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Abstract—Recent years have witnessed the development of
the Compute-and-Forward (CF) as a successful solution to
perform noiseless linear Physical Layer Network Coding (PLNC).
Research outcomes shed considerable light on the promising
gain of this strategy from information-theoretic perspective.
What misses is to design practical PLNC schemes based on
the Compute-and-Forward and to evaluate their end-to-end
performance in real communication scenarios. In this work we
try to fill the gap between theory and practice: we investigate
end-to-end communication over a Multi-Sources Relay Channel
where the CF is used at intermediate nodes. We figure out
practical constraints that deserve special attention in real end-
to-end communication design and propose reliable solutions that
enable to meet the promised potential of the CF. In order to
confirm our theoretical analysis, we evaluate performance of the
proposed schemes at the destination in terms of both average
achievable rate and error rates under practical low complexity
nested lattice encoding.

Index Terms—Physical Layer Network Coding, Compute-and-
Forward, Lattice Coding and decoding.

I. INTRODUCTION

I
nterference due to the broadcast and superposition properties

of the wireless medium might seem disadvantegeous at first

sight. Nevertheless, a new perspective called Physical Layer

Network Coding revealed its advantage for more efficient and

reliable transmission. The core principle of this framework is

to allow intermediate nodes in wireless multi-hops relay net-

works including multiple access channels decode and forward

a function of originally transmitted signals [1]. Our interest

in this work goes to a recently developed class of PLNC

termed the Compute-and-Forward. It is a promising solution to

perform noiseless linear PLNC by exploiting interference pro-

vided by the channel through the use of structured lattice codes

[2] constructed using linear codes over Finite Fields. Existing

works on the Compute-and-Forward have shown its promising

potential and shed considerable light on its merits. Several

coding schemes as well as design algorithms for coefficients

vectors have been proposed [3],[4]-[5]. However, these re-

search findings either look at the related issues to the CF from

an information theoretic perspective, or consider only local

optimization at relays’ level. What is missing is to understand,

design and evaluate the end-to-end-performance of a practical

Compute-and-Forward-based Physical Layer Network Coding

schemes. In this work we try to fill this gap between theory and

practice considering end-to-end communication over a Multi-

Sources Relay Channel (MSRC) where source nodes want to

communicate their messages drawn from a finite field to a

common destination. We investigate two transmission schemes

based on the CF: a first scheme termed CCF for Complete-CF

in which relay nodes compute and forward a codeword from

the same nested lattice as the sources’codewords. The second

scheme termed ICF (I for Incomplete) for which intermediate

relays compute and forward any integer linear combinations

of original codewords which does not necessarily belong the

nested lattice. This framework does not match exactly the

original scheme of Gastpar and Nazer in [2], nevertheless,

it is considered in several works [6]-[7]. For instance, in [6]

the DEFID scheme is proposed as a practical low-complexity

design for the CF. Our contributions in this regard are:

• We figure out for both schemes practical constraints

related to the full rank of the network coefficients matrix

over the finite field for the CCF and the full rank of the

network coefficients matrix over the integers for ICF.

• We propose two algorithms to solve the derived full rank

constraints for both schemes.

• We provide end-to-end performance evaluation and com-

parison of the two schemes at destination node in terms

of both achievable rates and message error rates using a

practical low-complexity nested lattice code over Zp for

p prime and considering the case of 2 sources, 2 relays

and one common destination.

Remaining flow of this work is organized as follows: nota-

tional conventions are introduced in section II. In section

III. the MSRC model and assumptions are addresed. In section

VI. we review the encoding and decoding steps of the original

framework of the CF. The considered practical nested lattice

code is also described in this section. Following sections are

dedicated to the CCF and ICF schemes respectively. For each

transmission scheme, processing at both relays and destination

are described, the decodability condition at the destination is

highlighted and solved. End-to-end performance evaluation of

the proposed algorithms is the focus of the section VIII. A

concluding section ends the work.

