ν is an injection, let
a ∈ A be such that ν(a) = 1. Since 〈 , 〉 is an isometry for ν, for all b ∈ A, one has

1 = 〈ν(a), ν(b)〉 = 〈a, b〉.
We infer that a = 1 because the pairing is nondegenerate on A. It follows that
ν(A) is an abelian subgroup of A×/F× isomorphic to A. Consequently, ν(A) is an
armature of A×/F× isomorphic to M (≃ A by hypothesis) since degE = degA by
Lemma 3.4.

Now, we prove that Kum(M/F ) ⊂ ν(A). Since A0 is an armature of C by
Proposition 3.6, it follows by [TW, Lemma 2.5] that rad(A0) is an armature of the
center of C which is M . The extension M/F being a Kummer extension, Examples
2.2 (b) indicates that rad(A0) = Kum(M/F ). Therefore, we have Kum(M/F ) ⊂
ν(A) since ν is the identity on A0.

(ii) ⇒ (i): let B be an armature of A isomorphic to M and containing Kum(M/F )
as a totally isotropic subgroup. We construct an isomorphic armature in E′. Note
that if E′ has an armature, then E also has an armature. For each σ ∈ G, set

Bσ = {a ∈ B | 〈a, b〉 = σ(xb)x
−1
b for all b ∈ Kum(M/F )}.
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One easily checks that Bid = Kum(M/F )⊥ and for a, c ∈ Bσ, ac
−1 ∈ Bid. The sets

Bσ are the cosets of Bid in B. So, we have the disjoint union B =
⊔

σ∈G Bσ. On
the other hand, for a ∈ Bσ and b ∈ Kum(M/F ), comparing the equality 〈a, b〉 =
σ(xb)x

−1
b and the definition 〈a, b〉 = xaxbx

−1
a x−1

b we get xaxb = σ(xb)x
−1
a ; this

implies Bσ ⊂ C×zσ/F×. Now, let us denote

B′
σ = {(xaσ ⊗ yσ).L

′× | aσ ∈ Bσ} and B′ =
⊔

σ∈G
B′
σ.

Note that B′
σ ⊂ C×

L′(zσ ⊗ yσ)/L
′× and we readily check that B′ is a subgroup of

E
′×/L

′×. We claim that B′ is an armature of E′: since degA = degE′, it follows
by the definition of B′ that |B′| = dimE′. Moreover, as in the part (2) of the proof
of Proposition 3.6, one verifies that the representatives of the elements of B′ in E′

are linearly independent over L′. It remains to show that B′ is commutative. Let
aσ ∈ Bσ and dτ ∈ Bτ with σ, τ ∈ G. By (3.3), yσyτ = yτyσ because f(σ, τ) = f(τ, σ).
Furthermore, taking xaσxdτ as a representative of aσdτ (since B is an armature), we
have xaσxdτ = xaσdτ = xdτxaσ . The commutativity of B′ follows; and therefore B′

is an armature of E′.
Using the same arguments as above, we see that the map B′ → B that carries

(xaσ ⊗ yσ).L
′× to xaσ .F

× is an isomorphism. Consequently, the armature B′ is also
isomorphic to M. This concludes the proof. �

Proof of Corollary 3.2. (i) ⇒ (ii): as in the proof of Theorem 3.1, it is enough to give
the proof for E. Assume that E decomposes into a tensor product of symbol algebras
of degree p. Recall that if E decomposes into a tensor product of symbol algebras of
degree p then E has an armature of exponent p (see [TW, Prop. 2.7]). It follows by
Theorem 3.1 that A decomposes into a tensor product of symbol algebras of degree
p. More precisely, if A is an armature of E of exponent p, we showed that ν(A) is
an armature of A isomorphic to A and Kum(M/F ) ⊂ ν(A). Now, let x1, . . . , xr ∈ A
be such that ki = F (xi). The subgroup generated by (xiF

