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Abstract—Research works shed considerable light on the merit
of the Physical Layer Network Coding in the Two-Way Relay
Channel using lattice codes. This potential is proved under a
capacity achieving perspective. However, it is not completely
understood if this promised gain is attainable in practical settings.
We try in this work to answer to this issue by investigating two
network coding strategies: the Compute-and-Forward and the
Analog Network Coding. We analyze end-to-end communication
using these methods and evaluate their performance in terms
of error rate and exchange rate using a low-complexity lattice
encoding scheme.

Index Terms—Two-way relay channel, Compute-and-Forward,
nested lattice codes.

I. INTRODUCTION

W
E consider communication over the wireless Two-Way

Relay Channel (TWRC) where two end nodes ex-

change messages with the help of a relay node, and consider

the use of lattice codes for channel coding [1].

Using the traditional Store-and-Forward (SF) strategy, inter-

ference due to the superposition of source signals at the relay

is avoided by transmission time scheduling. Data exchange

lasts therefore four time slots (TSs).

More efficient transmission can be realized via Network

Coding [2]. In this framework, interference is again avoided,

however, instead of forwarding a whole copy of the original

data as the case of the SF method, the relay decodes signals

separately, combines them into a function then forwards the

computed output to end nodes. Information exchange takes

thus only 3TSs and higher network throughput can be attained.

Under a newer coding perspective termed Physical Layer

Network Coding (PNC) [3], interference is exploited and

used to design more reliable network codes. The aim of this

technique is to allow simultaneous transmission from different

devices in a network, and enable intermediate nodes to decode

and forward a function of superposed signals with no prior

decoding of each one of them separately. In the TWRC, this

makes information exchange last only 2TSs and results in

higher data rates.

PNC can be performed joint to physical layer techniques

such as the modulation [4],[5]-[6] and channel coding [7],[8].

In this work we are interested in the second category. We

consider in particular lattice-based channel coding schemes

and study two PNC strategies: the Compute-and-Forward (CF)

and the Analog Network Coding (ANC). These strategies have

been initially studied in [7] and [8] for the Gaussian and fading

TWRC. Research works show the promise of the CF and prove

its superiority over the ANC for both channel cases only from

a theoretical capacity achieving perspective. But what about

the practice? is the promised potential of the CF attainable

in practical end-to-end communication scenarios? and what

would be the difference between the two channels? We try

in this work to answer to these issues. We analyze a practical

bidirectional transmission in the Gaussian and fading channels

and evaluate numerical performance of both strategies at end

nodes in terms of exchange rate and error rate using a low-

complexity lattice encoding scheme. Our contributions are the

following:

• We show that for the Gaussian channel the CF achieves

lower error probability than the ANC. The former offers a gain

of 3.75dB over the latter at a message error rate of 10−2.

• We review the design criterion for optimal network code

vector for the CF in the fading channel. Resulting optimization

problem was only highlighted in [7] but no explicit methods

to solve it have been proposed so far. We propose in this work

a search algorithm for optimal network code vector selection

and carry out experimental studies to confirm its efficiency.

• We show that unlike the Gaussian channel case, in the

fading channel the CF achieves almost same error rate perfor-

mance as the ANC. Superiority of the CF is only reported in

terms of the achievable exchange rate.

The remaining content of this work is organized as follows:

basic lattice definitions are introduced in section II. The

TWRC model and the encoding scheme are presented in

section III. Description of the CF and the ANC as well as

their performance evaluation and comparison for the Gaussian

and fading channels are addressed respectively in sections IV

and V. The work is ended with a concluding section.

II. PRELIMINARIES: LATTICE DEFINITIONS

An n-dimensional lattice Λ is a set of points of R
n given

by Λ = {x = Ms, s ∈ Z
n} where M is called a generator

matrix of the lattice. The main characteristic of Λ is linearity,

i.e. for any a, b ∈ Z and x,y ∈ Λ, ax+ by ∈ Λ.

A lattice quantizer QΛ is the mapping that takes a real

vector x to the nearest point in Λ in Euclidean distance as

QΛ(x) = argminλ∈Λ ‖ x−λ ‖. The set of points that quantize

to a given lattice point is called the Voronoi Region. The

fundamental Voronoi Region VΛ of a lattice Λ corresponds

to the voronoi region of the zero vector.

