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Dimensionality reduction is a significant task when dealing with high-dimensional data, this reduction can be done by feature selection, which means to select the most appropriate features for data analysis. It is a recent addressed challenge in feature selection research when handling small-labeled with largeunlabeled data sampled from the same population. The supervision information may be used in the form of pairwise constraints; these constraints have practically proven to have very positive effects on the learning performance. Nevertheless, selected constraints sets may have significant results (positive or negative) on learning performance. In this paper, we present a novel feature selection approach based on an efficient selection of pairwise constraints. This aims to grasp the most coherent constraints extracted from labeled party of data. We then evaluate the relevance of a feature according to its 'efficient' locality preserving and 'chosen' constraints preserving ability. Finally, experimental results will be provided for validating our proposal in comparison with other known feature selection methods.

INTRODUCTION

The rapid development of data acquisition tools has increased the accumulation of high-dimensional data, such as digital images, financial time series and gene expression microarrays. It was proved that the high-dimensionality can deteriorate the performance of data mining and machine learning process. Moreover, a too high sample-size to the number-of-dimensions ratio may result in the infeasibility of learning due to the "curse of dimensionality" [START_REF] Duda | Pattern Wiley-Interscience[END_REF]. Hence, the dimensionality reduction has become a fundamental tool for many data mining tasks. One of the existing methods to overcome this problem is the feature selection and extraction techniques [START_REF] Zhao | Locality sensitive semisupervised feature selection[END_REF]. Feature extraction methods can be categorized according to the viewpoint of label information availability into supervised and unsupervised ones. Fisher Linear Discriminant (FLD) [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF], is an example of supervised feature extraction methods, which can extract the optimal discriminant vectors when class labels are available. For unsupervised feature extraction methods, Principal Component Analysis (PCA) [START_REF] Jolliffe | Principal Component Analysis[END_REF] is an example that tries to preserve the global covariance structure of data when class labels are not available.

Similar to feature extraction, feature selection is one of the effective means to identify relevant features for dimensionality reduction [START_REF] Jain | Feature selection: Evaluation, application, and small sample performance[END_REF]. Feature selection is a well addressed problem in machine learning and data mining communities. It is one of the effective means to identify relevant features for dimension reduction [START_REF] Guyon | An introduction to variable and feature selection[END_REF]. In fact, this task became very necessary with the accumulation of data having a huge number of features, that could have ill effect over learning algorithms. Moreover, feature selection has been well addressed in supervised and unsupervised paradigms with several works [START_REF] Dy | Feature selection for unsupervised learning[END_REF] [START_REF] Guyon | An introduction to variable and feature selection[END_REF].

In the supervised feature selection context, the relevance of a feature can be evaluated by its correlation with the class label. In this context, the most known feature selection method is Fisher score [START_REF] Duda | Pattern Wiley-Interscience[END_REF], which seeks features with best discriminant ability with full class labels on the whole training data. Other powerful supervised feature selection methods, called ReliefF and RReliefF, were proposed by Robnik-Šikonja and al. [START_REF] Robnik-Šikonja | Theoretical and Empirical Analysis of ReliefF and RReliefF[END_REF]. The key idea behind these methods is to estimate the significance of features according to how well their values distinguish between the instances of the same and different classes that are near to each other. However, ReliefF and RReliefF do not help with removing redundant features. In [START_REF] Yu | Feature selection for highdimensional data: A fast correlation-based filter solution[END_REF], the authors proposed a new concept, predominant correlation, and proposed a fast filter method (FCBF) which can identify relevant features as well as redundancy among relevant features without pairwise correlation analysis. Hence, the authors in [START_REF] Zhao | Spectral feature selection for supervised and unsupervised learning[END_REF] proposed SPEC, a general framework of feature selection, and demonstrated that ReliefF is a special case of their proposal.

