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Stability properties for quasilinear parabolic equations with measure data and applications

Let Ω be a bounded domain of R N , and Q = Ω × (0, T ).

where p > 1, µ ∈ M b (Q) and u 0 ∈ L 1 (Ω). Our main result is a stability theorem extending the results of Dal Maso, Murat, Orsina, Prignet, for the elliptic case, valid for quasilinear operators u -→ A(u) =div(A(x, t, ∇u)).

As an application, we consider perturbed problems of type

   u t -∆ p u + G(u) = µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω,
where G(u) may be an absorption or a source term. In the model case G(u) = ± |u| q-1 u (q > p -1), or G has an exponential type. We give existence results when q is subcritical, or when the measure µ is good in time and satisfies suitable capacity conditions.

Introduction

Let Ω be a bounded domain of R N , and Q = Ω × (0, T ), T > 0. We denote by M b (Ω) and M b (Q) the sets of bounded Radon measures on Ω and Q respectively. We are concerned with the problem    u tdiv(A(x, t, ∇u)) = µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω, (1.1) where µ ∈ M b (Q), u 0 ∈ L 1 (Ω) and A is a Caratheodory function on Q × R N , such that for a.e. (x, t) ∈ Q, and any ξ, ζ ∈ R N , A(x, t, ξ).ξ ≧ c 1 |ξ| p , |A(x, t, ξ)| ≦ a(x, t)

+ c 2 |ξ| p-1 , c 1 , c 2 > 0, a ∈ L p ′ (Q), (1.2) 
(A(x, t, ξ) -A(x, t, ζ)). (ξ -ζ) > 0 if ξ = ζ. (1.3)
This includes the model problem

   u t -∆ p u = µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω, (1.4) 
where ∆ p is the p-Laplacian defined by ∆ p u = div(|∇u| p-2 ∇u) with p > 1.

As an application, we consider problems with a nonlinear term of order 0:    u tdiv(A(x, ∇u)) + G(u) = µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω, (1.5) where A is a Caratheodory function on Ω × R N , such that, for a.e. x ∈ Ω, and any ξ,

ζ ∈ R N , A(x, ξ).ξ ≧ c 1 |ξ| p , |A(x, ξ)| ≦ c 2 |ξ| p-1 , c 3 , c 4 > 0, (1.6) 
(A(x, ξ) -A(x, ζ)). (ξ -ζ) > 0 if ξ = ζ, (1.7) 
and G(u) may be an absorption or a source term, and possibly depends on (x, t) ∈ Q. The model problem is the case where G has a power-type G(u) = ± |u| q-1 u (q > p -1), or an exponential type.

First make a brief survey of the elliptic associated problem:

-div(A(x, ∇u)) = µ in Ω, u = 0 on ∂Ω, with µ ∈ M b (Ω) and assumptions (1.6), (1.7). When p = 2, A(x, ∇u) = ∇u existence and uniqueness are proved for general elliptic operators by duality methods in [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF]. For p > 2 -1/N, the existence of solutions in the sense of distributions is obtained in [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF] and [START_REF] Boccardo | Nonlinear elliptic equations with right-hand side measures[END_REF]. The condition on p ensures that the gradient ∇u is well defined in (L 1 (Ω)) N . For general p > 1, new classes of solutions are introduced, first when µ ∈ L 1 (Ω), such as entropy solutions, and renormalized solutions, see [START_REF] Benilan | An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF], and also [START_REF] Rakotoson | Generalized solutions in a new type of sets for problems with measures as data[END_REF], and existence and uniqueness is obtained. For any µ ∈ M b (Ω) the main work is done in [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]Theorems 3.1,3.2], where not only existence is proved, but also a stability result, fundamental for applications. Uniqueness is still an open problem.

Next we make a brief survey about problem (1.1).

The first studiess concern the case µ ∈ L p ′ (Q) and u 0 ∈ L 2 (Ω), where existence and uniqueness is obtained by variational methods, see [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]. In the general case µ ∈ M b (Q) and u 0 ∈ M b (Ω), the pionner results come from [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF], proving the existence of solutions in the sense of distributions for

p > p 1 = 2 - 1 N + 1 , (1.8) 
see also [START_REF] Rakotoson | Some quasilinear parabolic equations[END_REF], [START_REF] Rakotoson | A compactness Lemma for quasilinear problems: application to parabolic equations[END_REF], and [START_REF] Boccardo | Nonlinear parabolic equations with measure data[END_REF]. The approximated solutions of (1.1) lie in Marcinkiewicz spaces u ∈ L pc,∞ (Q) and |∇u| ∈ L mc,∞ (Q) , where

p c = p -1 + p N , m c = p - N N + 1 . (1.9) 
This condition (1.8) ensures that u and |∇u| belong to L 1 (Q), since m c > 1 means p > p 1 and p c > 1 means p > 2N/(N + 1). Uniqueness follows in the case p = 2, A(x, t, ∇u) = ∇u, by duality methods, see [START_REF] Petitta | Asymptotic behavior of solutions for linear parabolic equations with general measure data[END_REF].

For µ ∈ L 1 (Q), uniqueness is obtained in new classes of solutions: entropy solutions, and renormalized solutions, see [START_REF] Blanchard | Renormalized solutions of nonlinear parabolic equation with L 1 data: existence and uniqueness[END_REF], [START_REF] Prignet | Existence and uniqueness of "entropy" solutions of parabolic problems with L 1 data[END_REF], see also [START_REF] Andreu | Quasilinear elliptic and parabolic equations in L 1 with nonlinear boundary conditions[END_REF] for a semi-group approach.

Then a class of regular measures is studied in [START_REF] Droniou | Parabolic capacity and soft measures for nonlinear equations[END_REF], where a notion of parabolic capacity c Q p is introduced, defined by

c Q p (E) = inf( inf E⊂U open⊂Q {||u|| W : u ∈ W, u ≧ χ U a.e. in Q}),
for any Borel set E ⊂ Q, where X = L p (0, T ; W 1,p 0 (Ω) ∩ L 2 (Ω)), W = z : z ∈X, z t ∈ X ′ , embedded with the norm ||u|| W = ||u|| X + ||u t || X ′ .

Let M 0 (Q) be the set of Radon measures µ on Q that do not charge the sets of zero c Q p -capacity:

∀E Borel set ⊂ Q, c Q p (E) = 0 =⇒ |µ(E)| = 0.
Then existence and uniqueness of renormalized solutions holds for any measure µ ∈ M b (Ω)∩M 0 (Q), called regular (or diffuse) and u 0 ∈ L 1 (Ω), and p > 1. The equivalence with the notion of entropy solutions is shown in [START_REF] Droniou | Equivalence between entropy and renormalized solutions for parabolic equations with smooth data[END_REF]; see also [START_REF] Blanchard | Renormalized solutions of nonlinear parabolic equations with diffuse measure data[END_REF] for more general equations.

Next consider any measure µ ∈ M b (Q). Let M s (Q) be the set of all bounded Radon measures on Q with support on a set of zero c Q p capacity, also called singular.