II. NOTATIONAL CONVENTIONS

Through this work we use the notations as follows: vectors

and matrices are written in bold font, in lower and upper case

respectively. R denotes the field of reals. Fp denotes the size p
finite field, where p is assumed always prime. + and

∑

denote



respectively the addition and summation operations over the

real field. ⊕ and
⊕

represent the addition and summation

operations over the finite field. A−1 represents the inverse of

the matrix A. Let g : Fp → {0, ..., p− 1} denote the one-to-

one mapping function that associates each element in the finite

field to an integer in Z+. g−1 denotes its inverse mapping.

〈xt,y〉 represents the euclidean scalar product of x and y. log
operation is assumed with respect to base 2 and log+(x) =
max(log(x), 0).

III. MULTI-SOURCES RELAY CHANNEL: SYSTEM MODEL

AND ASSUMPTIONS

We consider the K−MSRC composed of K sources, K
relays and one destination as illustrated in Fig.1. All nodes

are equipped with a single antenna and operate in half duplex

mode. For ease of presentation, only real-valued channels are

considered in this work. Results can be easily extended to

the complex-valued channels case using the complex-to-real

transformations of [2].

Fig. 1. Multi-Sources Relay Channel.

End-to-End Communication objective: each source node Si in

this network has a message wi of length k drawn i.i.d from

a prime size field Fp according to a uniform distribution .

The sources desire to send their data to the common desti-

nation which is interested in recovering all original messages

w1, ...,wK . In absence of direct links from the sources to

the destination, intermediate nodes help the formers forward

their messages in multi-hops relay fashion using the Compute-

and-Forward. To achieve the communication objective, two

transmission phases are needed:

1) Phase 1: it lasts one time slot. The processing at each

node in the network is as follows:

• Sources: each source node maps its message wi into

an n−dimensional codeword xi satisfying a symmet-

ric power constraint given by: 1
n
E‖ xi ‖

2 ≤ P for

P > 0 and i = 1, ...,K. Then all sources transmit

simultaneously their codewords through the channel.

Due to the broadcast nature of the wireless medium,

the codeword of each source reaches all the relay

nodes.

• Relays: The concurrent transmission by the source

nodes makes each relay Rm receive a superposition

of the codewords. Received signal at a relay Rm

can be modeled as an output of a Multiple Access

Channel (MAC) in the form

ym =

K
∑

i=1

himxi + zm (1)

where him denotes the real, i.i.d Gaussian channel

coefficient between the source Si and the relay Rm,

zm stands for a zero-mean Additive White Gaussian

Noise of variance σ2. Channel State Information

is available only at the relays, i.e. each relay Rm

knows only its corresponding channel vector hm =
[h1m ... hKm]. We denote by ρ the Signal to Noise

Ratio equal to ρ = P
σ2 . Each relay decodes a linear

function λm = f(x1, ...,xK). Coefficients of this

function constitute the network code vector am.

• Destination: it remains idle in absence of direct links

to the sources.

2) Phase 2: it lasts K time slots and corresponds in the

following:

• Sources: during this phase source nodes are idle

• Relays: each relay forwards its computed function

and network code vector to the destination during

one separate time slot. Links from the relays to the

end destination are assumed perfects.

• Destination: receives λ1, ..., λK and a1, ...,aK from

the relays and attempts to recover original messages

w1, ...,wK .

Before formally describing the end-to-end transmission

schemes, we provide in the following section an overview on

the Compute-and-Forward.

IV. COMPUTE-AND-FORWARD: OVERVIEW

The framework of the Compute-and-Forward proposed by

Nazer and Gastpar in [2] consists in two parts: encoding part

at sources using nested lattice codes, and decoding part at a

receiver observing the output of a MAC based on minimum

distance decoding. Before describing the encoding and decod-

ing schemes we provide in the following few lattice definitions

that are essential to understand the technical details. We refer

interested readers to [8] for more information about lattice

theory.