The unsupervised feature selection is considered as a much harder problem, due to the absence of class labels that would guide the search for relevant information. In this way, the feature relevance can be evaluated by their capability of keeping certain properties of the data, such as the variance or the separability. Variance score [START_REF] Bishop | Neural Networks for Pattern Recognition[END_REF] might be the simplest unsupervised evaluation of the features. It uses the variance along a dimension to reflect its representative power and those features with the maximum variance are selected. Another unsupervised feature selection method, Laplacian Score [START_REF] He | Laplacian score for feature selection[END_REF], makes a further step on Variance. It not only favors those features with larger variances which have more representative power, but also tends to selecting features with stronger locality preserving ability. This method is also generalized by the SPEC method in the unsupervised context. Laplacian score belongs to spectral feature selection family and will be more discussed in the next section.

The problem becomes more challenging when the data contains labeled and unlabeled examples sampled from the same population. It is more adapted with real-world applications where labeled data are costly to obtain. In this context, the effectiveness of semi-supervised learning has been demonstrated [START_REF] Chapelle | Semisupervised learning[END_REF]. The authors in [START_REF] Zhao | Semi-supervised Feature Selection via Spectral Analysis[END_REF] introduced a semi-supervised feature selection algorithm (sSelect) based on spectral analysis. Later, they exploited intrinsic properties underlying supervised and unsupervised feature selection algorithms, and proposed a unified framework for feature selection based on spectral graph theory [START_REF] Chung | Spectral Graph Theory[END_REF].

Furthermore, since domain knowledge became an important issue in many data mining tasks [START_REF] Basu | Constrained Clustering: Advances in Algorithms, Theory, and Applications[END_REF] [START_REF] Xing | Distance Metric Learning, with Application to Clustering with Sideinformation[END_REF]; Several recent works have attempted to exploit pairwise constraints or other prior information in dimensionality reduction. Bar-Hillel and al. [START_REF] Alon | Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays[END_REF] proposed the constrained FLD (cFLD) for dimensionality reduction from equivalence constraints, as an interim-step for Relevant Component Analysis (RCA). However, cFLD can only deal with the must-link constraints. Zhang and al. [START_REF] Zhang | Semi-supervised dimensionality reduction[END_REF] proposed an efficient algorithm, called SSDR (with different variants: SSDR-M, SSDR-CM, SSDR-CMU), which can simultaneously preserve the structure of original high-dimensional data and the pairwise constraints specified by users. The main problem of these methods is that the proposed objective function is independent of the variance, which is very important for the locality preserving for the features. In addition, the similarity matrix used in the objective function uses the same value for all pairs of data which are not related by constraints. The same authors proposed a constraint score based method [START_REF] Zhang | Constraint Score: A new filter method for feature selection with pairwise constraints[END_REF] which evaluates the relevance of features according to constraints only. The method carries out with little supervision information in labeled data ignoring the unlabeled data party even if is very large. The authors in [START_REF] Kalakech | Constraint scores for semi-supervised feature selection: A comparative study[END_REF] proposed to solve the problem of semi-supervised feature selection by a simple combination of scores computed on labeled data and unlabeled data respectively. The method (called C 4 ) tries to find a consensus between an unsupervised score (Laplacian) and a supervised score (Constraint). The combination is simple, but can dramatically bias the selection for the features having best scores for labeled party of data and bad scores for the unlabeled party and vice-versa. Supervision information is not limited to class labels only. Actually, the background information could be expressed by class labels, pairwise constraints, or any other prior information. In this paper we focus on the pairwise constraints, which are an instance level constraints, that specify that two instances have to be at the same class (Must-link constraints) or different classes (Cannotlink constraints). These constraints may be easier to obtain than class labels in some domains where it is hard to have an early decision on class label. In addition, these constraints can be generated from labeled data directly.

The importance of pairwise is practically proven, nevertheless, and unlikely to what might be expected; some constraint sets actually can decrease the learning performance [START_REF] Davidson | Measuring constraint-set utility for partitional clustering algorithms[END_REF]. Hence, the exploitation of constraint selection can result in more "useful" constraint sets to be presented to data.