Let M + b (Q), M + 0 (Q), M + s (Q)
be the positive cones of M b (Q), M 0 (Q), M s (Q). From [START_REF] Droniou | Parabolic capacity and soft measures for nonlinear equations[END_REF], µ can be written (in a unique way) under the form

µ = µ 0 + µ s , µ 0 ∈ M 0 (Q), µ s = µ + s -µ - s , µ + s , µ - s ∈ M + s (Q), (1.10) 
and µ 0 ∈ M 0 (Q) admits (at least) a decomposition under the form

µ 0 = f -div g + h t , f ∈ L 1 (Q), g ∈ (L p ′ (Q)) N , h ∈ X, (1.11) 
and we write µ 0 = (f, g, h). The solutions of (1.1) are searched in a renormalized sense linked to this decomposition, introduced in [START_REF] Blanchard | Renormalized solutions of nonlinear parabolic equation with L 1 data: existence and uniqueness[END_REF], [START_REF] Petitta | Renormalized solutions of nonlinear parabolic equations with general measure data[END_REF]. In the range (1.8) the existence of a renormalized solution relative to the decomposition (1.11) is proved in [START_REF] Petitta | Renormalized solutions of nonlinear parabolic equations with general measure data[END_REF], using suitable approximations of µ 0 and µ s .

Uniqueness is still open, as well as in the elliptic case.

Next consider the problem (1.5). First we consider the case of an absorption term: G(u)u ≧ 0.

Let us recall the case p = 2, A(x, ∇u) = ∇u and G(u) = |u| q-1 u (q > 1). The first results concern the case µ = 0 and u 0 is a Dirac mass in Ω, see [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF]: existence holds if and only if q < (N + 2)/N. Then optimal results are given in [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF], for any µ ∈ M b (Q) and u 0 ∈ M b (Ω). Here two capacities are involved: the elliptic Bessel capacity C α,k , (α, k > 1) defined, for any Borel set E ⊂ R N , by

C α,k (E) = inf{||ϕ|| L k (R N ) : ϕ ∈ L k (R N ), G α * ϕ ≧ χ E },
where G α is the Bessel kernel of order α; and a capacity c G,k (k > 1) adapted to the operator of the heat equation of kernel G(x, t) = χ (0,∞) (4πt) -N/2 e -|x| 2 /4t : for any Borel set

E ⊂ R N +1 , c G,k (E) = inf{||ϕ|| L k (R N+1 ) : ϕ ∈ L k (R N +1 ), G * ϕ ≧ χ E }.
From [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF], there exists a solution if and only if µ does not charge the sets of c G,q ′ (E) capacity zero and u 0 does not charge the sets of C 2/q,q ′ capacity zero. Observe that one can reduce to a zero initial data, by considering the measure µ + u 0 ⊗ δ t 0 in Ω × (-T, T ) , where ⊗ is the tensorial product and δ t 0 is the Dirac mass in time at 0. For p = 2 such a linear parabolic capacity cannot be used. Most of the contributions are relative to the case µ = 0 with Ω bounded, or Ω = R N . The case where u 0 is a Dirac mass in Ω is studied in [START_REF] Gmira | On quasilinear parabolic equations involving measure data[END_REF], [START_REF] Kamin | Singular solutions of some nonlinear parabolic equations[END_REF] when p > 2, and [START_REF] Chen | Singular solutions of parabolic p-Laplacian with absorption[END_REF] when p < 2. Existence and uniqueness hold in the subcritical case q < p c . If q ≧ p c and q > 1, there is no solution with an isolated singularity at t = 0. For q < p c , and u 0 ∈ M + b (Ω), the existence is obtained in the sense of distributions in [START_REF] Zhao | Source-type solutions of a quasilinear degenerate parabolic equation with absorption[END_REF], and for any u 0 ∈ M b (Ω) in [START_REF] Bidaut-Véron | Initial trace of solutions odf some quasilinear parabolic equations with absorption[END_REF]. The case µ ∈ L 1 (Q), u 0 = 0 is treated in [START_REF] Dall'aglio | Existence results for some nonlinear parabolic equations with nonregular data[END_REF], and µ ∈ L 1 (Q), u 0 = L 1 (Ω) in [START_REF] Andreianov | On uniqueness and existence of entropy solutions for a nonlinear parabolic problem with absorption[END_REF] where G can be multivalued. The case µ ∈ M 0 (Q) is studied in [START_REF] Petitta | Diffuse measures and nonlinear parabolic equations[END_REF], with a new formulation of the solutions, and existence and uniqueness is obtained for any function G ∈ C(R) such that G(u)u ≧ 0. Up to our knowledge, up to now no existence results have been obtained for a general measure µ ∈ M b (Q).

The case of a source term G(u) = -u q with u ≧ 0 has beeen treated in [START_REF] Baras | Critère d'existence de solutions positives pour des équations semilinéaires non monotones[END_REF] for p = 2, where optimal conditions are given for existence. As in the absorption case the arguments of proofs cannot be extended to general p.

Main results

In all the sequel we suppose that p satisfies (1.8). Then

X = L p (0, T ; W 1,p 0 (Ω)), X ′ = L p ′ (0, T ; W -1,p ′ (Ω)).
We first study problem (1.1). In Section 3 we give some approximations of µ ∈ M b (Q), useful for the applications. In Section 4 we recall the definition of renormalized solutions, that we call R-solutions of (1.1), relative to the decomposition (1.11) of µ 0 , and study some of their properties.

Our main result is a stability theorem for problem (1.1), proved in Section 5, extending to the parabolic case the stability result of [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]Theorem 3.4], and improving the result of [START_REF] Petitta | Renormalized solutions of nonlinear parabolic equations with general measure data[END_REF]:

Theorem 2.1 Let A : Q × R N -→ R N satisfying (1.2),(1.3). Let u 0 ∈ L 1 (Ω), and µ = f -div g + h t + µ + s -µ - s ∈ M b (Q), with f ∈ L 1 (Q), g ∈ (L p ′ (Q)) N , h ∈ X and µ + s , µ - s ∈ M + s (Q). Let u 0,n ∈ L 1 (Ω), µ n = f n -div g n + (h n ) t + ρ n -η n ∈ M b (Q), with f n ∈ L 1 (Q), g n ∈ (L p ′ (Q)) N , h n ∈ X, and ρ n , η n ∈ M + b (Q), such that ρ n = ρ 1 n -div ρ 2 n + ρ n,s , η n = η 1 n -divη 2 n + η n,s , with ρ 1 n , η 1 n ∈ L 1 (Q), ρ 2 n , η 2 n ∈ (L p ′ (Q)) N and ρ n,s , η n,s ∈ M + s (Q). Assume that sup n |µ n | (Q) < ∞,
and {u 0,n } converges to u 0 strongly in L 1 (Ω), {f n } converges to f weakly in L 1 (Q), {g n } converges to g strongly in (L p ′ (Q)) N , {h n } converges to h strongly in X, {ρ n } converges to µ + s and {η n } converges to µ - s in the narrow topology of measures; and ρ 1 n , η 1 n are bounded in L 1 (Q), and

ρ 2 n , η 2 n bounded in (L p ′ (Q)) N . Let {u n } be a sequence of R-solutions of    u n,t -div(A(x, t, ∇u n )) = µ n in Q, u n = 0 on ∂Ω × (0, T ), u n (0) = u 0,n
in Ω.

