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1 Introduction

We discuss a number of inverse identification problems that arise in medical en-
gineering or in neurosciences for functional or clinical brain analysis purposes,
like source recovery or conductivity estimation from boundary data, for electro-
and magneto-encephalography (EEG/MEG), or in electrical impedance tomo-
grapahy (EIT).
Maxwell’s equations under physical assumptions are to the effect that the elec-
trical potential within the head can be modelled as a solution to some partial
differential equation (PDE), in spherical or more general 3-dimensional domains
[13]. In particular, the quasi-static assumption (time derivatives of the electro-
magnetic fields are neglected), the PDE is an elliptic Poisson equation for a
variable conductivity that only involves the space variable. For the EEG ap-
plication, on which we mainly focus, available boundary data are furnished by
values of the current flux and the electrical potential (measured by electrodes,
see figure 1) on the scalp. From such partial and overdetermined boundary
measurements of the current flux and the potential (which may be viewed as
input and output of the system), the aim is to identify and to reconstruct:
- non–measured boundary data (EEG cortical mapping step, a Cauchy trans-
mission problem),
- unknown current sources supported within the brain (EEG and MEG, singu-
larities of the potential), that correspond to the primary cerebral current,
- or unknown conductivity coefficients (EIT).
These questions can be stated as identification or observation issues for infi-
nite dimensional systems, of which the electrical potential should be viewed as
the state. We consider the two first ones, that are deconvolution issues (as in
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automatic control, concerning harmonic identification in frequency domain, in
dimension 1, see [4]) and inverse potential problems [12].
For point dipolar source, we review a number of identifiability results related to
the EEG inverse problem [8], that we also formulate as observability properties.
Algorithmical and numerical aspects will be briefly described, most of them
requiring (best constrained quadratic) optimization techniques. Our approach
relies on harmonic analysis and function theory (the link with holomorphy comes
from harmonicity), as does [14]. Compared to other methods (dipole fitting,
MUSIC algorithms, [16]), it has the desired feature of allowing to estimate the
number of sources that may be correlated (in time).
The overview of the article is as follows. Some notation and definitions are given
in section 2. Models and inverse problems in EEG are discussed in section 3,
while section 4 is devoted to a two step resolution scheme, which consists first
in data transmission, then in source identification. A conclusion is proposed in
section 5.

2 Notation, definitions

We recall the definitions of gradient, divergence and Laplace operators for func-
tions acting on R

3, where the space variable is denoted by x = (x1, x2, x3) and
the inner product by “·”. Recall the gradient and divergence operators, formally
defined by:

grad = ∇ =

(

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)t

, div = ∇· ,

and Laplace operator:

∆ = ∇ · ∇ =
∂2

∂x1
2

+
∂2

∂x2
2

+
∂2

∂x3
2

.

(div acts on R
3–valued smooth functions, while grad and ∆ act on R–valued

ones).
We set Ω ⊂ R

3 to be a bounded domain with smooth (say C1) boundary, and
n the unit outer normal vector on ∂Ω. The normal derivative on ∂Ω is then
defined by:

∂u

∂n
(xb) = lim

x→xb∈∂Ω
∇u(x) · n(xb) .

Functional Hilbert Lebesgue and Sobolev spaces, L2 and W 1,2, are classically
defined on Ω or ∂Ω, see e.g. [9], as well as C(Ω̄).

3 Models, inverse problems in EEG

Maxwell equations

Maxwell equations in electrostatics, under quasi-static assumptions, are to the
effect that, if E stands for the electrical field, and Ψ for the electrical potential
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[13] in the head:

∇× E = 0 ⇒ E = ∇Ψ (Faraday’s law) .

The brain is a non magnetic medium, while it is subject to an electrical activity
represented by the current density J which satisfies

J = σ E + J = σ∇Ψ + J ,

if J stands for the primary cerebral current and σ for the electrical conductivity
of the head Ω. Hence,

∇ · J = 0 (Ampère’s law) ⇒ −∇ · (σ∇Ψ) = ∇ · J .