The mod−Λ operation returns the quantization error with

respect to Λ. For x ∈ R
n: [x] modΛ = x−QΛ (x).

A nested lattice code Λ is the set of all points of a lattice

ΛF (termed the Fine lattice) that fall within the fundamental



Voronoi Region of a lattice ΛC (termed the Coarse lattice) as:

Λ = {λ = [λF] modΛC, λF ∈ ΛF}

III. SYSTEM MODEL AND ASSUMPTIONS

We consider a TWRC composed of two nodes N1 and

N2 that wish to exchange their messages with the help of

a relay node R. All nodes are equipped with a single antenna

and operate in half duplex mode. Messages exchange is made

through two orthogonal phases as follows.

A. Uplink phase

During this phase, source node N1 (resp. N2) delivers

a message w1 (resp. w2 ) of length k drawn i.i.d from

a prime size field Fp according to a uniform distribution.

Sources encode their messages onto n−dimensional lattice

codewords xi satisfying a symmetric power constraint given

by 1
n
‖ xi ‖

2≤ P, i = 1, 2.

We consider in this work a particular class of lattice codes

called nested lattice codes. They are proved to achieve the

capacity of the AWGN channel [1] and to attain high rates in

the case of the Multiple Access Channels [7] when coupled

with physical layer network coding. A main objective of this

work is to analyze the performance of these codes in practical

settings considering finite-length codes.

According to this coding scheme, nodes N1 and N2 use the

same one-to-one mapping φ to construct their codewords from

a same nested lattice code Λ such that:

φ : Fp −→ Λ = {VC ∩ ΛF}

wi 7−→ xi, i = 1, 2 (1)

The considered fine lattice ΛF is assumed to be a good channel

code [1] from which are carved the codewords, and the coarse

lattice serves as a shaping lattice to ensure the transmission

power constraint P .

In practice, a nested lattice code can be constructed from

linear codes (or LDPC codes) over the field Fp. The fine

lattice is generated by applying the Construction A to the

underlying linear code [1] and the coarse lattice can just be

ΛC = pZn. In our performance evaluation we consider a two-

dimensional lattice over Z11. Our considered coarse lattice is

ΛC = 11Z2 and our fine lattice is generated using the linear

code of generator matrix G = [2 3].
Encoded vectors are afterwards transmitted simultaneously

to the relay node. For ease of presentation, only real fading

channels are considered. Obtained results can be extended

to the complex-valued channel case using the model of [9].

Received signal at the relay can then be written as,

yR = h1x1 + h2x2 + zR (2)

where h1, h2 denote the real channel coefficients generated

i.i.d according to a normal distribution N (0, 1) and zR ∈ R
n

denotes the zero-mean AWGN of variance σ2. We assume

that a perfect Channel State Information is available only at

the receiver and define the Signal to Noise Ratio (SNR) as

ρ = P
σ2 . At the end of this phase, the relay decodes from yR a

function of original codewords xR = f(x1,x2) satisfying the

same power constraint P as the source nodes and broadcasts

it to N1 and N2.

B. Downlink Phase

Received signals at end nodes can be written as:

yi = hixR + zi, i = 1, 2 (3)

where zi denotes a zero-mean AWGN of variance σ2
i = σ2

and channel gains are assumed to be identical to the uplink

phase channel coefficients. From yi, node Ni(i = 1, 2) uses

its side information to get an estimate of the desired message

wj(j = 2, 1).
In order to evaluate the end-to-end performance of the studied

PNC strategies, we consider two relevant parameters: the Sum

Message Error Rate (SMER) and the exchange rate [4].