(2.1)

relative to the decomposition (f n + ρ 1 n -η 1 n , g n + ρ 2 n -η 2 n , h n ) of µ n,0 . Let v n = u n -h n .
Then up to a subsequence, {u n } converges a.e. in Q to a R-solution u of (1.1), and

{v n } converges a.e. in Q to v = u -h. Moreover, {∇u n } , {∇v n } converge respectively to ∇u, ∇v a.e. in Q, and {T k (u n )} , {T k (v n )} converge to T k (u), T k (v) strongly in X for any k > 0.
In Section 6 we give applications to problems of type (1.5).

We first give an existence result of subcritical type, valid for any measure µ ∈ M b (Q) :

Theorem 2.2 Let A : Q × R N → R N satisfying (1.2), (1.3) with a ≡ 0. Let (x, t, r) → G(x, t, r) be a Caratheodory function on Q × R and G ∈ C(R + ) be a nondecreasing function with values in R + , such that |G(x, t, r)| ≦ G(|r|) for a.e. (x, t) ∈ Q and any r ∈ R, (2.2) 
∞ 1 G(s)s -1-pc ds < ∞. (2.3) (i) Suppose that G(x, t, r)r ≧ 0, for a.e. (x, t) in Q and any r ∈ R. Then, for any µ ∈ M b (Q) and u 0 ∈ L 1 (Ω), there exists a R-solution u of problem    u t -div(A(x, t, ∇u)) + G(u) = µ in Q, u = 0 in ∂Ω × (0, T ), u(0) = u 0 in Ω.
(2.4)

(ii) Suppose that G(x, t, r)r ≦ 0, for a.e. (x, t) ∈ Q and any r ∈ R, and u 0 ≧ 0, µ ≧ 0. There exists ε > 0 such that for any λ > 0,

any µ ∈ M b (Q) and u 0 ∈ L 1 (Ω) with λ + |µ|(Q) + ||u 0 || L 1 (Ω) ≦ ε, problem    u t -div(A(x, t, ∇u)) + λG(u) = µ in Q, u = 0 in ∂Ω × (0, T ), u(0) = u 0 in Ω, (2.5) 
admits a nonnegative R-solution.

In particular for any 0 < q < p c , if G(u) = |u| q-1 u, existence holds for any measure µ ∈ M b (Q); if G(u) = -|u| q-1 u, existence holds for µ small enough. In the supercritical case q ≧ p c , the class of "admissible" measures, for which there exist solutions, is not known.

Next we give new results relative to measures that have a good behaviour in t, based on recent results of [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF] relative to the elliptic case. We recall the notions of (truncated) Wölf potential for any nonnegative measure

ω ∈ M + (R N ) any R > 0, x 0 ∈ R N , W R 1,p [ω] (x 0 ) = R 0 t p-N ω(B(x 0 , t)) 1 p-1 dt t .
Any measure ω ∈ M b (Ω) is identified with its extension by 0 to R N . In case of absorption, we obtain the following:

Theorem 2.3 Let A : Ω × R N → R N satisfying (1.6),(1.7). Let p < N , q > p -1, µ ∈ M b (Q), f ∈ L 1 (Q) and u 0 ∈ L 1 (Ω). Assume that |µ| ≦ ω ⊗ F, with ω ∈ M + b (Ω), F ∈ L 1 ((0, T ))
, F ≧ 0, and ω does not charge the sets of C p, q q+1-p -capacity zero. Then there exists a R-solution

u of problem    u t -div(A(x, ∇u)) + |u| q-1 u = f + µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω. (2.6)
We show that some of these measures may not lie in M 0 (Q), which improves the existence results of [START_REF] Petitta | Diffuse measures and nonlinear parabolic equations[END_REF], see Proposition 3.3 and Remark 6.7. Otherwise our result can be extended to a more general function G, see Remark 6.9. We also consider a source term:

Theorem 2.4 Let A : Ω×R N → R N satisfying (1.6), (1.7). Let p < N , q > p-1. Let µ ∈ M + b (Q), and u 0 ∈ L ∞ (Ω), u 0 ≧ 0. Assume that µ ≦ ω ⊗ χ (0,T ) , with ω ∈ M + b (Ω).
Then there exist λ 0 = λ 0 (N, p, q, c 3 , c 4 , diamΩ) and b 0 = b 0 (N, p, q, c 3 , c 4 , diamΩ) such that, if

ω(E) ≦ λ 0 C p, q q-p+1 (E), ∀E compact ⊂ R N , ||u 0 || ∞,Ω ≦ b 0 , (2.7 
)

there exists a nonnegative R-solution u of problem    u t -div(A(x, ∇u)) = u q + µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω, (2.8) which satisfies, a.e. in Q, u(x, t) ≦ CW 2diam Ω 1,p [ω](x) + 2||u 0 || L ∞ , (2.9) 
where C = C(N, p, c 3 , c 4 ).

Corresponding results in case where G has exponential type are given at Theorems 6.10 and 6.15.

Approximations of measures

For any open set

̟ of R m and F ∈ (L k (̟)) ν , k ∈ [1, ∞] , m, ν ∈ N * , we set F k,̟ = F (L k (̟)) ν .
First we give approximations of nonnegative measures in M 0 (Q). We recall that any measure µ ∈ M 0 (Q) ∩ M b (Q) admits a decomposition under the form µ = (f, g, h) given by (1.11). Conversely, any measure of this form, such that h ∈ L ∞ (Q), lies in M 0 (Q), see [START_REF] Petitta | Diffuse measures and nonlinear parabolic equations[END_REF]Proposition 3.1].

