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Abstract—Integer Forcing (IF) architecture has been recently
proposed to design linear receivers in MIMO systems. Research
works show the promise of this architecture from a capacity
achieving perspective. However, it is not totally understood how
to select IF coefficient matrix and if the promised theoretical gain
of the resulting receivers is attainable in practical settings. We
try in this work to fill the gap between theory and practice: we
propose algorithms to select optimal IF receiver parameters that
lead to the maximization of the total achievable rate. We propose
an implementation of an IF-based MIMO system considering a
practical scenario where lattice codes are used. Experimental
studies are carried out to evaluate the error rate performance
of the proposed algorithms and compare them to traditional
linear receivers. Our proposed implementation shows that the
theoretical potential of the IF receivers is achievable even with
finite-length lattice codes.

Index Terms—MIMO systems, linear receivers, lattice reduc-
tion, lattice coding, Integer Forcing Linear receivers

I. INTRODUCTION

We consider transmission over a Multiple Input-Multiple
Output (MIMO) channel without space-time coding

and investigate a new architecture of linear receivers termed
Integer Forcing Linear Receivers. Recently proposed by Jien-
ing et al. in [1],[2],[3] and [4], this architecture is based on
the use of structured codes for channel coding. Upon utilizing
the same code separately at the transmit antennas, achievable
rates are proved to go highly beyond those attainable using
traditional linear receivers. The idea is that, instead of creating
independent interference-free data flows at the different receive
antennas and decode each codeword separately, as is the case
of the Zero-Forcing (ZF) and Minimum Mean Square (MMSE)
detectors, both interference and code’s linearity are exploited
to decode integer linear combinations of original codewords.
Upon decoding a full rank set of codewords’ combinations
according to an integer full rank coefficient matrix, original
messages can be recovered by a simple matrix inversion.
Works in [1] and [3] show the promise of the new IF
architecture from a capacity achieving perspective and propose
a design criteria for the optimal integer coefficient matrix.
What is missing is to develop methods to solve the integer
optimization problem and to understand the error performance
of the IF receivers in practical scenarios. In this work we
address these remaining issues:
•We propose algorithms to select optimal IF coefficient matrix
such that the total achievable rate is maximized.
• We propose a practical implementation of IF receivers-
based MIMO systems where a low-complexity lattice coding

scheme is considered, and evaluate the error rate performance.
Traditional linear receivers, namely the ZF and the MMSE
as well as Lattice Reduction-aided linear receivers under the
LLL reduction are included for comparisons. Our experimental
studies show that the potential of the new IF design over
standard linear receivers is attainable in practical settings even
using finite-length lattice codes.
The remaining flow of this work is organized as follows: in a
second section we describe the system model and set up the
optimization problem. In sections III and IV we respectively
detail the proposed algorithms and practical implementation of
IF receivers. Performance evaluation is the subject of section
V followed by a concluding section.

II. SYSTEM MODEL AND PROBLEM SET UP

Two key requirements characterize the IF design: a same
lattice code is used for channel coding and encoded data
streams are independent at the different transmit antennas.

Fig. 1. MIMO system with linear independent encoding.

According to these requirements and following the original
scheme of [3], we consider a MIMO channel composed of
M transmit and N receive antennas (M ≤ N ). mth transmit
antenna delivers a length k message wm, drawn i.i.d from a
finite field Fkp and encodes it separately onto an n-dimensional
lattice codeword xm to form the channel input as illustrated
in Fig.1. Transmit antennas are equipped with a same lattice
encoder E : Fkp → Rn that maps the finite field messages
to codewords. Encoded vectors satisfy a symmetric power
constraint given by 1

n ‖ xm ‖
2≤ P . For ease of presentation,

real channel model is considered. Received signal can then be



expressed in the form:

YN×n = HN×MXM×n + ZN×n (1)

where H denotes the real valued fading channel of entries
generated i.i.d. according to a zero-mean unit variance normal
distribution. Z models a zero-mean additive white Gaussian
noise of variance σ2 and X is the channel input of rows
corresponding to the transmitted codewords x1,x2, ...,xM .
We assume a perfect Channel State Information at the receiver
(only) and a flat fading channel where H remains constant
over the transmission of the whole codewords. We denote the
Signal to Noise Ratio (SNR) by ρ = P

σ2 .