The SMER is defined as the sum of the message error rate at

the two sources and is obtained by the error probability:

Pe , Pr (ŵ1 6= w1) + Pr (ŵ2 6= w2) (4)

The exchange rate is defined as the achievable rate per

transmitter per channel use (a channel use signifies the use of

the uplink and downlink phases). It is equal to the minimum

rate between the rate achievable during the uplink RNi→R and

that achievable during the downlink phase RR→Nj
as:

Rex = RNi→Nj
= min

(

RNi→R,RR→Nj

)

(5)

The upper bound on the exchange rate, obtained by the cut

set bound, is included for comparison and given by:

Rex,UB = min
m=1,2

{

1

2
log

(

1 + h2
m

P

σ2

)}

(6)

IV. GAUSSIAN TWRC

In this first channel case, we assume that h1 = h2 = 1. The

received signal at the relay is then equal to

yR = x1 + x2 + zR (7)

A. Compute-and-Forward

1) Processing at the relay: the relay attempts to decode a

noiseless sum of the original codewords in the form:

xR = [x1 + x2] modΛC (8)

Thanks to the linearity of the lattice code, this desired sum

is also a codeword from the same nested lattice code Λ and

meets the same power constraint as original codewords.

The computation in the CF protocol is based on two opera-

tions: i) scaling of the channel output according to the min-

imum mean square error (MMSE) criterion and ii) decoding

desired combination using Minimum Distance Decoding. The

objective of the MMSE scaling step is to decrease the variance

of the effective noise and consequently obtain higher rates.

Authors in [8] prove that achievable rates are equal to

RNi→R,CF =
1

2
log

(

1

2
+

P

σ2

)

(9)



In the case of the AWGN channel case, the MMSE scaling

factor is equal to α = 2ρ
1+2ρ . Different steps for the decoding

operation are the following:

i) Scaling of the channel output as ỹR = αyR.

ii) Quantization to the fine lattice: QΛF
(ỹR).

iii) Performing modulo operation with respect to the coarse

lattice to get x̂R = [QΛF
(ỹR)]modΛC.

2) Processing at end nodes: Node Ni receives yi = xR+zi
(i = 1, 2) and makes the following processing:

i) Decode x̂R = argminλ∈Λ ‖ yi−λ ‖2 under a Maximum

Likelihood (ML) Decoding .

ii) Map x̂R to the finite field to get u = φ−1 (x̂R). Since

x̂R is a nested lattice codeword, its mapping to the finite

field generates an estimate of the sum of the finite field

messages, that is u = w1 ⊕w2.

iii) Substract message side information: u⊖w1 = ŵ2.

Where ⊕ and ⊖ denote respectively the addition and substrac-

tion operations over Fp.

Given ML decoding at the downlink channels, corresponding

achievable rate is equal to the channel capacity. The exchange

rate is consequently equal to:

Rex,CF =
1

2
log

(

1

2
+

P

σ2

)

(10)

Remark: End-to-end decoding errors depend both on the

correctness of the decoding of the sum of codewords at the

relay, and the decoding of x̂R in the downlink phase at end

nodes. The first error type may result from the suboptimality of

the minimum distance decoding compared to the ML decoding

[10] . The second case is likely to happen since the two

downlink channels are perturbed by different noises z1 and

z2. Then, although end nodes use a ML decoding, they may

not decode the same combination estimated at the relay’s level.

Remark: The side information at end nodes is used at the

messages’ level. However, it can be also made at the code-

words’ level by inverting steps ii) and iii) as follows: ii)

Substract codeword side information xi from x̂R as x̂j =
[x̂R − xi] modΛC . iii) Map to the finite field ŵj = φ−1(x̂j).
The inversion of the two steps does not impact the decoding

error since the mapping to the finite field does not change the

correctness of the decoding.

B. Analog Network Coding

1) Processing at the relay: Using the ANC [7], the relay

amplifies its input as xR = βyR, where β is selected such that

the power constraint P is satisfied. Its value for the Gaussian

TWRC is equal to: β =
√

ρ
1+2ρ .

2) Processing at end nodes: End node Ni receives: yi =
βyR + zi and performs the following steps:

i) Substract side information as ỹi = βxj + βzR + zi.

ii) Decode x̂j = argminλ∈Λ ‖ ỹi − βλ ‖2.

iii) Map to the finite field to get ŵj = φ−1(x̂j).

The achievable exchange rate using the ANC is equal to:

Rex,ANC =
1

2
log

(

1 +
ρ2

1 + 3ρ

)

(11)

Where SNReq = ρ2

1+3ρ is the effective SNR at end nodes after

susbtraction of codeword side information.