In this paper, we present a general framework for semi-supervised dimensionality reduction. This framework is based on efficient selection of pairwise constraints (CSFS). This proposal uses a new developed score by efficiently combining the power of the local geometric structure offered by unlabeled data, with the constraint preserving ability offered by labeled data.

The rest of this paper is structured as follows: In section 2 we illustrate the related works through two powerful scores that we used to inspire our score function; in addition we demonstrate the constraint selection measure that we deploy in constraint selection. In section 3 we present a full description of our CSFS framework. We introduce in section 4 a spectral formulation of our score function with the technique we use to reduce the complexity caused by high-dimension data. The section 5 shows the results of our framework on real data sets with the comparisons of well known dimension reduction techniques. We then conclude our work in section 6 with the perspectives and possible forward research avenues.

RELATED WORKS

In this section we will discuss two scores on which we based to inspire the score function of our framework, we will illustrate in details the Laplacian score [START_REF] He | Laplacian score for feature selection[END_REF], and the constraint score [START_REF] Zhang | Constraint Score: A new filter method for feature selection with pairwise constraints[END_REF] in addition to their limitations, but firstly we would present a formal definition of feature selection in semi-supervised learning.

In semi-supervised learning, a data set of N data points 

Laplacian Score

This score is used for unsupervised feature selection. It prefers those features with larger variances which have more representative power. In addition, it tends to select features with stronger locality preserving ability. A key assumption in Laplacian Score is that data from the same class are close to each other. The Laplacian score of the th r feature, which should be minimized, is computed as follows [START_REF] He | Laplacian score for feature selection[END_REF]:
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Constraint Score

The constraint score guides the feature selection according to pairwise instance level constraints which can be classified on two sets: ML W (a set of Must-Link constraints) and CL W (a set of Cannot-Link constraints):

• Must-Link constraint (ML): involving i x and j x , specifies that they have the same label. • Cannot-Link constraint (CL): involving i x and j x , specifies that they have different labels.

Constraint score of the th r feature, which should be minimized, is computed as follows [START_REF] Zhang | Constraint Score: A new filter method for feature selection with pairwise constraints[END_REF]:
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CONSTRAINT SELECTION FOR FEATURE SELECTION

The aforementioned scores recorded important results in certain application scenarios; nevertheless, they have some limitations:

-Laplacian score: this score investigates the variance of the data in addition to the locality preserving ability of the features. Hence, a "good" feature for this score is the one at which two neighboring examples record close values. However, this score does not profit from the background information (the CL constraints in particular), which are provided to guide the learning process. In addition, the neighborhood choice is not clearly defined, that is, the variety of (k) choices has significant effects on results. We will discuss this problem in (section 4.1).

-Constraint score: Utilizing few labels of data, this score recorded better results than Fisher score which employs the whole labeled in feature selection process [START_REF] Zhang | Constraint Score: A new filter method for feature selection with pairwise constraints[END_REF]. Nevertheless, this score has several drawbacks :

1. It just exercises the labeled data in the feature selection; such vital restriction may mislead the learning process, especially in a semi-supervised context, where the labeled party is normally larger than the labeled one.

2. As this score depends merely on the chosen constraint subset. The choice of constraints is still a problematic issue, which could derogate the performance of the feature selection process.

In order to overcome the listed restrictions, we propose an approach that will:

-Deploy a constraint selection in order to select the coherent subset of pairwise constraints extracted from the labeled data.

-Utilize the data structure in the definition of the neighborhood between examples.