A. Related work

Traditional decoders for MIMO systems aim to decode
original codewords individually. Maximum Likelihood (ML)
decoder offers optimal performance at the expense of high
complexity. Motivated by their low computation power con-
sumption, alternative linear receivers such as the ZF and the
MMSE are deployed in wireless systems limited by processing
capabilities. In such detectors, the receiver attempts to create
interference-free data flows at each receive antenna by a
projection of the received signal with a preprocessing matrix
B ∈ RM×N . This matrix for the ZF and the MMSE is:

BZF =
(
HtH

)−1
Ht, BMMSE = Ht

(
HHt +

1

ρ
I

)−1

Although simple, these receivers have poor performance in
terms of diversity-multiplexing tradeoff. Their corresponding
achievable rate for the mth data stream is given by [2],

Rm,Lin =
1

2
log

(
1 +

ρ ‖ btmH ‖2

‖ btm ‖2 +ρ
∑
i 6=m ‖ btiH ‖2

)
(2)

where bti represents the ith row of the matrix B.
In order to enhance the performance of linear receivers, Lattice
Reduction (LR) techniques are used as a preprocessing stage to
improve the orthogonality of the channel matrix. A reduction
of H gives a near orthogonal matrix Hr related to the former
by Hr = HT, with T a unimodular matrix. Preprocessing
matrices of LR-aided linear receivers are the following:

BLR−ZF =
(
Ht

rHr

)−1
Ht

r

BLR−MMSE =
(
TtT

)−1
Ht
r

(
Hr

(
TtT

)−1
Ht
r +

1

ρ
I

)−1

B. Integer-Forcing Linear Receivers

In both linear receivers and LR-aided linear receivers, the
interference provided by the channel is cancelled and the
linearity of the underlying code is not exploited. The main
motivation to the design of the Integer Forcing linear receivers
is to take advantage of the code’s structure to make the
interference a beneficial characteristic of the wireless medium:
receive antennas will decode, from the channel output, integer
linear combinations of all original codewords including both
desired and interfering signals according to an integer full rank
coefficient matrix. Thanks to the linear structure of the used

code, these linear combinations are also codewords.
Due to the real nature of the fading channel, observed combi-
nations at different antennas are real and do not correspond to
lattice codewords. An additional processing is then required.
The idea is to quantize the channel matrix H with a full
rank integer matrix A ∈ ZM×M . This approximation is
made by preprocessing the channel output by some matrix
B. Mathematically, it corresponds to get Ỹ such that:

Ỹ = BY = AX + (BH−A)X + BZ (3)

Scaled signal at the mth antenna can be written as,

ỹm =

M∑
j=1

amjxj︸ ︷︷ ︸
λm

+

M∑
j=1

(bmjHmj − amj)xj+
M∑
j=1

bmjzj (4)

where atm = [am1, ..., amM ] and btm = [bm1, ..., bmM ] are the
mth row vectors of A and B respectively. The mth receive
antenna is equipped with a separate decoder Dm that attempts
to decode from ỹm the integer combination λm of coefficient
vector am. Then, Λ = [λ1, λ2, ..., λM ]t = AX is constructed
to recover original codewords by a simple inversion of the
matrix A. Finite field messages are afterwards estimated by
mapping the decoded codewords back to the finite field. Block
diagram of IF receivers is illustrated in Fig.2.

Fig. 2. Block diagram of Integer Forcing Linear Receivers in MIMO systems.

Remark: Linear receivers as well as LR-aided linear receivers
can be seen as particular cases of the IF design. Consid-
ering their above mentioned preprocessing matrices, their
corresponding equivalent channel matrices are respectively
the identity matrix and the unimodular matrix T. Through an
example, authors in [3] show the suboptimality of restricting
the equivalent channel matrix to be unimodular. As a proof
of concept, we implement in this work a low-complexity
lattice reduction technique which is the LLL reduction [5]
and analyze its performance compared to the Integer Forcing
receivers.