C. Numerical results

In this subsection we provide numerical results obtained

through Monte-Carlo simulations using the nested lattice code

described in section III. Starting with the exchange rate
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Fig. 1. Average exchange rate for the Gaussian TWRC.

depicted in Fig.1, our numerical results confirm the optimality

of the CF over the ANC. While the former reaches the upper

bound at high SNR, the latter represents a constant gap to the

channel capacity. This suboptimality is explained by the fact

that the ANC amplifies the noise at the relay’s level, however,

the CF allows to eliminate it. As far as the Sum-MER is

concerned, our results plotted in Fig.2 show that the CF allows

to achieve lower error rate than the ANC. It presents a gain of

3.75dB at a MER=10−2. Our numerical results bridge theory

with practice and confirm thus the superiority of the CF over

the ANC in practical settings.
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Fig. 2. Message Error rate for the Gaussian TWRC.

V. REAL FADING TWRC

In this section the channel model of (2) is considered.



A. Compute-and-Forward

1) Processing at the relay: the relay aims to decode an

integer linear combination of the original codewords in the

form:

xR = [a1x1 + a2x2] modΛC (12)

where a1, a2 ∈ Z are freely selected by the relay to quantize

the real channel coefficients in order to approach the channel

output to a lattice codeword. This approximation is made by

the MMSE scaling of the channel output. In the fading channel

case, the MMSE scaling factor is given α =
ρ〈ht,a〉
1+ρ‖h‖2 . Then

the relay performs the same decoding steps detailed in the

previous section.

Authors in [7] prove that, for given vectors h = [h1 h2]
t

and a = [a1 a2]
2 the achievable comptatiton rate is equal to:

RNi→R =
1

2
log+

(

(

‖a‖2 −
ρ | hta |2

1 + ρ ‖ h ‖2

)−1
)

(13)

where log+ (x) = max(log (x), 0).
In order to optimally select integer network code vector a, the

maximization of the computation rate in (13) is proposed as

a design criterion [11]. Consequently, the optimal vector is a

solution of the minimization problem given by:

aopt = argmin
a 6=0

{

atGa
}

(14)

where G = I− ρ
1+ρ‖h‖2hh

t. aopt corresponds to the shortest

vector of the lattice ΛG of Gram matrix G and can be found

in practice using the Fincke-Pohst algorithm [12].

2) Processing at end nodes: Upon reception of yi, node

Ni makes the following steps:

i) Decode x̂R = argminλ∈Λ ‖ yi − hiλ ‖2.

ii) Map to the finite field: u = φ−1(x̂R) = q1w1 ⊕ q2w2.

Coefficients qi are given by qi = [ai] modp.

iii) Substract side information: ni = u⊖ qiwi = qjwj .

iv) Invert by qj : ŵj =
ni

qj
.

3) Condition for decoding at end nodes: : in order to

enable the end nodes recover desired messages, the finite

field coefficients q1 and q2 should be non zero, meaning that

the network code vector should satisfy: [a1] modp 6= 0 and

[a2] modp 6= 0 at the same time. However, the optimization

problem in (14) rejects only the values in the form [a1 0]t

and [0 a2]
t which are not sufficient to guarantee recovering

both messages at the two nodes. We formulate in the following

lemma the optimization problem taking the non-zero condition

over the finite field into account.

Lemma V.1 For the fading TWRC using the Compute-and-

Forward, optimal network code coefficient vector is a solution

to the minimization problem:

aopt = argmin
[a1]modp 6=0,[a2]modp 6=0

{

atGa
}

(15)

It corresponds to a shortest vector in the lattice ΛG of Gram

matrix G having non-zero entries modulo the field size p.

If the network code vector satisfies this condition, the ex-

change rate for the CF equals to:

Rex,CF =
1

2
log+

(

(

‖aopt‖
2 −

ρ | htaopt |
2

1 + ρ ‖ h ‖2

)−1
)

(16)

Otherwise, it is equal to 0.

Inspite being extremely important, this non-zero constraint

is not well studied in literature. It was only mentioned in [7].

How to solve it in practice and what is its impact on the

practical end-to-end performance in the TWRC are not totally

understood. A main contribution of this work is to answer to

these two issues. We propose a search method to solve (15)

based on a modification of the Fincke-Pohst algorithm. The

idea is to select among the lattice shortest vectors the one

which satisfies the non zero condition.