×) for i = 1, . . . , r is
Kum(M/F ). The exponent of ν(A) being p, we may view ν(A) as a vector space
over the field with p elements. Since M is a field, the elements e1 := x1F

×, . . . , er :=
xrF

× are linearly independent in ν(A). On the other hand, M being commutative,
the subspace spanned by e1, . . . , er is totally isotropic with respect to 〈 , 〉. It follows
then by Proposition 2.3 that there are f1, . . . , fr, er+1, fr+1, . . . , en, fn in ν(A) such
that {e1, f1, . . . , en, fn} is a symplectic base of ν(A). Expressing fi = yiF

× for
i = 1, . . . , r and ν(A) = A1 × . . . × An, where Ai = (ei) × (fi) for i = 1, . . . , n, we
get

A ≃ (k1, σ1, δ1)⊗F · · · ⊗F (kr, σr, δr)⊗F F [Ar+1]⊗F · · · ⊗F F [An]

with δi = ypi for i = 1, . . . , r.
(ii) ⇒ (i): assume that A decomposes as

A ≃ (k1, σ1, δ1)⊗F · · · ⊗F (kr, σr, δr)⊗F Ar+1 ⊗F · · · ⊗F An
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for some δ1, . . . , δr ∈ F× and some symbols subalgebras Ar+1, . . . , An of A. We give
the proof for R. The same argument is valid for R′. We have

R = A⊗F (k1 ⊗F L, σ1 ⊗ id, t1)⊗L · · · ⊗L (kr ⊗F L, σr ⊗ id, tr) ∼
(k1 ⊗F L, σ1 ⊗ id, δ1t1)⊗L · · · ⊗L (kr ⊗F L, σr ⊗ id, δrtr)⊗F Ar+1 ⊗F · · · ⊗F An

(see for instance [D, §10]). Since this latter algebra has the same degree as A and
deg(A) = deg(E) by Lemma 3.4, it is isomorphic to E. The proof is complete. �

4. Square-central elements

Let A be a central simple F -algebra of exponent 2 and let g ∈ A× − F be a
square-central element. The purpose of this section is to investigate conditions for
g to be in a quaternion subalgebra of A and to give examples of tensor products of
quaternion algebras containing a square-central element which is in no quaternion
subalgebra.

4.1. The algebra A is not a division algebra. Here we distinguish two cases,
according to whether g2 ∈ F×2 or g2 /∈ F×2. Actually, we will not need to mention
in the following proposition that A is not a division algebra because this is encoded
by the fact that g ∈ A× − F× and g2 ∈ F×2. Indeed, if g2 = λ2 with λ ∈ F× then
(g − λ)(g + λ) = 0; this means that A is not division.

Proposition 4.1. Let A be a central simple F -algebra and let g ∈ A×−F× be such
that g2 = λ2, λ ∈ F×. The element g is in a quaternion subalgebra of A if and only
if dim(g − λ)A = dim(g + λ)A. If the characteristic of F is 0, this condition holds
if and only if the reduced trace TrdA(g) of g is zero.

Proof. We can write A ≃ EndD(V ) where D is a division algebra Brauer equivalent
to A and V is some rightD-vector space. Suppose there is a quaternion F -subalgebra
Q of A such that g ∈ Q. Then A = Q ⊗ CAQ, where CAQ is the centralizer of Q
in A. Since g2 = λ2 with λ ∈ F×, we may identify Q with M2(F ) in such a way
that g is the diagonal matrix diag(λ,−λ). Computations show that dim(g − λ)A =
dim(g + λ)A = 2dimCAQ.

Conversely, suppose dim(g − λ)A = dim(g + λ)A. Let V+ and V− be the λ-
eigenspace and −λ-eigenspace of g respectively. For all u ∈ V , we have u = 1

2(u +

λ−1g(u)) + 1
2(u − λ−1g(u)) ∈ V+ + V− and V+ ∩ V− = {0}. Hence V = V+ ⊕ V−.