Constraint Selection

While it was expected that different constraints sets would contribute more or less in improving clustering accuracy, it was found that some constraints sets actually decrease clustering performance. It was observed that constraints can have ill effects even when they are generated from the data labels that are used to evaluate accuracy, so this behavior is not caused by noise or errors in the constraints. Instead, it is a result of the interaction between a given set of constraints and the algorithm being used. So it is more important to know why do some constraint sets increase clustering accuracy while others have no effect or even decrease accuracy. For that, the authors in [START_REF] Davidson | Measuring constraint-set utility for partitional clustering algorithms[END_REF] have defined two important measures, informativeness and coherence, that capture relevant properties of constraint sets. These measures provide insight into the effect a given constraint set has for a specific constrained clustering algorithm. In this paper, we only use the coherence measure, which is independent of any learning algorithm.

The coherence represents the amount of agreement between the constraints themselves, given a metric d that specifies the distance between points. It does not require knowledge of the optimal partition * P and can be computed directly. The coherence of a constraint set is independent of the algorithm used to perform constrained clustering. One view of an ML(x,y) (or CL(x,y)) constraint is that it imposes an attractive (or repulsive) force within the feature space along the direction of a line formed by (x,y), within the vicinity of x and y. Two constraints, one an ML constraint (m) and the other a CL constraint (c), are incoherent if they exert contradictory forces in the same vicinity. Two constraints are perfectly coherent if they are orthogonal to each other and incoherent if they are parallel to each other. To determine the coherence of two constraints, m and c, we compute the projected overlap of each constraint on the other as follows (see Fig. 1 for examples). projected points linked by m over c. δ is the number of the overlapped projections. More details can be found in [START_REF] Davidson | Measuring constraint-set utility for partitional clustering algorithms[END_REF].

From the equation( 4), we can easily define a specific measure for each constraint as follows: We show now how to select the relevant constraints according to their coherence. To be selected, a constrained i α must be "fully" coherent, i.e. it must not overlap with any other constraint

j α ( j CL a Î W if i ML
a Î W and vice versa). This hard fashion to select constraints can be described in algorithm (Fig. 2).

Input: Constraints set { } i a W = Initialize s W = AE . for 1 i = to W do if { ( ) 1 Coh d i α = } { } s s i a W = W + end if end for Output: Selected constraints s W Figure 2.

Constraint Selection Algorithm

From this algorithm we obtain s W , which is a set of coherent constraints of ( , ) i j ML x x , and ( , ) i j CL x x in two subsets ' ML W and ' CL W respectively.

Score Function

The advantage of Laplacian score is its survey of the respect of data structure, which is expressed by the variance and locality preserving ability. However, several studies proved that the exploitation of background information improves the performance of the learning process. Furthermore, for constraint score, the principle is mainly based on the constraint preserving ability. This little supervision information is certainly necessary for feature selection, but not sufficient when ignoring the unlabeled data party especially if it is very large.

For that, we propose a Constraint Selection for Feature Selection Score (ϕ) which constraints the Laplacian score by the Constraint score for an efficient semi-supervised feature selection. Thus, we define (ϕ) score, which should be minimized, as follows:
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Since the labeled and unlabeled data are sampled from the same population generated by target concept, the basis idea behind our score is to generalize the Laplacian and the constraint scores for semi-supervised feature selection. Note that if there are no labels ( 0, ) (
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. In both cases, the weight ( )
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is used in order to more differentiate the features in the both "bad cases".

SPECTRAL GRAPH BASED FORMULATION

In this section, we give a spectral graph based explanation for our proposed CSFS score (ϕ). A reasonable criterion for choosing a relevant feature is to minimize the objective function represented by ϕ. The principle consists thus to minimize the first term , ( )

i ri rj ii i j T f D a = - å
. By resolving these two optimization problems, we prefer those features respecting their pre-defined graphs, respectively. Thus, we construct a k - neighborhood graph kn G from X (data set) and ' ML W ( ML constraint set) and a second graph

CL G from ' CL W (CL constraint set).
Given a data set X , let ( , )

G V E be the complete undirected graph constructed from X , with V is its node set and E is its edge set. The th i node i v of G corresponds to i x X Î and there is an edge between each node pair ( , ) 
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Then, we can define:

-For each feature r , its vector Following some simple algebraic steps, we see that: 
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Note that the respecting of different graph-structures is done according to i rj a in the equation [START_REF] Guyon | An introduction to variable and feature selection[END_REF]. In fact, when ' CL W = AE, we should kn G maximize the variance of r f this would be estimated as:

2 ( ) ( ) kn r ri r ii i var f f D m = - å (14) 
The optimization of ( 14) is well detailed in [START_REF] He | Laplacian score for feature selection[END_REF]. In this case,

T kn r r r r T kn r r f L f L f D f j = = .
Otherwise, we develop as above the second term ( 2T ) and obtain 2 T CL kn r r f L D f . Subsequently,

T k n r r r T C L k n r r f L f f L D f j = seeks those features that respect kn G and CL G .
The whole algorithm of the proposed score ϕ is summarized in (Fig. 3).

Note. The step 6 of the algorithm (Fig. 3) is computed in time

2 ( ) O mN .
Notice that the "small-labeled" problem becomes an advantage in our case, because it supposes that the number of extracted constraints is smaller since it depends on the number of labels l . Thus, the cost of the algorithm depends considerably on u , the size of unlabeled data U X .

To reduce this complexity, we propose to apply a clustering on U X . The idea aims to substitute this huge party of data by a smaller one 1 ( , ..., )

U K X p p ¢ =
by preserving the geometrical structure of U X , where K is the number of clusters. We propose to use Self-Organizing Map (SOM) based clustering [START_REF] Kohonen | Self-organizing maps[END_REF] which can be considered as doing vector quantization and/or clustering while preserving the spatial ordering of the input data rejected by implementing an ordering of the codebook vectors (also called prototype vectors, cluster centroids or reference vectors) in a one or two dimensional output space.

Input: Data set X X the complexity of step 6 in algorithm (Fig. 3) is reduced to ( ) O mu .

Proof. The size of labeled data is very smaller than the one of unlabeled data, l u N < < < and the clustering of U X provides at most K u = clusters. Therefore, step 6 of the algorithm (Fig. 3) is applied over a data set with size equal to u l u + ;

. This allows decreasing the complexity to ( ) O mu . W Subsequently, SOM will be applied on the unsupervised party of data ( U X ) for obtaining U X ¢ with a size equal to the number of SOM' nodes ( K ). Therefore, ϕ will be performed on the new obtained data set ( L U X X ¢ + ).

Adaptive k-Neighborhood determination

The key assumption of Laplacian score is the assessment of locality preserving ability by features. Meanwhile, the principle of fixed k-nearest-neighbors for all instances may affect the locality preserving, because it is not guaranteed that the k-nearestneighbors of an instance are "close" to it (Fig. 4-a). In this case, some "far" neighbors would be enrolled in the locality preserving measurement for the example at the hand.

Hence, we advise using a similarity based clustering approach on the whole instances, which allows revealing their locality structures. Then, the k-nearest-neighborhood relationship among them will depend on their membership to the same clusters. Hence, the adaptive k would be related to data structure and could be defined as follows: Two instances are neighbors if they belong to the same cluster. Consequently, each cluster has its own k which is the number of its elements (less one).

In (Fig. 4-b), calculating the score of 1

x does not need to look far, but it is calculated on the base of the instances belonging to its cluster. Accordingly, the score is less biased and the locality is more preserved.

Finally, the feature selection framework is represented in (Fig. 5).

RESULTS

Data Sets

In this section, we present an empirical study on a broad range of data sets including four data sets downloaded from the UCI [START_REF] Frank | {UCI} Machine Learning Repository[END_REF], i.e. "Iris", "Ionosphere", "Sonar" and "Soybean". In addition we present the results on "Leukemia", and "colon cancer" data sets, which can be found in [START_REF] Golub | Molecular classification of cancer: class discovery and class prediction by gene expression monitoring[END_REF][1] respectively. Moreover, for validating our framework on highdimensional data, we present our results on "Pie10P" and "Pix10P" which are face image data sets containing 10 persons in each. The whole data sets information is detailed in (Table 3).