A. Lattice definitions

Definition IV.1 An n-dimensional lattice Λ is a set of points

of R
n, Λ = {x = Ms, s ∈ Z

n}. M is called a generator

matrix of the lattice. The points x ∈ Λ represent the lattice

codewords and satisfy linearity, i.e. for any a, b ∈ Z and

x,y ∈ Λ, ax+ by ∈ Λ.

Definition IV.2 A lattice quantizer QΛ is the mapping that

takes real vector x to the nearest point in the lattice Λ in

Euclidean distance: QΛ(x) = argminλ∈Λ ‖ x− λ ‖.

Definition IV.3 The Voronoi Region of a lattice point denotes

the set of points that quantize to that point. The fundamental



Voronoi Region VΛ of a lattice Λ corresponds to the voronoi

region of the zero vector.

Definition IV.4 The mod−Λ modulo operation returns the

quantization error with respect to Λ. For x ∈ R
n: [x] modΛ =

x−QΛ (x).

Definition IV.5 A nested lattice code Λ is the set of all

points of a lattice ΛF (termed the Fine lattice) that fall within

the fundamental Voronoi Region of a lattice ΛC (termed the

Coarse lattice) as: Λ = {λ = [λF] modΛC, λF ∈ ΛF}

B. Encoding scheme using Nested Lattice Codes

The encoding part of the original framework of the

Compute-and-Froward is based in its essence on a high-

dimensional capacity achieving Nested Lattice Codes. They

are constructed based on linear codes over finite fields. The

idea behind this design is to conserve linearity while mapping

from finite field messages to codewords: messages of the

sources are drawn i.i.d from a finite field Fp and mapped to

codewords from a nested lattice code using a bijective map-

ping: φ : Fp −→ Λ = VC∩ΛF such that wi 7−→ xi = φ(wi).
The Coarse lattice represents the shaping lattice which ensures

that the power constraint P is met and the Fine lattice defines

the coding lattice from which are selected the codewords. In

practice, a nested lattice code can be constructed using linear

codes or LDPC codes over finite fields. Consider a code C
over Fp and let G ∈ F

k×n
p be its generator matrix. The coarse

lattice can be just a scaled version of Z
n by the size of te

field p, ΛC = pZn. As the coarse lattice defines the shaping

region, the cost of this choice is the shaping gain. And the

fine lattice is built by shifting the code C using Construction

A as the following steps [9]:

1) Construct the discrete codebook, C =
{

uG,u ∈ F
k
p

}

from the code C
2) Construct the lattice Λ∗ as: project the codebook into

reals using the embedding function g(.), divide by p and

copy over Zn: Λ∗ = p−1g (C) + Z
n

3) Construct the Fine lattice by rotating Λ∗ by the generator

matrix of the coarse lattice MC, ΛF = MCΛ
∗

In the focus of this work, for performance evaluation and

analysis, we consider the field Z/pZ also noted Zp to generate

a low-complexity nested lattice code (it is a ring but for p
prime it is a field). It represents the set of integers from 0 to

p− 1 with integer addition and multiplication modulo p. The

corresponding mapping g is equal to the identity function. We

consider the linear code C over Z
2
11 (k = 1, n = 2, p = 11)

whose generator matrix is G = [2 3]. The codebook is then

C =
{

u.[2 3] mod(11),u ∈ Z
2
11

}

and the Fine lattice is the

set of points in ΛF = C + 11Z2
11. The coarse lattice is

ΛC = 11Z2. Codewords of the sources belong to the nested

lattice code Λ = VC ∩ ΛF.