Denote by r and s the dimensions of V+ and V− respectively. Since g2 = λ2, g
is represented in A ≃ EndD(V ) by the diagonal matrix diag(λ, . . . , λ,−λ, . . . ,−λ)
where the number of λ is r and the number of −λ is s. Computations show that
dim(g− λ)A = s dimD and dim(g + λ)A = r dimD; therefore the hypothesis yields

r = s. The endomorphism f whose matrix is the block matrix f =

(

0 1
1 0

)

, where

each block is an r× r matrix, anticommutes with g and is square-central. It follows
that g lies in the split quaternion subalgebra of A generated by g and f .

Now suppose the characteristic of F is 0. The element g is represented by
diag(λ, . . . , λ,−λ, . . . ,−λ). So TrdA(g) = (r−s)λdegD and dim(g−λ)A = s dimD
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and dim(g + λ)A = r dimD. Therefore TrdA(g) = 0 if and only if dim(g − λ)A =
dim(g + λ)A. The proof is complete. �

If the characteristic of F is positive, the hypothesis on the trace does not suffice
as we observe in the following counterexample:

Contrexample 4.2. Assume that F = F3, the field with three elements, and take
A = M8(F ). The diagonal matrix g = diag(1, . . . , 1,−1) is such that g2 = 1 and the
trace of g is 0. But Proposition 4.1 shows that g is not in a quaternion subalgebra
of A since dim(g + 1)A = 56 6= dim(g − 1)A = 8.

Proposition 4.3. Let A be a central simple F -algebra and let g ∈ A×−F× be such
that g2 = a ∈ F× −F×2. The element g lies in a split quaternion subalgebra of A if
and only if degA

ind(A) is even.

Proof. If g ∈ M2(F ) ⊂ A, then A = M2(F )⊗C where C is the centralizer of M2(F )

in A. Hence, degA
ind(A) is even. Conversely, assume degA

ind(A) is even. So, we may write

A ≃ M2(F ) ⊗ A′ for some algebra A′ Brauer equivalent to A. Set g′ =

(

0 1
a 0

)

;

we have g′ ∈ M2(F ) ⊂ A and g′2 = a. By the Skolem-Noether Theorem, g and
g′ are conjugated. It follows that g is in a split quaternion subalgebra of A since
g′ ∈ M2(F ). �

4.2. The algebra A is a division algebra. Let A be a division algebra and
let x ∈ A× − F×. Recall that, A being a division algebra, we have necessarily
x2 ∈ F× − F×2. Here we argue on the degree of the division algebra.

Degree 4. The following result is due to Albert and many proofs exist in the lit-
erature (see for instance [Ra], [LLT, Prop. 5.2], [Be, Thm. 4.1]). We propose the
following proof for the reader’s convenience.

Proposition 4.4. Suppose A is a central simple algebra over F of degree 4 and
exponent 2. Let x ∈ A× − F× be a square-central element with x2 6∈ F×2. Then, x
is in a quaternion F -subalgebra of A.

Proof. Note that F (x) is isomorphic to a quadratic extension of F since x2 ∈ F× −
F×2. If A is not a division algebra, the result follows by Proposition 4.3. We assume
that A is a division algebra. The centralizer CA(x) of x in A is a quaternion algebra
over F (x). The algebra CA(x) is Brauer equivalent to AF (x) (see for instance [P,
§13.3]). Since

corF (x)/F [CA(x)] = corF (x)/F (resF (x)/F [A]) = 2[A] = 0

in Br(F ) (see for instance [KMRT, (3.13)]), it follows from a result of Albert (see
[KMRT, (2.22)]) that there is a quaternion algebra Q over F such that CA(x) =
Q⊗F F (x). Then, A = Q⊗ CA(Q) and the centralizer CA(Q) of Q is a quaternion
F -subalgebra of A containing x. �
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Degree 8. Here we give an example of a tensor product of three quaternion algebras
containing a square-central element which is in no quaternion subalgebra. This
example is a private communication from Merkurjev to Tignol based on the following
result:

Lemma 4.5 (Tignol). Let A be a division algebra over F of degree 8 and exponent
2. Let x ∈ A× − F× be such that x2 = a ∈ F×. Then, there exists quaternion
algebras Q1, Q2, Q3 such that M2(A) ≃ Q1 ⊗Q2 ⊗Q3 ⊗ (a, y) for some y ∈ F .