Partial differential equation

The electrical potential Ψ = Ψ(x) is a function (or distribution) of the space
variable x ∈ R

3 which is solution to the following second order elliptic PDE (to
be understood in distribution or variational sense, see section 4):

div (σ gradΨ) = divJ or ∇ · (σ∇Ψ) = divJ in R
3 , (1)

whence

3
∑

i=1

∂

∂xi

(

σ
∂Ψ

∂xi

)

=

3
∑

i=1

∂J

∂xi
or ∇σ · ∇Ψ + σ ∆Ψ = ∇ · J ,

with the substitution J → −J, for the function or distribution J with values
in R

3 which models the primary cerebral current supported in Ω0 ⊂ Ω ⊂ R
3

corresponding to the brain (also with smooth boundary); note that the source
distribution divJ is real-valued (or acts on real-valued functions). In EEG, and
in the present work as well, σ is often assumed to be isotropic (real–valued) and
piecewise constant whence the above PDE reduces to a set of Laplace–Poisson
equations, see section 3. We must assume some smoothness properties to hold
true for the related problems to make sense. Observe however that in related
EIT issues, σ itself is unknown and is the quantity to be recovered (a question
related to Calderón’s inverse problem).

Inverse EEG problem

The inverse EEG problem consists in recovering J (at least its support) in some
class of source terms, from available boundary data:

u =
∂Ψ

∂n
on ∂Ω , y = (Ψ(γi))

t
, γi ∈ Γ ⊂ ∂Ω , i = 1, · · · , L , (2)

u being the given current flux on the scalp ∂Ω, y the measured (difference of)
potential, by L electrodes on the scalp, located at positions γi on part of the
boundary γi ∈ Γ ⊂ ∂Ω, i = 1, · · · , L, such that equation (1) holds true.
The above inverse problem is basically ill–posed, and requires additionnal as-
sumptions concerning Ψ and J in order to admit a unique solution. Even
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Figure 1: Left (l): measures u provided by electrodes on the scalp ∂Ω; right (r):
head geometries Ω.

then, stability properties of the solution are difficult to ensure, and only hold
under further a priori assumptions on the model and the data [12]. These well-
posedness aspects will be discussed within the harmonic framework of section
4, having in mind that the available measurements u, y are practically approx-
imate and incomplete.

Direct EEG problem

Concerning the associated direct problems, the source distribution J is given,
as well as boundary data example of Dirichlet or Neumann type [9]. Dirichlet
boundary data consists in being given Ψ, while Neumann data corresponds to
y = ∂Ψ

∂n , both on the overall ∂Ω. For smooth conductivities, these problems
are well–posed, under the following necessary compatibility condition for the
second one, for which the solution is unique up to an additive constant:

∫

∂Ω

σ
∂Ψ

∂n
= 0 ,

with respect to the Lebesgue measure on the surface ∂Ω. In particular, when-
ever Ψ (or y) is smooth enough on ∂Ω, then so is Ψ in Ω which thus admits a
continuous trace on ∂Ω. Actually, for smooth or piecewise constant conductiv-
ities σ, the assumption Ψ ∈ W 1,2(∂Ω) is enough to ensure that Ψ ∈ C(Ω̄), see
e.g. [7] for constant σ.

Observability issues

The electrical potential Ψ = Ψ(x), a real valued function (or distribution)
of the space variable x ∈ Ω ⊂ R

3 may be viewed as a state variable for the
static infinite dimensional state model (1). On the boundary ∂Ω, the current
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flux u corresponds to the associated input, the potential to the output. The
inverse source problem consists in finding the state or its singularities, given
input/output data u and y, which is an observability problem (in general, for
EEG, u is assumed to vanish; for EIT, u 6= 0 is applied by electrodes).
It is difficult at that stage to explicit the link between u, y, Ψ as a consequence
of (2), (1) and Green’s formula though already:

y = C Ψ|∂Ω
,

where C denotes the pointwise evaluation operator at the L points γi ∈ ∂Ω cor-
responds to an observation operator. With the above smoothness situation, that
we now assume to hold true, the linear operator C is continuous in particular
in the sense that

|y| . ‖Ψ‖L∞(∂Ω) . ‖u‖L∞(∂Ω) .