C. Decoding scheme

Attention is now drawn to the decoding part. According

to the original framework of the CF [2], the aim of a relay

node Rm observing a noisy real combination of transmitted

codewords as modeled in Eq.(1), is to reliably decode, with

the highest possible rate, a linear combination of the original

messages in the form um =
⊕K

i=1 qmiwi where coefficients

qmi ∈ Fp. In practice, the relay is equipped with a separate

decoder Dm that decodes an estimate ûm of um. Equations of

all relays can be reliably decoded with average probability of

error ǫ if: ûm = Dm(ym) and Pr
(

∪K
m=1 (ûm 6= um)

)

< ǫ.
The decoding steps are the following:

i) Select a real parameter αm and integer coefficients vector

am = [am1 ... amK ] ∈ Z
K .

ii) Scale the received signal by αm to approach the integer

combination of lattice codewords with coefficients ami:

ỹm =
∑K

i=1 amixi +
∑K

i=1 (αmhim − ami)xi + αmzm.

iii) Quantize to the Fine lattice: λ̂m,F = QΛF(ỹm) =
∑K

i=1 amixi. In practice this is equivalent to search the

closest lattice point in the Fine lattice and can be solved

using Lattice Sphere Decoding. At this level, the decoded

λ̂m,F belongs to the Fine lattice since the coefficients

ami ∈ Z.

iv) Take the modulo operation with respect to the coarse

lattice to guarantee that the resulting codeword belongs

to the nested lattice code λ̂m =
[

∑K

i=1 amixi

]

modΛC.

With this operation, λ̂m meets the power constraint P , as

the original codewords, defined by the shaping region of

the coarse lattice via the modΛC operation. For low com-

plexity nested lattice coding scheme, where ΛC = pZn,

this is equivalent to quantize to the nearest multiple of p
over Zn.

v) Map λ̂m back to the finite field. Since λ̂m is a nested

lattice codeword, this mapping gives the desired messages

equation ûm = φ−1(λ̂m) =
⊕K

i=1 qmiwi. The finite field

coefficients qmi are related to integer coefficients ami by

qmi = g−1 ([ami] modp).

Notice that the decoding process includes two parts: decoding

of a nested lattice codeword and mapping to finite field.

Then a decoding error at the relay counts if the decoding

of the lattice codeword is not correct, the mapping to finite

field does not change the correctness of the decoding. The

two fundamental parameters of the whole process are the

scaling factor αm and the coefficients vector am. The relay

is free to choose them, however the choice needs to be

carefully made since it impacts greatly the performance. In

literature, two basic criteria have been proposed to select

optimal values of these parameters. Both of them are based

on theoretical optimization problems at the relay’s level. The

first criterion proposed in [2] is based on the maximization of

the computation rate assuming high-dimensional lattices given,

for αm ∈ R,am ∈ Z
K , by:

Rcomp,m =
1

2
log+

(

ρ

α2
m + ρ ‖ αmhm − am ‖2

)

(2)

The second criterion, proposed by Feng et al. in [4] is based

on the minimization of the probability of decoding error

assuming hypercube shaping lattices. According to these two



optimization criteria, the optimal value of αm corresponds to

the Minimum Mean Square Error (MMSE) factor expressed

as a function of am as: αopt,m =
ρ<ht

m,am>

1+ρ‖hm‖2 , and the optimal

coefficients vector am corresponds to the shortest vector in

the lattice ΛGm
of Gram matrix Gm = I − ρ

1+ρ‖hm‖2Hm

where Hm = (Hij)i,j=1,...,K
, Hij = hih

t
j . This shortest

vector problem can be solved in practice by the means of

the Fincke-Pohst algorithm [8],[10].

Now, after reviewing the principle of the CF, we investigate

the end-to-end constraints and performance of the CF-based

schemes in the underlying MSRC.

V. DESIGN 1: CCF

We present in this section a first CF-based scheme termed

Complete-CF where the processing at intermediate relays

follows exactly the original CF scheme. This scheme exploits

both the linearity of the code and the linearity of the mapping

from the real field to the finite field. Source nodes use the

encoding scheme based on nested lattice codes and transmit

their codewords during the first transmission’s phase. The

remaining communication processing steps at the relays and

the destination are the following:

• Relays:

- Receive ym =
∑K

i=1 himxi + zm.