For the construction of the SOM maps in the phase of unlabeled data clustering, we use a Principal Component Analysis (PCA) based heuristic proposed by Kohonen [START_REF] Kohonen | Self-organizing maps[END_REF] for automatically providing the initial number of neurons and the dimensions of the maps (Table 1). The reference vectors are initialized linearly along the greatest eigenvectors of the associated data set U X . Then, in order to determine the adaptive k-nearest-neighborhood constant, each SOM map is merged with the labeled data party l X . The resulting data ' ( ) l U X X + is clustered by an Ascendant Hierarchical Clustering (AHC) for optimizing the number of clusters (by grouping neurons) [START_REF] Dash | Feature Selection for Classification[END_REF]. In general, an internal index, like Davies Bouldin or Generalized Dunn [START_REF] Mali | Clustering and its validation in a symbolic framework[END_REF], is used for cutting the dendrogram. Here, we used Davies Bouldin index to obtain the number of classes corresponding to the correct partition (#l) for each data set. Note that we obtain several values of k for each data set. These values are not manually determined but automatically settled based on the structure of each data set. For example, on Soybean data set, we obtained 4 clusters by (AHC). The numbers of instances belonging to clusters were 9, 16, 9 and 10 corresponding to 4 various values of k 8, 15, 8 and 9 respectively.

In order to compare our feature selection framework with other ones, the nearest neighborhood (1-NN) classifier with Euclidean distance is employed for classification. After feature selection phase, and for each data set, the classifier is learned in the first half of samples from each class and tested on the remaining data.

In addition, the constant λ of our score function is set to 0.1 in all our experiments.

The empirical study that we would present is approached in four scenarios: Firstly, we would compare the performance of CSFS framework with Laplacian score; Constraint score and Fisher score, this comparison would be held on UCI data sets and concerns the accuracy of the classification vs. the number of selected features.

Secondly, we assess the relative performance of CSFS over other dimensionality reduction methods. We choose the PCA as the Clustering (SOM)

X(n × m) X U (u × m) X L (l × m) X' U (K × m) Constraints ( ( 1)/ 2 ) l l - = W X'U+XL{(K+L) × m)}

Ranked Features

Selected Constraints

s = W < W ϕ Score Constraint Selection Clustering Adaptive k-nearest- neighborhood Figure 5
. CSFS framework baseline. We also compare the performance of CSFS with SSDR-CMU and cFLD under different level of constraints. This comparison would be held also on UCI data sets but it concerns the classification accuracy vs. the number of selected constraints (while fixing the number of selected features).

The third scenario would be presented on higher-dimensional data, i.e. Leukemia and Colon Cancer. We evaluate the performance of CSFS framework on these data sets in comparison with Laplacian, Fisher, C 4 and CS scores. This comparison will concern the classification accuracy vs. both selected features and selected co-Table 1 : Data sets nstraints (Laplacian score -fully unsupervised-is not applicable in accuracy vs. selected constraints case).

Finally, we would validate our CSFS framework on higher dimensional images data sets, i.e. Pie10P and Pix10P. This validation is presented in comparison with Laplacian, ReliefF, F2+r 4 and F3+r scores.

In our experiments, we simulated the generation of pairwise constraints as follows:

We randomly selected samples of 25% from the labeled data belonging to each class, and then we created the must-link and cannot-link constraints depending on the underlying classes. Finally, we deployed our constraint selection framework in order to choose the most coherent subset of these constraints.