Note that C has finite dimensional range and is formally defined on those con-
tinuous functions on ∂Ω. Without further assumption, the observation of the
infinite dimensional state Ψ with very few boundary conditions is lost in ad-
vance. We will see that it goes differently and that some quantities become
observable, at least approximately, under some hypotheses.
Similarly, variational formulations of (1) and (2) may be expressed as:

u = KJ (Ψ|∂Ω
) , where KJ : Ψ|∂Ω

7→
∂Ψ

∂n |∂Ω

,

for an operator KJ which appears through Green formula, see (4) and (6), the
so-called Dirichlet–to–Neumann operator. In the present situation, a prelim-
inary step requires to build Ψ on ∂Ω from y, which would not be needed if
measurements y were available as a function on the whole boundary ∂Ω, rather
at L points in Γ ⊂ ∂Ω. But this only reinforce the strong ill–posed property
of the corresponding inverse observability issue, of building the state Ψ on Ω
from u and y on ∂Ω, but unknown J, among solutions to (1), an impossible
task. Regularization schemes by constrained optimization (best quadratic ap-
proximation) are then used in order to state and to solve these inversion issues
in several consecutive steps.

4 EEG inverse source problem

Classically, spherical head models are considered and supposed to be made of
3 spherical homogeneous layers [8]. Put then Ω = B unit ball, whence ∂Ω = S,
the unit sphere. Put Ω0 = r0 B for some 0 < r0 < 1 (brain), Ω1 (skull), Ω2

(scalp), such that Ω = Ω0∪Ω̄1∪Ω2, see figure 2, (l). Let further ∂Ωi = Si−1∪Si

for i = 1, 2 and spheres Si (in particular, S0 = ∂Ω0, S2 = ∂Ω).
The head conductivity σ is assumed to be known and piecewise constant: on
Ωk, σ = σk > 0 (with σ0 = σ2 = 1 up to a renormalization, and 1/σ1 ∈ [20, 80]).
Further, because R

3\Ω̄ (the air, the neck is ignored) is a non conductive medium,
we have that σ vanishes outside Ω.
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Ω0

Ω1

Ω2

R
3 \ Ω

∂Ω0

∂Ω1

∂Ω2

Figure 2: Left (l): 3 layers spherical head model; right (r) : measured values
y = y2 of Ψ by L = 128 electrodes on the upper part of the scalp.

Given u and y on ∂Ω from (2) (see figure 2, (r)), we thus want to find J or at
least its support, such that Ψ satisfies (1), under necessary assumptions, needed
to ensure well–posedness and observability like properties, see the hypothesis (7)
below concerning J. In particular, we want to locate the singularities of Ψ in
Ω0. More precisely, we get from (1) that:



























∆Ψ = 0 in
(

R
3 \ Ω̄

)

∪ Ω2 ∪ Ω1 ,

∆Ψ = divJ in Ω0 ,

Ψ and σ
∂Ψ

∂n
continuous across Si , i = 0, 1, 2 ,

(3)

where the transmission conditions (obtained from Green formula, see (4) below)
express the continuity of the potential and of the normal current across the
interfaces Si. We use two main consecutive steps for solving the EEG source
inverse problem [8]:
- A first boundary data extension / transmission step (Cauchy type inverse
problems), also called “cortical mapping” step in the present framework: the
given boundary data are transmitted from ∂Ω = S2 to S0, see section 4.1.
- A second source localization step, inside Ω0 (geometric inverse problems) from
the above transmitted data on S0, see section 4.2, for some class of J.
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4.1 Data transmission

Let S±
i denote the inner and outer side of Si, for i = 0, 1, 2. From (3), we get

in the outermost two layers Ωi, i = 1, 2, with the convention σ3 = 0:















∆Ψ = 0 in Ωi , i = 1, 2,

Ψ|
S
−

i

= Ψ|
S
+
i

, σi
∂Ψ

∂n |
S
−

i

= σi+1
∂Ψ

∂n |
S
+
i

, i = 0, 1, 2.