- Decode codewords λ̂m =
[

∑K

i=1 amixi

]

modΛC with

the highest achievable rate as described in steps i)-iv) of

the decoding process in section VI.C.

- Forward both λ̂m and the integer coefficients vector

am = [am1...amK ] to the destination.

• Destination:

- Receives λ̂1, ..., λ̂K and a1, ..., aK .

- Maps codewords to finite field: ûm = φ−1
(

λ̂m

)

.

Thanks to the linearity of the mapping φ from the nested

lattice code to the finite field, ûm =
⊕

qmiwi such that

qmi = g−1 ([ami] modp).
- Forms the linear system: [û1...ûK ]

t
= Q [w1...wK ]

t

where Q = (qmi)m,i=1,...,K represents the finite field

coefficients matrix.

- Inverts Q to solve for original messages:

Q−1 [û1...û1]
t

= [ŵ1...ŵK ]
t

where Q−1 denotes

the inverse of Q over Fp.

• Decodability condition: The destination can reliably re-

cover original messages if and only if the finite field

coefficients matrix Q is full rank over Fp.

This full rank condition for the CF in a large network design

was first pointed out by Gastpar and Nazer in [2].

VI. DESIGN 2: ICF

In this section we investigate a second CF-based scheme

termed Incomplete-CF. In this scheme, encoding part of the

protocol is kept at the sources. However the decoding part is

incomplete: relay nodes compute and forward integer linear

combinations of original codewords without mapping it to

the nested lattice via the modulo operation. The resulting

codeword coresponds therefore to a point from the Fine lattice.

The missing step of mapping the integer combination to the

nested lattice makes this scheme exploit only the linearity of

the code and violate the power constraint. Its name ICF is due

to this missing step. This decoding scheme, although does not

match exactly the goal of the original framework of the CF,

it has been considered in several works like [6], [11] and [7].

For instance, the DEFID coding-decoding scheme is proposed

in [6] as a low complexity design for the CF. We detail in

the following the processing at the relays as well as at the

destination:

• Relays:

- Receive ym =
∑K

i=1 himxi + zm.

- Compute λ̂m,F =
∑K

i=1 amixi following steps i),

ii) and iii) of the decoding process defined in section

VI.C. - Forward both lattice equation λ̂m,F and integer

coefficients vector am to the destination.

• Destination:

- Receives the K lattice equations and coefficients vec-

tors.

- Form the linear system:
[

λ̂1,F...λ̂K,F

]t

= A [x1...xK ]
t

where A represents the integer coefficients matrix whose

rows are the vectors am,m = 1, ...,K.

- Invert A over Z
n to solve for original codewords:

A−1
[

λ̂1,F...λ̂K,F

]t

= [x̂1...x̂K ]
t
.

- Map estimated codewords back to the finite field to get

estimates on the original messages: ŵi = φ−1(x̂i).
• Decodability condition: The destination can reliably re-

cover original messages if and only if the integer network

code coefficients matrix A is full rank over Z
n.

Since the selection of optimal coefficients vectors is performed

independently at each relay node based on local optimization

problems, there is no guarantee on the fulfillement of this

decodability condition. This condition was pointed out in [6]

for the DEFID scheme, however, no solution was proposed.

A contribution of this work is to analyze the penalty of this

constraint on the destination’s performance and propose a

reliable algorithm for selecting network code coefficients that

satisfy a tradeoff between local and end-to-end-performance.