Lemma 3.1 Let µ ∈ M 0 (Q) ∩ M + b (Q) and ε > 0. (i) Then, we can find a decomposition µ = (f, g, h) with f ∈ L 1 (Q), g ∈ (L p ′ (Q)) N , h ∈ X such that ||f || 1,Q + g p ′ ,Q + ||h|| X ≦ (1 + ε)µ(Q), g p ′ ,Q + ||h|| X ≦ ε. (3.1) 
(ii) Furthermore, there exists a sequence of measures

µ n = (f n , g n , h n ), such that f n , g n , h n ∈ C ∞ c (Q) and strongly converge to f, g, h in L 1 (Q), (L p ′ (Q))
N and X respectively, and µ n converges to µ in the narrow topology, and satisfying

||f n || 1,Q + g n p ′ ,Q + ||h n || X ≦ (1 + 2ε)µ(Q), g n p ′ ,Q + ||h n || X ≦ 2ε. (3.2)
Proof. (i) Step 1. Case where µ has a compact support in Q. By [START_REF] Droniou | Parabolic capacity and soft measures for nonlinear equations[END_REF], we can find a decomposition µ = (f, g, h) with f, g, h have a compact support in Q. Let {ϕ n } be sequence of mollifiers in N and X respectively, we have for n 0 large enough,

R N +1 . Then µ n = ϕ n * µ ∈ C ∞ c (Q) for n large enough. We see that µ n (Q) = µ(Q) and µ n admits the decomposition µ n = (f n , g n , h n ) = (ϕ n * f, ϕ n * g, ϕ n * h). Since {f n } , {g n } , {h n } strongly converge to f, g, h in L 1 (Q), (L p ′ (Q))
||f -f n 0 || 1,Q + ||g -g n 0 || p ′ ,Q + ||h -h n 0 || X ≦ ε min{µ(Q), 1}.
Then we obtain a decomposition µ = ( f , ĝ, ĥ) = (µ

n 0 + f -f n 0 , g -g n 0 , h -h n 0 ), such that || f || 1,Q + ||ĝ|| p ′ ,Q + || ĥ|| X ≦ (1 + ε)µ(Q), ĝ p ′ ,Q + || ĥ|| X ≦ ε. (3.3)
Step 2. General case. Let {θ n } be a nonnegative, nondecreasing sequence in C ∞ c (Q) which converges to 1, a.e. in Q. Set μ0 = θ 0 µ, and μn = (θ nθ n-1 )µ, for any n ≧ 1. Since μn

∈ M 0 (Q) ∩ M + b (Q) has compact support, by
Step 1, we can find a decomposition μn = ( fn , gn , hn ) such that

|| fn || 1,Q + gn p ′ ,Q + || hn || X ≦ (1 + ε)µ n (Q), ||g n || p ′ ,Q + || hn || X ≦ 2 -n-1 ε. Let f n = n k=0 fk , g n = n k=0
gk and hn = n k=0 hk . Clearly, θ n µ = (f n , g n , hn ), and f n ,{g n } , hn converge strongly to some f, g, h, respectively in

L 1 (Q), (L p ′ (Q)) N , X, with ||f n || 1,Q + ||g n || p ′ ,Q + || hn || X ≦ (1 + ε)µ(Q), ||g n || p ′ ,Q + || hn || X ≦ ε.
Therefore, µ = (f, g, h) and (3.1) holds.

(ii) We take a sequence {m n } in N such that

f n = ϕ mn * f n , g n = ϕ mn * g n , h n = ϕ mn * hn ∈ C ∞ c (Q) and ||f n -f n || 1,Q + ||g n -g n || p ′ ,Q + ||h n -hn || X ≦ ε n + 1 min{µ(Q), 1}. Let µ n = ϕ mn * (θ n µ) = (f n , g n , h n ). Therefore, {f n } , {g n } , {h n } strongly converge to f, g, h in L 1 (Q), (L p ′ (Q))
N and X respectively. And (3.2) holds. Furthermore, {µ n } converges weak-* to µ, and µ n (Q) = Q θ n dµ converges to µ(Q), thus {µ n } converges in the narrow topology.

As a consequence, we get an approximation property for any measure µ ∈ M + b (Q) :

Proposition 3.2 Let µ ∈ M + b (Q) and ε > 0. Let {µ n } be a nondecreasing sequence in M + b (Q) converging to µ in M b (Q). Then, there exist f n , f ∈ L 1 (Q), g n , g ∈ (L p ′ (Q)) N and h n , h ∈ X, µ n,s , µ s ∈ M + s (Q) such that µ = f -div g + h t + µ s , µ n = f n -div g n + (h n ) t + µ n,s ,
and {f n } , {g n } , {h n } strongly converge to f, g, h in L 1 (Q), (L p ′ (Q)) N and X respectively, and {µ n,s } converges to µ s (strongly) in M b (Q) and

||f n || 1,Q + ||g n || p ′ ,Q + ||h n || X + µ n,s (Ω) ≦ (1 + ε)µ(Q), and 
||g n || p ′ ,Q + ||h n || X ≦ ε. (3.4) Proof. Since {µ n } is nondecreasing, then {µ n,0 }, {µ n,s } are too. Clearly, µ -µ n M b (Q) = µ 0 -µ n,0 M b (Q) + µ s -µ n,s M b (Q) .
Hence, {µ n,s } converge to µ s and {µ n,0 } converge to µ 0 (strongly) in M b (Q). Set µ 0,0 = µ 0,0 , and µ n,0 = µ n,0µ n-1,0 for any n ≧ 1. By Lemma 3.1, (i), we can find fn ∈ L 1 (Q), gn ∈ (L p ′ (Q)) N and hn ∈ X such that μn,0 = ( fn , gn , hn ) and

|| fn || 1,Q + ||g n || p ′ ,Q + || hn || X ≦ (1 + ε)μ n,0 (Q), ||g n || p ′ ,Q + || hn || X ≦ 2 -n-1 ε. Let f n = n k=0 fk , G n = n k=0
gk and h n = n k=0 hk . Clearly, µ n,0 = (f n , g n , h n ) and the convergence properties hold with (3.4), since

||f n || 1,Q + ||g n || p ′ ,Q + ||h n || X ≦ (1 + ε)µ 0 (Q).
In Section 6 we consider some measures µ ∈ M b (Q) which satisfy |µ| ≦ ω ⊗ F, with ω ∈ M b (Ω) and F ∈ L 1 ((0, T )), F ≧ 0. It is interesting to compare the properties of ω ⊗ F and ω : Let c Ω p be the elliptic capacity in Ω defined by

c Ω p (K) = inf{ Ω |∇ϕ| p : ϕ ≧ χ K , ϕ ∈ C ∞ c (Ω)},
for any compact set K ⊂ Ω.

Let M 0,e (Ω) be the set of Radon measures ω on that do not charge the sets of zero c Ω p -capacity. Then M b (Ω) ∩ M 0,e (Ω) is characterised as the set of measures ω ∈ M b (Ω) which can be written under the form fdiv g with f ∈ L 1 (Ω) and g ∈ (L p ′ (Ω)) N , see [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF]. 