In order to get the Cauchy data on S0, we thus face two consecutive Cauchy type
transmission problems in the spherical shells Ωi, from their outer boundaries Si

to their inner ones Si−1. Put y = y2, u = u2 = 0. The first transmission
problem is the following. Given y2 ∈ R

L such that:































∆Ψ = 0 in Ω2 ,

(Ψ(γi))
t
= y2 ∈ R

L , γi ∈ Γ ⊂ S2 , i = 1, · · · , L ,

∂Ψ

∂n |S2

= u2 = 0 ,

get on S1:

y1 = Ψ|S1
and u1 =

1

σ1

∂Ψ

∂n |S1

,

recalling the normalization σ2 = 1. Once u1 and y1 have been computed on
S1 (either by their pointwise values at points from a mesh or by their spherical
harmonics expansions [9]), the second transmission problem in Ω1 can be stated
as follows. Given u1, y1 on S1 such that:

∆Ψ = 0 in Ω1 , Ψ|S1
= y1 , σ1

∂Ψ

∂n |S1

= u1 ,

get on S0:

y0 = Ψ|S0
and u0 = σ1

∂Ψ

∂n |S0

.

Cauchy-Holmgren uniqueness result asserts that, for compatible (exact) data,
there exists a unique solution to the above transmission problem. Ill-posedness,
however, comes from unstability properties of such Cauchy type issues, though
sufficient conditions for stability are available [1], [19]. As soon as we turn to
experimental (corrupted) data, an exact solution may not even exist. Robust
approximate and constructive identifiability / observability can be ensured as
follows, by regularization and approximation.
Let E3 be the radial fundamental solution of Laplace equation in R

3, see [9]:

E3(x) =
1

4 π|x|
, which satisfies ∆ E3 = δ0 on R

3 ,
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Figure 3: Potential and normal current transmitted on S0: (l) y0; (r) u0.

if δC stands for the Dirac distribution (mass) at point C. Using Green formula
for harmonic functions, we get that for y 6∈ Ωi,

∫

∂Ωi

(

Ψ(y)
∂E3

∂n
(x − y) − E3(x − y) σi

∂Ψ

∂n
(y)

)

dy = 0 , (4)

where
∂E3

∂n
(y − x) =

(x − y) · n(x)

4 π |x − y|3
.

To handle this cortical mapping step, Ψ, ∂Ψ

∂n are discretized on the meshes
and represented as a (big) vector Ψ which represents (ui , yi) at points on Si,
i = 0, 1, 2. We then look for such a Ψ that lies in the kernel of some matrix H, a
relation which expresses (4), and such that M Ψ = (u2 , y2), the given data, for
a measurement matrix M . Formula (4) however is solvable only for compatible
(exact) data (still the ill-posedness of Cauchy problem), whence we turn to
optimization with boundary elements method that consists in minimizing the
following discrete criterion on ∂Ωi [15]:

min
H Ψ=0

‖M Ψ − (u2 , y2)‖
2
l2 + λ ‖R Ψ‖

2
l2 , (5)

for some Lagrange parameter λ > 0 and an appropriate matrix R which ex-
presses the contsraint (Tykhonov regularization). This furnishes a robust reg-
ularized resolution schemes, even for non-compatible data, that we use for nu-
merical purposes, through boundary elements methods used and described in
[8]. See figure 2 (electrodes pointwise data y = y2 on the scalp ∂Ω2), and
figure 3, which represents the transmitted Cauchy data y0, u0 on the cortex
S0 = ∂Ω0, at 642 points on the meshed spheres, computed using the bound-
ary elements method recalled above. There, and in figures 5, 6 as well, we
got direct simulated data with J as in (7) and K = 2 sources C1 = (.5, .5, .5),
C2 = (.5,−.5,−.4). All the numerical experiments were done using the software
FindSources3D (matlab) [11].
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Note that related bounded extremal problems (BEP) express a criterion similar
to (5), though expressed in L2(∂Ωi) norm, within Hardy classes of gradients of
harmonic functions, see [2]. There, expansions on bases of spherical harmonics
may be used rather than pointwise values, for the discretization. In any cases,
robust approximate solutions are furnished by approximating the Laplace op-
erator while sticking to the given data (BEM), or approximating the boundary
data by harmonic functions (BEP), with a regularizing norm constraint. Note
further that formula (4) links ui, yi on Si to ui−1 = ∂Ψ

∂n , yi−1 = Ψ on Si−1 for
i = 1, 2.