In order to build IF receivers and find preprocessing matrix
B and coefficient matrix A, authors in [2] propose a design
criterion based on the maximization of the total sum rate. They



show that the achievable computation rate for the mth data
stream, for a fixed coefficients vector am, is:

Rm,IF =
1

2
log+

(
ρ

‖ btm ‖2 +ρ ‖ btmH− atm ‖2

)
(5)

Then their design criterion corresponds to the maximization
of the minimum computation rate achievable over all receive
antennas. Based on this, optimal preprocessing vector bm for
a fixed coefficient vector am, was found in [2] as:

bm,opt = amHt

(
HHt +

1

ρ
I

)−1

(6)

Then, by replacing in the expression of the achievable rate
the preprocessing vector by its optimal value, the resulting
achievable rate at receiver m becomes [3]:

Rm,IF (am) = −1

2
log
(
atmVDVtam

)
(7)

where V ∈ RN×N is the unitary matrix whose columns are
the right singular vectors of H and D is a diagonal matrix
with elements

Dii =

{
1

1+ρσ2
i

if i ≤ rank(H)

1 if i > rank(H)
(8)

where σi is the ith singular value of the channel matrix H.
Optimal coefficient vectors are then selected such that the
minimum achievable rate over all receive antennas is maxi-
mized under the full rank constraint. They are solution of the
following integer optimization problem:

am,opt = argmax
|A|6=0/

‖am‖2≤1+ρσ2
max

min
m=1,...,M

{
atmGam

}
(9)

where G = VDVt.
So far, this optimization problem was only proposed and no
methods to solve it have been investigated. In the following
sections, we will first propose practical algorithms that allow
to find optimal coefficient vectors such that the total sum rate is
maximized, then we propose a practical implementation using
a low-complexity lattice coding scheme. We address in a last
section performance evaluation of the proposed algorithms.

III. PROPOSED ALGORITHMS FOR OPTIMAL COEFFICIENT
VECTORS SELECTION

Let Q(a) = atGa. Given that G is symmetric definite
positive, it has a Cholesky decomposition G = RtR and we
can write Q(a) = atRtRa =‖ Ra ‖2. Minimization of the
quadratic form Q remains then to a Shortest Vector Problem
and solving optimization problem (9) remains to search the
Shortest Linearly Independent Vectors of the lattice ΛG of
Gram matrix G that satisfy ‖ am ‖2≤ 1 + ρσ2

max.
In literature, lattice decoding and reduction methods are used
to solve the Shortest Vector Problem. In our method we
adopt the Fincke-Pohst algorithm [6] and adapt it to meet the
requirement of the integer optimization problem. Our search
method is based on two phases:

i) Enumeration of all non-zero integer vectors t such that
ttGt is minimized.

ii) Selection of the best linearly independent vectors.
We detail in the following paragraphs these two phases sepa-
rately.

A. Enumeration of integer vectors

The obvious way to accomplish this phase is to perform
an exhaustive search over all non-zero integer vectors in the
set A =

{
t ∈ ZM , ‖ t ‖2≤ 1 + σ2

maxρ
}

that minimize the
quadratic form Q. However this method has a complexity that
increases as a function of the SNR. In our proposed approach,
we reduce the search space set to a sphere of radius C and
solve for integer vectors such that:

Q(t) = ttGt ≤ C (10)

By performing the Cholesky decomposition of G, we can
write (10) as:

M∑
i=1

Riiti +

M∑
j=i+1

Rijtj

2

≤ C

(11)

where t = [t1, t2, ..., tM ]t. Or equivalently as

M∑
i=1

qij

ti +

M∑
j=i+1

qijti

2

≤ C (12)

with qii = R2
ii, i = 1, ...,M, qij =

Rij

Rii
, j = i + 1, ...,M

After carrying out computations for i = M, ..., 1, we obtain
the following bounds for each possible value of ti:⌈

−

√
C

qMM

⌉
≤ ti ≤

⌊√
C

qMM

⌋
⌈
−

√
Ti
qii
− Ui

⌉
≤ ti ≤

⌊√
Ti
qii
− Ui

⌋
, i = M − 1, ..., 1

where

Ui =

M∑
j=i+1

qijtj

Ti = Ti+1 − qi+1,i+1

ti+1 +

M∑
j=i+1

qi+1,jtj

2

(13)