Let G = RtR be the Cholesky decomposition of the

definite positive matrix G where R is an upper triangular

real matrix. The quadratic form Q(a) = atGa can then be

transformed to:

Q(a) =‖ Ra ‖2= u2
11 (a1 + u12a2)

2
+ u22a

2
2 (17)

where uii = R2
ii, i = 1, 2 and u12 = R12

R11

. The obvious method

to search the optimal vector is to make an exhaustive search

over Z
2 and find the vector minimizing Q(a) and satisfying

non-zero condition. However, this search leads to an increasing

complexity specially when the SNR is high. The idea is to

reduce the search space to the sphere of radius C > 0 such that

Q(a) ≤ C. Satisfying this upper bound leads to the following

boundaries on the coefficients a1 and a2 as:

−

√

C

u22
≤ a2 ≤

√

C

u22
(18)

−

√

C − u22a
2
2

u11
− u12a2 ≤ a1 ≤ −

√

C − u22a
2
2

u11
− u12a2

After choosing the sphere radius and computing these bounds,

we start searching the coefficient a2 such that the bounds in

(18) are satisfied and [a2]modp 6= 0. Then we search the

coefficient a1 meeting the boundaries requirements in (18) and

satisfying [a1]modp 6= 0. Our algorithm is summarized below:

i) Perform Cholesky decomposition of G = RtR and set

uii = R2
ii, i = 1, 2 and u12 = R12

R11

.

ii) (Initialization) Set i = 2, Ti = C, Si = 0.

iii) (Compute bounds for ai) Set Z =
√

Ti

uii
, UB(ai) = ⌊Z−

Si⌋, LB(ai) = ⌈−Z − Si⌉ and set ai = LB(ai)− 1.

iv) (Increase ai) Set ai = ai + 1, if [ai]modp = 0, go to

ai = 1. For ai ≤ UB(ai) go to vi), else go to v).

v) if i = 2 terminate, else set i = i+ 1 and go to iv).

vi) (Decrease i ) For i = 1 go to vii), else set i = i−1, S1 =
u12a2, T1 = C − u22a

2
2 and go to step iii).

vii) (Solution found) For a = [0 0]t terminate, else set Q(a) =
C − T1 + u11(a1 + S1)

2 and go to step iv).



B. Analog Network Coding

The processing at both phases is similar to the Gaussian

channel case with two modifications: i) the scaling factor

becomes β =
√

ρ

1+ρ(h2

1
+h2

2
)
, and ii) knowledge of h2 and

h1 respectively N1 and N2.

By deriving the computation of the effective SNR in the

downlink phase, it is easy to show that the exchange rate of

the ANC is equal to:

Rex,ANC = min
m=1,2

{

1

2
log

(

1 +
h2
mρ2

1 + ρ(1+ ‖ h ‖2)

)}

(19)

C. Numerical results

En-to-end performance for the fading channel are depicted

in Fig.3 and Fig.4.
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First of all, numerical results confirm the noteworthy per-

formance degradation when the non-zero condition in not

respected. Efficiency and reliability of our proposed algorithm

are as well showed. Our method brings a rate gain of about

0.5 bits/c.u and a gain of more than 15dB at high SNR values

for fixed low MER over the CF based on local optimization

criteria at the relay. Now compared to the ANC, we confirm

the outperformance of the CF over this strategy when the

exchange rate is considered. However, in terms of error rate,

we report that both protocols achieve almost same performance

unlike the Gaussian channel case. This can be explained by

the following: In the Gaussian channel case the only factor

that may impact the error performance is the noise which

is totally eliminated under the CF framework. However, for

the fading channel, both the channel gains approximation

and the noise impact the error performance. We argue that

the resulting behavior of the two protocols compared to the

Gaussian channel is due to these two parameters.

VI. CONCLUSION

In this work we addressed a theoretical and numerical

analysis of an end-to-end practical communication in the two

way relay network scenario using two PLNC strategies: the

Compute-and-Forward and the Analog Network Coding. For

the Gaussian channel case, simulation results show that the CF

outperforms the ANC in terms of both exchange rate and Sum

error rate. For the fading channel, CF offers a rate gain over

the ANC, however, their error rate performance are almost

identical. We argue that this suboptimality compared to the

Gaussian channel case is due to the channel quantization and

to suboptimalilty of the lattice decoding at the relay.
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