Results on UCI Data Sets

In this section we assess the relative performance of CSFS other dimensionality reduction methods for classification. We choose the fully unsupervised Laplacian score as the baseline. We also test the performance of supervised Fisher score which uses the class labels of all the training data. We compare CSFS results with constraint score ones too. As mentioned before, after dimensionality reduction, nearest neighborhood (1-NN) classifier employed for classification. In addition, the coherent constraints exploited on data sets are: (8 for Iris, 13 for Ionosphere,11 for Sonar and 7 for Soybean.

(Fig. 6) shows that CSFS always achieves the highest accuracy on all data sets. It can also be shown that in most cases the performance of Laplacian score is the worst. We believe that this is because Laplacian score does not use supervision information, i.e. labels (the constraints as a result).

In particular, CSFS outperforms constraint and Laplacian score significantly, while it outperforms or achieves similar accuracy to Fisher score in all cases.

Note that Fisher uses the full labels of the data set while CSFS uses a subset of coherent constraints generated originally from a small-labeled data party (25%). It is remarkable too that CSFS scores good accuracy even with few number of selected features, these results verify that merging "useful" constraints extracted from supervision information with geometrical structure of unlabeled data is very useful in learning feature scores.

Then, we compare the performance of CSFS with that of PCA, cFLD and SSDR-CMU (Fig. 7). This comparison concerns the Accuracy vs. different number of constraints (we used 50% of selected features). Note that authors in [START_REF] Zhang | Semi-supervised dimensionality reduction[END_REF] proposed the SDDR score with different variants (SSDR-M, SSDR-CM and SSDR-CMU), we compared our results with SSDR-CMU because it use the two types of pairwise constraints in addition to the unlabeled data, which means that it uses the same specifications that we consider in our score function. In addition, SSDR-CMU recorded better results than the other SSDR variants. The comparison of our framework with the listed scores is presented under different levels of selected constraints.

Note also that CSFS deploys just the coherent constraints from the whole constraints set generated from the labeled data. This can explain that the maximum number of selected constraints in the figure is far less than the maximum number of possible constraints. (Fig. 7) shows that CSFS outperforms the PCA and cFLD scores significantly, and it is comparable to SSDR-CMU on Soybean, outperforms it in Sonar and Ionosphere, but inferior to it on Iris when SSDR-CMU exploits the full constraints set. Note that CSFS achieves a high accuracy even when few "coherent" constraints are deployed. Another important notice from (Fig. 7) is that CSFS accuracy on Sonar and Ionosphere data sets is higher of the other scores accuracy even when they deploy the full constraints set, this validates the practically proven fact that the use of more "incoherent" constraints would have ill on learning performance (or it would have no effects in best cases).

Data

Results on Leukemia and Colon Cancer Data Sets

"Leukemia" and "Colon Cancer" are gene expression databases with huge number of features. The microarray Leukemia data is constituted of a set of 72 samples, corresponding to two types of Leukemia called ALL (Acute Lymphocytic Leukemia) and AML (Acute Myelogenous Leukemia), with 47 ALL and 25 AML. The data set contains expressions for 7129 genes. While "colon Cancer" is a data set of 2000 genes measured on 62 tissues (40 tumors and 22 "normal").

We present our results on these data sets on comparison with Laplacian, Fisher, C 4 and CS scores, and that in both cases: Accuracy vs. Selected features (The coherent constraints used for this case are: 7 for colon cancer and 8 for Leukemia), and Accuracy vs. the selected constraints (50% of the selected features were deployed). The results of accuracy vs. Selected features (fig. 8-a,c) show that CSFS records a comparable performance with other scores when the number of features is inferior to 2500 for Leukemia data set, and 500 for Colon Cancer data set, then the performance of CSFS is superior to other scores performance when increasing the number of features.

While the results of accuracy vs. number of Selected constraints (fig. 8-b,d) show that CSFS outperforms other scores when using the full "coherent" constraint sets, and as on UCI data sets, the accuracy achieved by CSFS on Leukemia data set is not reached by other scores even when using the whole possible constraints set.