Taking into account these bounds, we start with searching
the M th component of the desired vector t then elements
tM−1, ..., t1 are found according to the following algorithm:
Input: Gram matrix G and a positive constant C.
Output: The set Ω = {t ∈ A \ 0, ttGt ≤ C} of cardinal K
solution of (10)

i) Perform Cholesky decomposition of G = RtR, set qii =
R2
ii, i = 1, ...,M and qij =

Rij

Rii
, j = i+ 1, ...,M .

ii) (Initialization) Set i = M,Ti = C, Si = 0.



iii) (Compute bounds for ti) Set Z =
√

Ti

qii
, UB(ti) = bZ −

Sic, LB(ti) = d−Z − Sie and set ti = LB(ti)− 1.
iv) (Increase ti) Set ti = ti + 1. For ti ≤ UB(ti) go to vi),

else go to v).
v) (Increase i) Set i = i+ 1 and go to iv)

vi) (Decrease i ) For i = 1 go to vii), else set i = i−1, Si =∑M
j=i+1 qijtj , Ti = Ti+1 − qi+1,i+1 (ti+1 + Si+1)

2 and
go to step iii).

vii) (Solution found) For t = 0 terminate, else set Q(t) =
C − T1 + q11(t1 + S1)2 and go to step iv).

B. Selection of optimal coefficient vectors

Once the set of integer vectors Ω is found, we select the
best linearly independent vectors to form the desire full rank
matrix A. Our algorithm for optimal vectors selection is the
following:
Input: The set Ω.
Output: Shortest Linearly Independent Integer vectors
am,opt,m = 1, ...,M

i) Order the set Ω into Ωord based on the lengths of the
vectors t1, ..., tK such that ‖ Rt1 ‖2≤ ... ≤‖ RtK ‖2.

ii) Construct from Ωord the set S of M lattice points
Rt1, ...,RtM such that t1, ..., tM are linearly indepen-
dent.

iii) Adjust C to guarantee that | S |≥ M (repeat the search
of the set Ω).

iv) Select the vectors am,opt = tm, m = 1, ...,M .

IV. PRACTICAL IMPLEMENTATION OF IF-BASED MIMO
SYSTEM

In this section we describe the coding and decoding parts
for IF-based MIMO systems. In a first subsection we will
give some insights on the channel codes considered in the
original scheme of [2] and we describe the code we use in our
implementation. In a second subsection the processing steps
at the receiver are described.

A. Transmitter’s architecture based on lattice coding

Integer Forcing linear receivers use in their essence linear
Capacity-achieving codes termed Nested Lattice Codes. Orig-
inally proposed by Erez and Zamir in [7], these codes are
proved to approach the AWGN channel’s capacity. They have
been used later on in the framework of the Compute-and-
Forward relaying strategy in [8]. In general, a lattice ΛC is
said to be nested in the lattice ΛF if ΛC ⊂ ΛF. ΛC and ΛF

are termed the Coarse and the Fine Lattice respectively. The
Fine lattice represent the coding lattice from which are carved
the codewords and the coarse lattice is the shaping lattice
that ensures that the power constraint P at the transmitter
is satisfied. The set of all points of the Fine lattice that fall
within the fundamental Voronoi Region V of the Coarse lattice
constructs the nested lattice code C = {V ∩ ΛF} [9].
In the underlying MIMO systems, finite field messages wi

at transmit antennas are separately mapped to codewords xi
from the same nested lattice code C using a bijective mapping
Φ : Fkp → C such that Φ(wi) = xi, i = 1, ...,M .

In practice, nested lattice codes can be designed based on
linear codes or LDPC codes over finite fields. Let C be a
linear code over Zkp (p prime) with generator matrix L. The
coarse lattice can just be a scaled version of the integers by the
field’s size p, ΛC = pZn and the Fine lattice is generated by
applying the Construction A to the linear code C. It consists
of the following steps:

1) Construction, from the linear code C, of the discrete
codebook, C =

{
uL,u ∈ Zkp

}
2) Construction of the lattice Λ∗ by dividing all the elements

of C by p and replicating over Zn, Λ∗ = p−1C + Zn
3) Construction of the Fine lattice by rotating Λ∗ by the

generator matrix of the coarse lattice ΛF = C + pZn

We consider in this work a simple coding scheme by taking
p = 11, k = 1 and n = 2 and the linear code C whose
generator matrix is L = [2 3]. The coarse lattice in our case
is ΛC = 11Z2 and the Fine lattice is ΛF = C+11Z2. In Fig.3
we plot a portion of the Fine lattice as well as the code C.
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Fig. 3. Nested lattice Code: small blue points are points of the Fine lattice,
cross points are coarse lattice points. Dashed lines delimit the voronoi regions
of the coarse lattice. Bold square is the fundamental voronoi region of ΛC.
Points of the Fine lattice inside this region form the nested lattice code C.