The solution we propose is based on a cooperation between

the relay nodes and consists in the following: since the

optimal coefficients vector at each relay corresponds to the

shortest vector of the lattice ΛGm
defined previously, the

idea is to select for each relay a set of potential candidates

that correspond to the shortest vectors, meaning the highest

achievable rates and lowest probability of decoding error at

the relay, then select over all vectors delivered by all relay

nodes those which allow to maximize the minimum achievable

rate and that form a full rank set. The different steps of this

method are summarized in the following:

i) Find for each relay node Rm the set Sm,N of the shortest

vectors un, n = 1, ..., N .

ii) Sort, for each relay node m the vectors un in a descending

order corresponding to their achievable rates Rn
comp,m.

iii) Sort the overall set of achievable rates of all relay nodes

in a descending order into the set {µ1, ..., µK×N}.



iv) Set i = K and let µi = Rn
comp,i be the achievable

rate at relay i corresponding to the vector un. Find for

all relays, j 6= i the achievable rates higher than µi

and find the combination of the corresponding vectors

{ui,uj , j = 1, ...,K, j 6= i} that are linearly independent.

If the search does not result in a full rank set, set i = i+1
and go to step iii).

In our implementation we use the Fincke-Pohst algorithm for

step i).

VII. CCF VS ICF

Given the above schemes and decodability conditions, it is

worth answering to the following questions:

1) For the CCF: is having K linearly independent coefficient

vectors (or integer coefficients matrix A full rank over

the integer field) sufficient to allow recovery of original

messages?

2) If the answer is no: how to guarantee that Q be full rank

over the finite field?

3) What would be the difference between the CCF and the

ICF schemes?

The answers are as follows:

1) No, having full rank of A is not enough to recover origi-

nal messages: in fact, the recovery of original messages is

obtained through the inversion of Q over Fp. However,

if A is full rank, it does not necessarily come with a

full rank matrix Q. A simple example is the following:

consider the case of K = 2 and Fp = Z11 with integer

addition and multiplication modulo 11. Take the case of

A =

[

−1 −3
3 −2

]

which is full rank (its determinant

dA = 11 6= 0 ). By mapping this matrix to Z11 we

get Q =

[

10 8
3 9

]

. As one can easily observe, Q

is not full rank over Z11 ( its determinant equals to

dQ = 66 = [0]mod(11)).
2) Having in mind that the coefficients of the two matrices

are related by qij = g−1 ([aij ] modp), it is easy to see

that the determinant of the matrix Q over Fp is equal

to dQ = g−1 ([dA] modp). Therefore, to guarantee full

rank of finite field coefficients matrix we need not only

to have dA 6= 0 but also [dA] modp 6= 0. The reliable

decodability condition is then to have either Q full rank

over Fp or in terms of A to have a determinant different

from a multiple of the size field p. One can see from

the previous example, the full rank failure of Q arises

from the fact of having dA = 11 a multiple of the field

size p = 11. This observation was cited in Remark 9

in [2]. The question now is how to guarantee, from the

selection of the integer matrix A, to have Q full rank?

In this regard, it is only showed in Theorem 11 of [2]

that under some assumptions on the magnitude of the

integer coefficients aij and for sufficiently large field size

p and blocklength n, there exists a class of nested lattice

codes for which dA 6= 0 ⇒ [dA] modp 6= 0. However,

it is not completely understood how to solve this full

rank constraint in practical settings, for moderate values

of p and n and with no assumptions on the coefficients

of the matrix A. Main contributions of this work are to

evaluate the impact of this condition on the destination’s

performance in terms of rate and error rate and to propose

a search algorithm that guarantees successful message

recovery at the destination. The method searches over

network coefficients vectors that allow to achieve higher

transmission rates taking into account the condition that

[dA] modp 6= 0. It is also based on a cooperation between

the relay nodes and consists on a slight modification of

the algorithm proposed for the ICF as follows:

i) Find for each relay node Rm the set Sm,N of the

shortest vectors un, n = 1, ..., N .

ii) Sort, for each relay node m the vectors un in a

descending order corresponding to their achievable

rates Rn
comp,m.

iii) Sort the overall set of achievable rates of all

relay nodes in a descending order into the set

{µ1, ..., µK×N}.

iv) Set i = K and let µi = Rn
comp,i be the achievable

rate at relay i corresponding to the vector un. Find

for all relays, j 6= i the achievable rates higher than

µi.

v) Form the matrix U =
[

ui uj(j=1,..K)

]

of row vectors

ui and uj , j = 1, ...,K found in the previous

step, then find the combination of the correspond-

ing vectors {ui,uj , j = 1, ...,K, j 6= i} guarantee-

ing [det(U)]modp 6= 0. If the search condition is

not satisfied, set i = i+ 1 and go to step iii).