Proof. It is shown in [J2, Thm. 5.6.38] that M2(A) is a tensor product of four
quaternion algebras. The proof shows that one of these quaternion algebras can be
chosen to contain x. �

Corollary 4.6 (Merkurjev). There exists a decomposable F -algebra of degree 8 and
exponent 2 containing a square-central element which is in no quaternion subalgebra.

Proof. Let A be an indecomposable F -algebra of degree 8 and exponent 2 and let
x ∈ A be such that x2 = a ∈ F× with x /∈ F . Such an algebra A exists by
[ART] and the existence of such an element x follows from a result of Rowen [J2,
Thm. 5.6.10]. Lemma 4.5 indicates that M2(A) ≃ Q1 ⊗ Q2 ⊗Q3 ⊗ (a, y) for some
y ∈ F . Set D = Q1 ⊗ Q2 ⊗ Q3. We claim that D is a division algebra. Indeed,
if D is not a division algebra then D ≃ M2(D

′) where D′ is an algebra of degree
4 and exponent 2. Since an exponent 2 and degree 4 central simple algebra is
always decomposable by a well-known result of Albert (see for instance [Ra]), we
deduce that A is isomorphic to a product of quaternion algebras; this contradicts
our hypothesis. Hence D is a division algebra. Since the algebras DF (

√
a) and

AF (
√
a) are isomorphic and AF (

√
a) is not a division algebra, DF (

√
a) is not a division

algebra. Then, by [A, Thm. 4.22] the algebra D contains an element α such that
α2 = a with α /∈ F . Assume that D contains a quaternion subalgebra containing α,
say (a, b) for some b ∈ F . The centralizer of (a, b) in D is an algebra of exponent
2 and degree 4. Thus, we have D ≃ H1 ⊗ H2 ⊗ (a, b) where Hi are quaternion
algebras. It follows that M2(A) ≃ H1⊗H2⊗ (a, b)⊗ (a, y) ≃ M2(H1⊗H2⊗ (a, yb)).
Whence A ≃ H1 ⊗H2 ⊗ (a, yb); contradiction. The algebra D satisfies the required
conditions. �

Degree 2n, n > 3. In this part, we generalize Corollary 4.6: we are going to
construct a tensor product of n (with n > 3) quaternion algebras containing a
square central element which is not in a quaternion subalgebra. To do this, we use
valuation theory.

Let L = F ((t1))((t2)) be the iterated Laurent power series field where t1, t2 are
independent indeterminates over F and let D be a division F -algebra. Set D′ =
D ⊗ (t1, t2)L and let i, j ∈ D′ be such that i2 = t1, j2 = t2 and ij = −ji.
Since i2 = t1 and j2 = t2, every element f ∈ D′ can be written as an iterated
Laurent series in i and j with coefficients in D:

f =
∑

β≥n

∑

α≥mβ

dα,βi
αjβ with dα,β ∈ D and n,mβ ∈ Z.
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Define v : D′× −→ (12Z)
2 (where (12Z)

2 is ordered lexicographically from right-to-
left) by

v(f) = inf
{

(
α

2
,
β

2
) | dα,β 6= 0

}

.

Computations show that v is a valuation on D′. Actually, v is the unique extension
of the (t1, t2)-adic valuation on L (which is Henselian). As in the previous section,
for f ∈ D′×, the leading term of f is defined to be

ℓ(f) = dm,ni
mjn where (m,n) = v(f).

Straightforward computations show that

(i) ℓ(fg) = ℓ(f)ℓ(g), for f, g ∈ D′×;
(ii) ℓ(d) = d, for d ∈ D×;
(iii) ℓ(z) ∈ L, for z ∈ L×.