Proposition 3.3 For any F ∈ L 1 ((0, T )) with T 0 F (t)dt = 0, and ω ∈ M b (Ω), ω ∈ M 0,e (Ω) ⇐⇒ ω ⊗ F ∈ M 0 (Q). Proof. Assume that ω ⊗ F ∈ M 0 (Q). Then, there exist f ∈ L 1 (Q), g ∈ L p ′ (Q) N and h ∈ X, such that Q ϕ(x, t)F (t)dω(x)dt = Q ϕ(x, t)f (x, t)dxdt + Q g(x, t).∇ϕ(x, t)dxdt - Q h(x, t)ϕ t (t, x)dxdt, (3.5) for all ϕ ∈ C ∞ c (Ω × [0, T ]),
Ω ϕ(x)dω(x) = Ω ϕ(x) f (x)dx + Ω g(x).∇ϕ(x)dx, where f (x) = T 0 F (t)dt -1 T 0 f (x, t)dt ∈ L 1 (Ω) and g(x) = T 0 F (t)dt -1 T 0 g(x, t)dt ∈ L p ′ (Ω) N ; hence ω ∈ M 0,e (Ω).
Conversely, assume that ω = fdiv g ∈ M 0,e (Ω), with f ∈ L 1 (Ω) and g ∈ L p ′ (Ω)

N . So ω ⊗ T n (F ) = f n -div g n , with f n = f T n (F ) ∈ L 1 (Q) and g n = gT n (F ) ∈ L p ′ (Q) N . Then ω ⊗ T n (F ) admits the decomposition (f n , g n , h), with h = 0 ∈ L ∞ (Q), thus ω ⊗ T n (F ) ∈ M 0 (Q). And {ω ⊗ T n (F )} converges to ω ⊗ F strongly in M b (Q), since ||ω ⊗ (F -T n (F ))|| M b (Q) ≦ ||ω|| M b (Ω) F -T n (F ) L 1 ((0,T )) . Then ω ⊗ F ∈ M 0 (Q), since M 0 (Q) ∩ M b (Q) is strongly closed in M b (Q).
4 Renormalized solutions of problem (1.1)

Notations and Definition

For any function f ∈ L 1 (Q), we write Q f instead of Q f dxdt, and for any measurable set E ⊂Q,

E f instead of E f dxdt.
We set T k (r) = max{min{r, k}, -k}, for any k > 0 and r ∈ R. We recall that if u is a measurable function defined and finite a.e. in Q, such that T k (u) ∈ X for any k > 0, there exists a measurable function w from Q into R N such that ∇T k (u) = χ |u|≦k w, a.e. in Q, and for any k > 0. We define the gradient ∇u of u by w = ∇u.

Let µ = µ 0 +µ s ∈ M b (Q),
and (f, g, h) be a decomposition of µ 0 given by (1.11), and µ 0 = µ 0 -h t = fdiv g. In the general case µ 0 / ∈ M(Q), but we write, for convenience,

Q wd µ 0 := Q (f w + g.∇w), ∀w ∈ X∩L ∞ (Q). Definition 4.1 Let u 0 ∈ L 1 (Ω), µ = µ 0 + µ s ∈ M b (Q). A measurable function u is a renor- malized solution, called R-solution of (1.1) if there exists a decompostion (f, g, h) of µ 0 such that v = u -h ∈ L σ (0, T ; W 1,σ 0 (Ω) ∩ L ∞ (0, T ; L 1 (Ω)), ∀σ ∈ [1, m c ) ; T k (v) ∈ X, ∀k > 0, ( 4.1) and: 
(i) for any S ∈ W 2,∞ (R) such that S ′ has compact support on R, and S(0) = 0,

- Ω S(u 0 )ϕ(0)dx- Q ϕ t S(v)+ Q S ′ (v)A(x, t, ∇u).∇ϕ+ Q S ′′ (v)ϕA(x, t, ∇u).∇v = Q S ′ (v)ϕd µ 0 , (4.2) for any ϕ ∈ X ∩ L ∞ (Q) such that ϕ t ∈ X ′ + L 1 (Q) and ϕ(T, .) = 0; (ii) for any φ ∈ C(Q), lim m→∞ 1 m {m≦v<2m} φA(x, t, ∇u).∇v = Q φdµ + s (4.3) lim m→∞ 1 m {-m≧v>-2m} φA(x, t, ∇u).∇v = Q φdµ - s . (4.4) Remark 4.2 As a consequence, S(v) ∈ C([0, T ]; L 1 (Ω)
) and S(v)(0, .) = S(u 0 ) in Ω; and u satisfies the equation

(S(v)) t -div(S ′ (v)A(x, t, ∇u)) + S ′′ (v)A(x, t, ∇u).∇v= f S ′ (v) -div(gS ′ (v)) + S ′′ (v)g.∇v, (4.5) in the sense of distributions in Q, see [49, Remark 3]. Moreover S(v) t X ′ +L 1 (Q) ≦ div(S ′ (v)A(x, t, ∇u)) X ′ + S ′′ (v)A(x, t, ∇u).∇v 1,Q + S ′ (v)f 1,Q + g.S ′′ (v)∇v 1,Q + div(S ′ (v)g) X ′ . Thus, if [-M, M ] ⊃ suppS ′ , S ′′ (v)A(x, t, ∇u).∇v 1,Q ≤ S W 2,∞ (R) ( A(x, t, ∇u)χ |v|≦M p ′ p ′ ,Q + |∇T M (v)| p p,Q ) ≦ C S W 2,∞ (R) ( |∇u| p χ |v|≦M 1,Q + ||a|| p ′ p ′ ,Q + |∇T M (v)| p p,Q ) thus S(v) t X ′ +L 1 (Q) ≦ C S W 2,∞ (R) ( |∇u| p χ |v|≦M 1/p ′ 1,Q + |∇u| p χ |v|≦M 1,Q + |∇T M (v)| p p,Q + a p ′ ,Q + a p ′ p ′ ,Q + f 1,Q + g p ′ ,Q |∇u| p χ |v|≦M 1/p 1,Q + g p ′ ,Q ) (4.6)
We also deduce that, for any 

ϕ ∈ X ∩ L ∞ (Q), such that ϕ t ∈ X ′ + L 1 (Q), Ω S(v(T ))ϕ(T )dx - Ω S(u 0 )ϕ(0)dx - Q ϕ t S(v) + Q S ′ (v)A(x, t, ∇u).∇ϕ + Q S ′′ (v)A(x, t, ∇u).∇vϕ = Q S ′ (v)ϕd µ 0 . ( 4 
lim m→∞ 1 m {m≦v<2m} φA(x, t, ∇u).∇u = Q φdµ + s (4.8) resp. lim m→∞ 1 m {m≧v>-2m} φA(x, t, ∇u).∇u = Q φdµ - s . (4.9)
In particular, for any ϕ ∈ L p ′ (Q) there holds 

lim m→∞ 1 m m≦|v|<2m |∇u|ϕ = 0, lim m→∞ 1 m m≦|v|<2m |∇v|ϕ = 0. (4.10) Remark 4.4 (i) Any function U ∈ X such that U t ∈ X ′ + L 1 (Q) admits a unique c Q p -quasi continuous representative, defined c Q p -quasi a.e. in Q, still denoted U. Furthermore, if U ∈ L ∞ (Q), then for any µ 0 ∈ M 0 (Q), there holds U ∈ L ∞ (Q, dµ 0 ),

Steklov and Landes approximations

A main difficulty for proving Theorem 2.1 is the choice of admissible test functions (S, ϕ) in (4.2), valid for any R-solution. Because of a lack of regularity of these solutions, we use two ways of approximation adapted to parabolic equations:

Definition 4.5 Let ε ∈ (0, T ) and z ∈ L 1 loc (Q). For any l ∈ (0, ε) we define the Steklov time- averages [z] l , [z] -l of z by [z] l (x, t) = 1 l t+l t z(x, s)ds for a.e. (x, t) ∈ Ω × (0, T -ε), [z] -l (x, t) = 1 l t t-l z(x, s)ds for a.e. (x, t) ∈ Ω × (ε, T ).
The idea to use this approximation for R-solutions can be found in [START_REF] Blanchard | Stefan problems with nonlinear diffusion and convection[END_REF]. Recall some properties, given in [START_REF] Petitta | Diffuse measures and nonlinear parabolic equations[END_REF]. Let ε ∈ (0, T ), and

ϕ 1 ∈ C ∞ c (Ω × [0, T )), ϕ 2 ∈ C ∞ c (Ω × (0, T ]) with Suppϕ 1 ⊂ Ω × [0, T -ε], Suppϕ 2 ⊂ Ω × [ε, T ]. There holds (i) If z ∈ X, then ϕ 1 [z] l and ϕ 2 [z] -l ∈ W. (ii) If z ∈ X and z t ∈ X ′ + L 1 (Q), then, as l → 0, (ϕ 1 [z] l ) and (ϕ 2 [z] -l ) converge respectively
to ϕ 1 z and ϕ 2 z in X, and a.e. in Q; and (ϕ

1 [z] l ) t , (ϕ 2 [z] -l ) t converge to (ϕ 1 z) t , (ϕ 2 z) t in X ′ + L 1 (Q). (iii) If moreover z ∈ L ∞ (Q), then from any sequence {l n } → 0, there exists a subsequence {l ν } such that {[z] lν } , {[z] -lν } converge to z, c Q p -quasi everywhere in Q.
Next we recall the approximation introduced in [START_REF] Landes | On the existence of weak solutions for quasilinear parabolic initial boundary-value problems[END_REF], used in [START_REF] Dall'aglio | Existence results for some nonlinear parabolic equations with nonregular data[END_REF], [START_REF] Boccardo | Nonlinear parabolic equations with measure data[END_REF], [START_REF] Blanchard | Nonlinear parabolic equations with natural growth terms and measure initial data[END_REF]:

Definition 4.6 Let µ ∈ M b (Q) and u 0 ∈ L 1 (Ω).
Let u be a R-solution of (1.1), and v = uh given at (4.1), and k > 0. For any ν ∈ N, the Landes-time approximation T k (v) ν of the truncate function T k (v) is defined in the following way:

Let {z ν } be a sequence of functions in W 1,p 0 (Ω) ∩ L ∞ (Ω), such that ||z ν || ∞,Ω ≦ k, {z ν } converges to T k (u 0 ) a.e. in Ω, and ν -1 ||z ν || p W 1,p 0 (Ω)
converges to 0. Then, T k (v) ν is the unique solution of the problem

( T k (v) ν ) t = ν (T k (v)-T k (v) ν ) in the sense of distributions, T k (v) ν (0) = z ν , in Ω. Therefore, T k (v) ν ∈ X ∩ L ∞ (Q) and (T k (v) ν ) t ∈ X, see [42]. Furthermore, up to subse- quences, { T k (v) ν } converges to T k (v) strongly in X and a.e. in Q, and || (T k (v)) ν || L ∞ (Q) ≦ k.

First properties

In the sequel we use the following notations: for any function J ∈ W 1,∞ (R), nondecreasing with J(0) = 0, we set

J(r) = r 0 J(τ )dτ, J (r) = r 0 J ′ (τ )τ dτ. (4.11)
It is easy to verify that J (r) ≧ 0,

J (r) + J(r) = J(r)r, and J (r) -J (s) ≧ s (J(r) -J(s)) ∀r, s ∈ R. (4.12) 
In particular we define, for any k > 0, and any r ∈ R,

T k (r) = r 0 T k (τ )dτ, T k (r) = r 0 T ′ k (τ )τ dτ, (4.13) 
and we use several times a truncature used in [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]:

H m (r) = χ [-m,m] (r) + 2m -|s| m χ m<|s|≦2m (r), H m (r) = r 0 H m (τ )dτ. (4.14)
The next Lemma allows to extend the range of the test functions in (4.2). Its proof, given in the Appendix, is obtained by Steklov approximation of the solutions. Lemma 4.7 Let u be a R-solution of problem (1.1). Let J ∈ W 1,∞ (R) be nondecreasing with J(0) = 0, and J defined by (4.11). Then,

Q S ′ (v)A(x, t, ∇u).∇ (ξJ(S(v))) + Q S ′′ (v)A(x, t, ∇u).∇vξJ(S(v)) - Ω ξ(0)J(S(u 0 ))S(u 0 )- Q ξ t J (S(v)) ≦ Q S ′ (v)ξJ(S(v))d µ 0 , (4.15) 
for any S ∈ W 2,∞ (R) such that S ′ has compact support on R and S(0) = 0, and for any ξ ∈

C 1 (Q) ∩ W 1,∞ (Q), ξ ≧ 0.
Next we give estimates of the gradient, following the first estimates of [START_REF] Boccardo | Nonlinear parabolic equations with measure data[END_REF], see also [START_REF] Droniou | Parabolic capacity and soft measures for nonlinear equations[END_REF], [49, Proposition 2], [START_REF] Leonori | Local estimates for parabolic equations with nonlinear gradient terms[END_REF]. 

and v L ∞ ((0,T );L 1 (Ω)) ≦ c(M + |Ω|), (4.17) 
where

M = u 0 1,Ω + |µ s | (Q)+ f 1,Q + g p ′ p ′ ,Q + h p X + ||a|| p ′ p ′ ,Q . As a consequence, for any k ≧ 1, meas {|v| > k} ≦ C 1 M 1 k -pc , meas {|∇v| > k} ≦ C 2 M 2 k -mc , (4.18) meas {|u| > k} ≦ C 3 M 2 k -pc , meas {|∇u| > k} ≦ C 4 M 2 k -mc , (4.19) 
where

C i = C i (N, p, c 1 , c 2 ), i = 1-4, and M 1 = (M +|Ω|) p N M and M 2 = M 1 + M.
Proof. Set for any r ∈ R, and m, k, ℓ > 0, T k,ℓ (r) = max{min{rℓ, k}, 0} + min{max{r + ℓ, -k}, 0}.