3) The differences between the two schemes are the fol-

lowing: first, the CCF takes the power constraint at the

relay into account however the ICF does not. Second,

the CCF exploits both the linearity of the code and the

linearity of the mapping from the nested lattice code to

the finite field, meanwhile, the second scheme harnesses

only the linearity of the code. In addition, for the CCF,

the destination first maps the lattice equations to the

finite field then inverts the coefficients matrix over Fp,

meanwhile, under the ICF perspective, the destination

inverts first the coefficients matrix over the integer field

to estimate original codewords, afterwards maps each one

of them individually to the finite field to recover source’s

messages. However, as we stressed earlier, the mapping

to the finite field does not impact the correctness of the

decoding objective. Therefore, we expect an equivalence

of the end-to-end performance of two schemes when the

decodability conditions are satisfied.

VIII. NUMERICAL RESULTS

We address in this section performance evaluation, analysis

and comparison of the two studied transmission schemes at the

destination node. We consider the case of K = 2. Monte-Carlo

simulations have been carried out to evaluate the message error

rate and the average achievable rate per user. The former is

expressed as Pe = Pr
(

∪K
m=1 (ŵm 6= wm)

)

, and the latter is



given by R = minm=1,...,K {Rcomp,m}. Numerical results are

related to the practical encoding scheme proposed in section

III.B.
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Fig. 2. Message Error rate at the destination node as a function of the SNR.
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Fig. 3. Achievable Rates at the destination node as a function of the SNR.

Starting with the message error rate, in the light of Fig.2,

we report for the ICF the suboptimality of the choice of A

following the local optimization criteria as far as the end-

to-end performance at the destination is concerned. Taking

the decodability constraint into account while constructing the

integer matrix as our proposed algorithm brings a gain of more

than 10−dB at high SNR ranges. Now, as far as the CCF is

concerned, numerical results confirm that having A full rank

over Zn brings a performance gain but is not enough to achieve

reliable decoding at the destination particularly at high SNR

values. Our proposed algorithm that takes into consideration

that Q be full rank improves greatly the end-to-end perfor-

mance. Moreover, we report from the same figure that the

two schemes achieve almost same end-to-end message error

rate performance when the full rank constraints are solved.

This result confirms our expectation in the previous section,

that is the two schemes are equivalent if the corresponding

decodability conditions are fulfilled. The only difference is that

the ICF violates the power constraint at the relays’ level. This

scheme can therefore be used as a tool to validate theoretical

results, but not as a real transmission scheme. Now moving

to the average achievable rate performance. We restrict the

evaluation to the CCF scheme since the impact of the full

rank constraints on the two schemes is the same in terms of

rate. As illustrated in Fig.3, penalty of the full rank constraint

on the coefficients matrix A is considerable. We point out

that satisfying full rank condition on A or Q brings the same

gain of 2.5dB over the non full rank case in contrast to the

error rate performance. This can be explained by the analytical

rate expression evaluated over the real field. Moreover, we

notice that although the CCF presents a noteworthy gap to

the channel’s capacity, it outperforms the Decode-and-Forward

strategy. The former offers a significant gain over the latter that

exceeds 1bit per channel use at moderate SNR values.

IX. CONCLUSION

Practical end-to-end communication over a MSRC using

the CF as a PLNC strategy is considered. We explored and

solved practical constraints that deserve a particular attention

when dealing with the CF as a processing stage in a large

network design. Numerical results evaluating the end-to-end

performance at the destination in terms of achievable rate and

error rate are a proof of the relevance of the addressed practical

issues related to the CF as well as of the reliability of the

proposed algorithms.
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