We have the following generalization of Corollary 4.6:

Proposition 4.7. Let D be a division algebra over F . Let x ∈ D×−F be a square-
central element which is in no quaternion subalgebra of D. Then D ⊗ (t1, t2)L has
no quaternion subalgebra containing x.

Proof. Suppose there is y ∈ D ⊗ (t1, t2)L such that y2 ∈ L× and xy = −yx. Let
ℓ(y) = diαjβ with d ∈ D× and α, β ∈ Z. We have ℓ(y)i−αj−β = d and d2 ∈ F×.
Since xy = −yx we have ℓ(x)ℓ(y) = −ℓ(y)ℓ(x), that is, xℓ(y) = −ℓ(y)x. Hence, d
anticommutes with x; contradiction with the choice of x. �

4.3. An application. Corollary 4.6 implies that if F is the center of an indecom-
posable algebra of degree 8 and exponent 2, then there exist a decomposable division
algebra of degree 8 and exponent 2 containing a square-central element which is not
in a quaternion subalgebra. Conversely, let D be a division algebra of degree 8
and exponent 2 over F and let F (

√
a) ⊂ D be a quadratic field extension of F

such that F (
√
a) is not in a quaternion subalgebra of D (the algebra D could be

decomposable). Theorem 3.2 shows that the division algebra Brauer equivalent to
D ⊗F (a, t)F (t) is an indecomposable algebra of degree 8 and exponent 2 over F (t).

As an application, we are going now to give an example of indecomposable algebra
of degree 8 and exponent 2 over a field of 2-cohomological dimension 4. Let F be
a field of characteristic different from 2 and let us denote K = F (

√
a). Let B be

a biquaternion algebra over K with trivial corestriction, corK/F (B) = 0. In [Ba],
it is associated with B a degree three cohomological invariant δK/F (B) with value

in H3(F, µ2)/ corK/F ((K
×) · [B]) where H3(F, µ2) is the third Galois cohomology

group of F with coefficients in µ2 = {±1}. It is also shown in [Ba] that B has a
descent to F (that is, B = B0 ⊗F K for some biquaternion algebra B0 defined over
F ) if and only if δK/F (B) = 0.

Now, let D be a central simple algebra of degree 8 and exponent 2 over F con-
taining K such that K is not in a quaternion subalgebra of D. That also means
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δK/F (CDK) 6= 0 where CDK denotes the centralizer of K in D. Consider the
following Merkurjev extension M of F :

F = F0 ⊂ F1 ⊂ · · · ⊂ F∞ =
⋃

i

Fi =: M

where the field F2i+1 is the maximal odd degree extension of F2i; the field F2i+2

is the composite of all the function fields F2i+1(π), where π ranges over all 4-fold
Pfister forms over F2i+1. The arguments used by Merkurjev in [M] show that the
2-cohomological dimension cd2(M) ≤ 3. We have the following result:

Theorem 4.8. The algebra D and the field M are as above. The division algebra
Brauer equivalent to

DM ⊗M (a, t)M(t)

is indecomposable of degree 8 and exponent 2 over M(t), where t is an indeterminate.

Proof. PutB = CDK. As observed in the proof of [Ba, Thm. 1.3] the 2-cohomological
dimension of M is exactly 3. It follows from [Ba, Prop. 4.7] and a result of Merkurjev
(see Theorem A.9 of [Ba]) that the scalar extension map

H3(F, µ2)

corK/F ((K×) · [B])
−→ H3(M, µ2)

corM(
√
a)/M(M(

√
a)× · [BM(

√
a)])

is an injection. So, δM(
√
a)/M(B) 6= 0 since δK/F (B) 6= 0. Hence the extension

M(
√
a) is not in a quaternion subalgebra of DM. Therefore the division algebra

Brauer equivalent to DM ⊗M (a, t)M(t) is an indecomposable algebra of degree 8 and
exponent 2 over M(t) by Corollary 3.2; as desired. �
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