B. Processing steps at the receiver

Processing steps at the IF receiver are the following:
i) Given H, select optimal coefficient matrix Aopt accord-

ing to described algorithms in section III.

ii) Compute Bopt = AoptH
t
(
HHt + 1

ρI
)−1

and scale the
channel output.

iii) Perform minimum distance decoding to estimate from
ŷm, λ̂m = argminλ∈ΛF

‖ ŷm − λ ‖2. The Sphere
Decoder can be used to accomplish this step.

iv) Solve the linear system Λ = AoptX to estimate code-
words x̂1, ..., x̂M .

v) Map estimated codewords to finite field. This is done as
follows: first perform the modulo operation with respect
to the coarse lattice in order to garantee that the codeword



belongs to the nested lattice code, then map the resulting
codeword to finite field using the inverse mapping Φ−1.
Then for ŵi = Φ−1 ([x̂i] modΛC) , i = 1, ...,M .

V. PERFORMANCE EVALUATION IN A 2× 2 MIMO SYSTEM

We address in this section performance evaluation of the
proposed coding scheme in a 2×2 MIMO system. Monte-carlo
simulations have been carried out to evaluate both average
achievable rates and codeword error probability at the receiver
for the different studied receivers: linear receivers through
the ’ZF’ and the ’MMSE’, lattice-reduction aided linear re-
ceivers through the ’LLL+ZF’ and ’LLL+MMSE’ as well as
the proposed implementation for the Integer Forcing Linear
receivers (’IF’). Performance of these receivers is compared
to the optimal joint ML decoder.
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Fig. 4. Average Achievable Rate for 2× 2 MIMO system.

Starting with the achievable rates plotted in Fig.4, we first
point out that LR-aided linear receivers perform better than
the linear receivers. A gain of 5−dB of the ’LLL+ZF’ over
the ’ZF’ is reported for a target rate of 2 bits/channel use.
In addition, numerical results confirm that the Integer Forcing
receiver outperforms the ’ZF’ and ’MMSE’ and even Lattice-
Reduction aided linear receivers. The proposed algorithm
allows to achieve a gain of 1.4dB over the ’LLL+MMSE’ and
2dB over the ’LLL+ZF’ for a target rate of 3 bits/channel use.
This result confirms the suboptimality of restricting the equiv-
alent channel matrix A in lattice reduction aided receivers to
be unimodular. Furthermore, the proposed algorithm allows
to approach the upper bound of the Integer Forcing receiver
given by 1

2 log
(
1 + ρσ2

max

)
, and reduces the loss to 1.4dB.

However, compared to the ML decoder whose achievable rate
is given by [1] RJoint = 1

2 log (IN + ρHHt), the proposed
architecture presents a considerable gap to the joint ML that
overtakes 6dB for SNR values greater than 16dB.
Now as far as the error probability is concerned, same deduc-
tion can be made as illustrated in Fig.5: Integer Forcing Linear
receivers outperform both linear receivers and LR-aided linear
receivers. For a codeword error rate equal to 10−2 the gain of
the ’IF’ over the ’LLL+ZF’ and ’LLL+MMSE’ is 5dB and

about 17dB over the ’ZF’. The gap between the proposed ’IF’
algorithm to the ML joint decoder counts 5dB.
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Fig. 5. Codeword Error probability for 2× 2 MIMO system.

VI. CONCLUSION

In this work we proposed an implementation of new promis-
ing integer forcing linear receivers for MIMO channels: we
developed algorithms to solve for optimal receiver parameters
and address error performance evaluation in practical scenar-
ios where low-complexity lattice codes are used. Numerical
results are a proof of concept on the outperformance of this
new architecture over linear receivers and LR-aided linear
receivers. In order to make practical wireless receivers take
advantage of the promised gains of this new design, the
decoding complexity needs to be investigated.
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