For m > k+ℓ, we can choose (J, S, ξ) = (T k,ℓ , H m , ξ) as test functions in (4. [START_REF] Bidaut-Véron | Necessary conditions of existence for an elliptic equation with source term and measure data involving the p-Laplacian[END_REF], where H m is defined at (4.14) and ξ ∈ C 1 ([0, T ]) with values in [0, 1], independent on x. Since T k,ℓ (H m (r)) = T k,ℓ (r) for all r ∈ R, we obtain

-Ω ξ(0)T k,ℓ (u 0 )H m (u 0 ) -Q ξ t T k,ℓ (H m (v)) + {ℓ≦|v|<ℓ+k} ξA(x, t, ∇u).∇v -k m {m≦|v|<2m} ξA(x, t, ∇u).∇v ≦ Q H m (v)ξT k,ℓ (v)d µ 0 .
And

Q H m (v)ξT k,ℓ (v)d µ 0 = Q H m (v)ξT k,ℓ (v)f + {ℓ≦|v|<ℓ+k} ξ∇v.g- k m {m≦|v|<2m} ξ∇v.g.
Let m → ∞; then, for any k ≧ 1, since v ∈ L 1 (Q) and from (4.3), (4.4), and (4.10), we find

- Q ξ t T k,ℓ (v) + {ℓ≦|v|<ℓ+k} ξA(x, t, ∇u).∇v ≦ {ℓ≦|v|<ℓ+k} ξ∇v.g + k( u 0 1,Ω + |µ s | (Q)+ f 1,Q ). (4.20)
Next, we take ξ ≡ 1. We verify that there exists c = c(p) such that

A(x, t, ∇u).∇v -∇v.g ≧ c 1 4 (|∇u| p + |∇v| p ) -c(|g| p ′ + |∇h| p + |a| p ′ )
where c 1 is the constant in (1.2). Hence (4.16) follows. Thus, from (4.20) and the Hölder inequality, we get, with another constant c, for any

ξ ∈ C 1 ([0, T ]) with values in [0, 1], - Q ξ t T k,ℓ (v) ≦ ckM
Thus Ω T k,ℓ (v)(t) ≦ ckM, for a.e. t ∈ (0, T ). We deduce (4.17) by taking k = 1, ℓ = 0, since

T 1,0 (r) = T 1 (r) ≧ |r| -1, for any r ∈ R.
Next, from the Gagliardo-Nirenberg embedding Theorem, we have

Q |T k (v)| p(N+1) N ≦ C 1 v p N L ∞ ((0,T );L 1 (Ω)) Q |∇T k (v)| p ,
where C 1 = C 1 (N, p). Then, from (4.16) and (4.17), we get, for any k ≧ 1,

meas {|v| > k} ≦ k -p(N+1) N Q |T k (v)| p(N+1) N ≦ C v p N L ∞ ((0,T );L 1 (Ω)) k -p(N+1) N Q |∇T k (v)| p ≦ C 2 M 1 k -pc , with C 2 = C 2 (N, p, c 1 , c 2 ). We obtain meas {|∇v| > k} ≦ 1 k p k p 0 meas ({|∇v| p > s}) ds ≦ meas |v| > k N N+1 + 1 k p k p 0 meas |∇v| p > s, |v| ≦ k N N+1 ds ≦ C 2 M 1 k -mc + 1 k p |v|≦k N N+1 |∇v| p ≦ C 2 M 2 k -mc , with C 3 = C 3 (N, p, c 1 , c 2 ). Furthermore, for any k ≧ 1, meas {|h| > k} + meas {|∇h| > k} ≦ C 4 k -p h p X ,
where 

C 4 = C 4 (N, p, c 1 , c 2 ).
meas {|u| > k} ≦ C 3 M p+N N k -pc , meas {|∇u| > k} ≦ C 4 M N+2 N+1 k -mc , ∀k > 0. (4.21)
To see last inequality, we do in the following way:

meas {|∇v| > k} ≦ 1 k p k p 0 meas ({|∇v| p > s}) ds ≦ meas |v| > M 1 N+1 k N N+1 + 1 k p k p 0 meas |∇v| p > s, |v| ≦ M 1 N+1 k N N+1 ds ≦ C 4 M N+2 N+1 k -mc . Proposition 4.10 Let {µ n } ⊂ M b (Q), and {u 0,n } ⊂ L 1 (Ω), with sup n |µ n | (Q) < ∞, and sup n ||u 0,n || 1,Ω < ∞.
Let u n be a R-solution of (1.1) with data µ n = µ n,0 + µ n,s and u 0,n , relative to a decomposition (f n , g n , h n ) of µ n,0 , and

v n = u n -h n . Assume that {f n } is bounded in L 1 (Q), {g n } bounded in (L p ′ (Q)) N and {h n } bounded in X.
Then, up to a subsequence, {v n } converges a.e. to a function v, such that

T k (v) ∈ X and v ∈ L σ ((0, T ); W 1,σ 0 (Ω)) ∩ L ∞ ((0, T ); L 1 (Ω)) for any σ ∈ [1, m c ). And (i) {v n } converges to v strongly in L σ (Q) for any σ ∈ [1, m c ), and sup v n L ∞ ((0,T );L 1 (Ω)) < ∞, (ii) sup k>0 sup n 1 k+1 Q |∇T k (v n )| p < ∞, (iii) {T k (v n )} converges to T k (v) wealkly in X, for any k > 0, (iv) {A (x, t, ∇ (T k (v n ) + h n ))} converges to some F k weakly in (L p ′ (Q)) N .
Proof. Take S ∈ W 2,∞ (R) such that S ′ has compact support on R and S(0) = 0. We combine (4.6) with (4.16), and deduce that

{S(v n ) t } is bounded in X ′ + L 1 (Q) and {S(v n )} bounded in X. Hence, {S(v n )} is relatively compact in L 1 (Q). On the other hand, we choose S = S k such that S k (z) = z, if |z| < k and S(z) = 2k signz, if |z| > 2k.
Thanks to (4.17), we obtain

meas {|v n -v m | > σ} ≦ meas {|v n | > k} + meas {|v m | > k} + meas {|S k (v n ) -S k (v m )| > σ} ≦ 1 k ( v n 1,Q + v m 1,Q ) + meas {|S k (v n ) -S k (v m )| > σ} ≦ C k + meas {|S k (v n ) -S k (v m )| > σ} . (4.22)
Thus, up to a subsequence {u n } is a Cauchy sequence in measure, and converges a.e. in Q to a function u. Thus,

{T k (v n )} converges to T k (v) weakly in X, since sup n T k (v n ) X < ∞ for any k > 0. And |∇ (T k (v n ) + h n ) | p-2 ∇ (T k (v n ) + h n ) converges to some F k weakly in (L p ′ (Q)) N .
Furthermore, from (4.18), {v n } converges to v strongly in L σ (Q), for any σ < p c .

The convergence theorem

We first recall some properties of the measures, see [START_REF] Petitta | Renormalized solutions of nonlinear parabolic equations with general measure data[END_REF]Lemma 5], [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF].