4.2 Source identification

From the cortical data y0, u0 on S0, the inverse source problem is now to find
the distribution J or its support inside the ball Ω0 such that:















∆Ψ = divJ in Ω0 ,

Ψ|S0
= y0 , σ1

∂Ψ

∂n |S0

= u0 .

This is still an ill-posed problem which admits infinitely many solutions J with-
out further assumptions. The potential Ψ may be expressed in terms of S, by
convolution with a fundamental solution of Laplace equation in R

3, see [9]. We
thus get:

Ψ(x) = h(x) −

∫

Ω0

E3(x − y) divJ(y) dy

= h(x) +

∫

Ω0

∇E3(x − y) · J(y) dy = h(x) + Ψs(x) , (6)

for some function h harmonic in Ω0, where Ψs represents the singular part of
Ψ and contains all information about the source term (Ψs is harmonic outside
Ω0 and vanishes at ∞). It can be computed on S0 from u0 and y0 expanded on
the spherical harmonic basis [9].

4.2.1 Pointwise dipolar sources

The following assumption on J is classical in EEG, which amounts to assume
that the potential Ψ is created by K dipolar sources Ck ∈ Ω0 with associated
moments pk ∈ R

3:

J =

K
∑

k=1

pkδCk
, whence ∆Ψ = divJ =

K
∑

k=1

pk · ∇δCk
. (7)

In this situation, we get (at x 6= Ck in R
3):

Ψs(x) =

K
∑

k=1

pk · (x − Ck)

4 π |x − Ck|3
.
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It allows to ensure well-posedness of the above homogeneous inverse source prob-
lem, from Dirichlet-Neumann data on ∂Ω0, as well as the overall identifiability
property of the sources from boundary data on ∂Ω through the consecutive lay-
ers, provided that the Dirichlet data y2 is furnished on an open subset Γ ⊂ ∂Ω
(whenever the potential values are only given at L points γi ∈ Γ, which is prac-
tically the case, a first robust interpolation step is required). Uniqueness of J in
the above class, hence of K, pk, Ck, for k = 1, · · · , K, is established in [10]. To-
gether with available stability properties of the homogeneous pointwise source
problem [18], [19], this can still be viewed as an approximate observability prop-
erty, though this has to be make precise, since there is now 6K +1 quantities to
be identified (which may be not that big) from a huge number of data (infinite
dimensional, despite the function Ψs defined on S0 is either expanded as a series
or given by poitwise values at the mesh points, for computational purposes).
Again, constructive aspects and robust resolution algorithms form the key points.
We explain below the localization algorithm from [3], [8], used by the soft-
ware FindSources3D [11] for numerical computations. It consists in singu-
larities estimation by best quadratic rational approximation of Ψs (actually,
of Ψ2

s) on the boundaries (circles) of families of plane sections of Ω0 (disks).
Let, for instance, Π = {(x1, x2, x3) , x3 = 0} denote the (x1, x2) plane, and
Πp = {(x1, x2, x3) , x3 = 0} , x3 = x3p}, with the disk Dp = Πp ∩ Ω0 and the
circle Tp = ∂Dp = Πp ∩ S0, p = 1, · · · , P , for some integer P > 0 (see figure 4).

Figure 4: Plane sections Πp of Ω0, disks Dp.

From Ψs on S0, build for p = 1, · · · , P the complex variable functions fp such
that, for z = x1 + i x2 ∈ Tp:

fp(z) = Ψ2
s(x1, x2, x3p) =

[

K
∑

k=1

φkp(z)

(z − zkp)3/2

]2

,

for functions φkp that are holomorphic in Dp. For each p, fp coincides on Tp

with a function (say fp) that admits K singularities zkp in Dp due to sources,
related to their parameters Ck, pk (and to x2

3p as well). Indeed, if we put zk for
the complex affix of Ck in Π ∩ S0, assuming that zk 6= 0, then:
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- the complex arguments of the K singularities (zkp) of fp do not depend on p
and equal the argument of zk,
- for fixed k, the modulus |zkp| is maximum w.r.t. p in the section Dp∗ closest
to (or containing) Ck and zkp∗ = zk.
This is illustrated in figure 5, for C1, C2 as in the numericals of figures 2, 3,
with P = 21 sections. These considerations allow to reduce the 3D inverse