Results on face images data sets

As mentioned above, Pie10P & Pix10P are face images data sets containing 10 persons in each. The validation on these data sets is presented in comparison with Laplacian, Relief scores on both data sets. In addition, results were compared with (F2+r 4 ) score on Pix10P data set and with (F3 + r) score on Pie10P data set. We chose to compare our results with (F3+ r) and (F2+r 4 ) because they achieved best results over the other variant scores proposed by authors in [START_REF] Zhao | Spectral feature selection for supervised and unsupervised learning[END_REF].

Note that the coherent constraints used are (6 for Pix10P and 9 for Pie10P), Experimentation results in (Fig. 9) shows that CSFS outperforms significantly the other scores whatever the exploited number of features. Meanwhile, on Pie10P data set, CSFS is higher than Laplacian and (F3 + r) scores and inferior to ReliefF. Nevertheless, it could be shown that CSFS has an excellent accuracy on Pix10P data set and very good one on Pie10P data set. In addition, (Fig. 9) illustrates the stability of CSFS in comparison with other scores. Finally, Table [START_REF] Basu | Constrained Clustering: Advances in Algorithms, Theory, and Applications[END_REF] shows that regarding the average accuracy, CSFS has an excellent average accuracy, which is superior to all other scores except to Relief score on Pie10P data set. 

CONCLUSION

In this paper, we proposed a framework for feature selection based on constraint selection for semi-supervised dimensionality reduction. A new score function was developed to evaluate the relevance of features based on both, the locally geometrical structure of unlabeled data and the constraints preserving ability of labeled data. The framework which we propose has three major advantages:

-It incorporates the labeled and unlabeled examples in a competent and flexible manner, so it could be utilized regardless of the percentage of the labeled data.

-It exploits a pairwise constraint selection, which results in a coherent constraint subset extracted from the labeled data.

-It surveys the structural neighborhood of data examples, which highlights the efficient locality preserving properties of the selected features. Future work may include the amelioration of the choice of labels set from which constraints are generated. Other perspectives may be the choice of clustering algorithm between the constraints. In addition, we used a "hard" constraints selection which means to select only the constraints that are coherent with the full constraints set. This results in a little constraints number. Possible choice may be to adopt a "soft" constraints selection, in which the constraints coherence is calculated gradually, and the constraint is rejected if it is incoherent with the so far selected constraints, this may results in a higher constraints number, then it would be interested to judge if the learning quality would be more efficient with a great number of constraints softly selected than with a few number of constraints hardly selected.

Let m 1 and c 1 be

 1 vectors connecting the points constrained by m and c respectively. The coherence of a given constraints set W is defined as a fraction of constraints pairs that have zero projected overlap:

Figure 1 .

 1 Figure 1. Projected overlap between two constraints: ML(m) over CL(c). The coherence of the subset is null.

  adjusted r C , where the ML and CL information would be weighted by ij S and ii D respectively in the formula.With ϕ score, on the one hand, a relevant feature should be the one on which those two samples (neighbors or related by an ML constraint) are close to each other. On the other hand, the relevant feature should be the one with a larger variance or on which those two samples (related by a CL constraint) are well separated.To assess the previous concept, we use a weight ij N . The motivation of adding ij N to our score (over the Laplacian score)is not the integration of pairwise constraints into the score only, but it also adds a sensibility dimension to feature score in the following cases:When we have two samples joint by a ML constraint but not neighbors
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 4 Figure 4. (a) Fixed k-nearest-neighborhood. (b) Adaptive knearest-neighborhood.
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 98 Figure 9. Accuracy vs. different numbers of selected features

Table 2 . Averaged accuracy of different algorithms on "Pie10P" & "Pix10P" data sets
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	Data set Laplacian ReliefF	F2+r 4	F3+r	CSFS
	Pie10P	0.74	0.97	0.78	0.87	0.91
	Pix10P	0.88	0.97	0.94	0.93	0.98