Figure 5: Sources Ck in Ω0 (big black dots), singularities (zkp) (small green
dots), for k = 1, 2; left: side view; right: from above (top of x3 axis).

source problem to a family of P 2D problems that consists, for p = 1, · · · , P , in
recovering the singularities zkp ∈ Dp, being given fp on the boundary Tp.
For fixed p, because zkp ∈ Dp appears both as triple poles and branchpoints
of fp, they may be approximated by the poles of best constrained quadratic
rational approximants to fp on Tp. The formulation we consider is the following
[5]. For n ≥ 0, find polynomials pn, qn with degree pn ≤ degree qn ≤ n and qn

with less than n zeroes in Dp, that minimize

∥

∥

∥

∥

fp −
pn

qn

∥

∥

∥

∥

L2(Tp)

among such functions. Solutions pn/qn are the best quadratic rational approx-
imants to fp on Tp of degree n. Their poles in Dp, those zeroes of qn within
Dp, accumulate (in some sense) to the singularities zkp of fp as n increases, a
deep result from potential theory established in [6]. Related resolution schemes
are briefly described in [8] again. Hence, computing the zeroes of qn for suit-
able values of n allows to efficiently estimate the quantity K of sources and
to approximately localize the singularities zkp. Indeed, one first increases the
degree n until the value of the approximation criterion (the quadratic error on
Tp) is small enough on Tp (or stationary): this furnishes an estimation of K, a
nice feature of this scheme. Then, only, for such n, one compute the solution
pn/qn and its n poles, which are close to zkp. Similarly, one can compute best
rational approximants with m triple poles within Dp, represented as rationals
p3m/(qm)3 in the above criterion. It appears that a single triple poles already
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approximate well enough the singularities zkp, even for K = 2 or more, see
figure 6 (and [8, Prop. 1] for the case K = 1). The above algorithm can be run

Figure 6: Left: sources Ck in Ω0 (big black dots), singularities (zkp) (small green
dots), for k = 1, 2, triple pole (small red dots); right: poles viewed from above,
for 12 different planar sections Π.

for several section directions Π. The computed series of poles for varying k, p
in each direction will then approximately intersect at Ck, as the series of singu-
larities do, see figure 7. We thus run a clustering algorithm as a last estimation
step. For figures 7 and 8, the numerically generated data correspond to J as
in (7) and K = 2 sources C1 = (.2, .3, .4), C2 = (−.3,−.2, .4) (and moments
p1 = (0, .2, .6), p2 = (.1, 0, .8)). Figures 8 and 9 show actual and estimated
sources and moments. In figure 9, direct data from BESA company taken from
more realistic geometries (from MRI data, then translated on spheres) have
been considered. These numericals illustrate the efficiency of the involved
approximate identification schemes (observers?).

5 Conclusion

Concerning geometric inverse problems of singularity localization (they must be
sources, defaults, cracks), from boundary data, a source term J is said to be
silent in Ω0 if it not visible from outside Ω0, that is if it produces a potential
that vanishes there, Ψ0 on R

3 \ Ω̄0. Silent (non-observable) sources for the
homogeneous EEG inverse problem are currently under study (they are never
pointwise).
Similar inverse problems appear related to other physical potentials, solution
to Maxwell or Newton equations, with applications in magnetoencephalography
(MEG), magnetization, geodesy.
Taking the time variable into account should be done for the present EEG model,
which would allow to make use of infinite-dimensional linear system theory [17].
Concerning EIT issues, using the normal current u applied by electrodes on the
scalp as an effective control is rather appealing, and especially looking for some
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Figure 7: Superposition of estimated poles in various slicing directions; the
coloured series (lines) of poles intersect at (next to) the sources.
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Figure 8: K = 2 actual and estimated sources and moment, spherical geometry.

Figure 9: K = 2 actual and estimated sources and moments, realistic geometry,
with the courtesy of BESA GmbH.
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optimal location of the support of its support.
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Birkhäuser (2009).

[18] S. Vessella, Locations and strengths of point sources: stability estimates,
Inverse Problems, 8 (1992).
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