Proposition 5.1 Let µ s = µ + s -µ - s ∈ M b (Q)
, where µ + s and µ - s are concentrated, respectively, on two disjoint sets E + and E -of zero c Q p -capacity. Then, for any δ > 0, there exist two compact sets

K + δ ⊆ E + and K - δ ⊆ E -such that µ + s (E + \K + δ ) ≦ δ, µ - s (E -\K - δ ) ≦ δ,
and there exist

ψ + δ , ψ - δ ∈ C 1 c (Q) with values in [0, 1] , such that ψ + δ , ψ - δ = 1 respectively on K + δ , K - δ , and supp(ψ + δ ) ∩ supp(ψ - δ ) = ∅, and 
||ψ + δ || X + ||(ψ + δ ) t || X ′ +L 1 (Q) ≦ δ, ||ψ - δ || X + ||(ψ - δ ) t || X ′ +L 1 (Q) ≦ δ.
There exist decompositions (ψ

+ δ ) t = ψ + δ 1 t + ψ + δ 2 t and (ψ - δ ) t = ψ - δ 1 t + ψ - δ 2 t in X ′ + L 1 (Q), such that ψ + δ 1 t X ′ ≦ δ 3 , ψ + δ 2 t 1,Q ≦ δ 3 , ψ - δ 1 t X ′ ≦ δ 3 , ψ - δ 2 t 1,Q ≦ δ 3 . (5.1) 
Both ψ + δ and ψ - δ converge to 0, * -weakly in L ∞ (Q), and strongly in L 1 (Q) and up to subsequences, a.e. in Q, as δ tends to 0.

Moreover if ρ n and η n are as in Theorem 2.1, we have, for any δ, δ 1 , δ 2 > 0,

Q ψ - δ dρ n + Q ψ + δ dη n = ω(n, δ), Q ψ - δ dµ + s ≦ δ, Q ψ + δ dµ - s ≦ δ, (5.2) 
Q (1 -ψ + δ 1 ψ + δ 2 )dρ n = ω(n, δ 1 , δ 2 ), Q (1 -ψ + δ 1 ψ + δ 2 )dµ + s ≦ δ 1 + δ 2 , (5.3) 
Q (1 -ψ - δ 1 ψ - δ 2 )dη n = ω(n, δ 1 , δ 2 ), Q (1 -ψ - δ 1 ψ - δ 2 )dµ - s ≦ δ 1 + δ 2 . (5.4) 
Hereafter, if n, ε, ..., ν are real numbers, and a function φ depends on n, ε, ..., ν and eventual other parameters α, β, .., γ, and n → n 0 , ε → ε 0 , .., ν → ν 0 , we write φ = ω(n, ε, .., ν), then this means lim ν→ν 0 ..lim ε→ε 0 lim n→n 0 |φ| = 0, when the parameters α, β, .., γ are fixed. In the same way, φ ≦ ω(n, ε, δ, ..., ν) means lim ν→ν 0 ..lim ε→ε 0 lim n→n 0 φ ≦ 0, and φ ≧ ω(n, ε, .., ν) means -φ ≦ ω(n, ε, .., ν). Remark 5.2 In the sequel we use a convergence property, consequence of the Dunford-Pettis theorem, still used in [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]

: If {a n } is a sequence in L 1 (Q) converging to a weakly in L 1 (Q) and {b n } a bounded sequence in L ∞ (Q) converging to b, a.e. in Q, then lim n→∞ Q a n b n = Q ab.
Next we prove Thorem 2.1.

Scheme of the proof. Let {µ n }, {u 0,n } and {u n } satisfying the assumptions of Theorem 2.1. Then we can apply Proposition 4.10. Setting v n = u nh n , up to subsequences, {u n } converges a.e. in Q to some function u, and {v n } converges a.e. to v = uh, such that T k (v) ∈ X and v ∈ L σ ((0, T ); W 1,σ 0 (Ω))∩L ∞ ((0, T ); L 1 (Ω)) for every σ ∈ [1, m c ). And {v n } satisfies the conclusions (i) to (iv) of Proposition 4.10. We have

µ n = (f n -div g n + (h n ) t ) + (ρ 1 n -div ρ 2 n ) -(η 1 n -div η 2 n ) + ρ n,s -η n,s = µ n,0 + (ρ n,s -η n,s ) + -(ρ n,s -η n,s ) -,
where

µ n,0 = λ n,0 + ρ n,0 -η n,0 , with λ n,0 = f n -div g n + (h n ) t , ρ n,0 = ρ 1 n -div ρ 2 n , η n,0 = η 1 n -div η 2 n . (5.5) Hence ρ n,0 , η n,0 ∈ M + b (Q) ∩ M 0 (Q), and ρ n ≧ ρ n,0 , η n ≧ η n,0 . (5.6) 
Let E + , E -be the sets where, respectively, µ + s and µ - s are concentrated. For any δ 1 , δ 2 > 0, let

ψ + δ 1 , ψ + δ 2 and ψ - δ 1 , ψ - δ 2 as in Proposition 5.1 and set Φ δ 1 ,δ 2 = ψ + δ 1 ψ + δ 2 + ψ - δ 1 ψ - δ 2 .
Suppose that we can prove the two estimates, near E

I 1 := {|vn|≦k} Φ δ 1 ,δ 2 A(x, t, ∇u n ).∇ (v n -T k (v) ν ) ≦ ω(n, ν, δ 1 , δ 2 ), (5.7) 
and far from E,

I 2 := {|vn|≦k} (1 -Φ δ 1 ,δ 2 )A(x, t, ∇u n ).∇(v n -T k (v) ν ) ≦ ω(n, ν, δ 1 , δ 2 ). (5.8) 
Then it follows that lim n,ν

{|vn|≦k} A(x, t, ∇u n ).∇ (v n -T k (v) ν ) ≦ 0, (5.9) 
which implies

lim n→∞ {|vn|≦k} A(x, t, ∇u n ).∇ (v n -T k (v)) ≦ 0, (5.10) since { T k (v) ν } converges to T k (v) in X.
On the other hand, from the weak convergence of

{T k (v n )} to T k (v) in X, we verify that {|vn|≦k} A(x, t, ∇(T k (v) + h n )).∇ (T k (v n ) -T k (v)) = ω(n).
Thus we get

{|vn|≦k} (A(x, t, ∇u n ) -A(x, t, ∇(T k (v) + h n ))) .∇ (u n -(T k (v) + h n )) = ω(n).
Then, it is easy to show that, up to a subsequence, {∇u n } converges to ∇u, a.e. in Q.

(5.11)

Therefore, {A(x, t, ∇u n )} converges to A(x, t, ∇u) weakly in (L p ′ (Q)) N ; and from (5.10) we find

lim n→∞ Q A(x, t, ∇u n ).∇T k (v n ) ≦ Q A(x, t, ∇u)∇T k (v). Otherwise, {A(x, t, ∇ (T k (v n ) + h n ))} converges weakly in (L p ′ (Q)) N to some F k , from Proposition 4.
10, and we obtain that

F k = A(x, t, ∇ (T k (v) + h)). Hence lim n→∞ Q A(x, t, ∇(T k (v n ) + h n )).∇(T k (v n ) + h n ) ≦ lim n→∞ Q A(x, t, ∇u n ).∇T k (v n ) + lim n→∞ Q A(x, t, ∇(T k (v n ) + h n )).∇h n ≦ Q A(x, t, ∇(T k (v) + h)).∇(T k (v) + h).
As a consequence

{T k (v n )} converges to T k (v)
, strongly in X, ∀k > 0.

(5.12)

Then to finish the proof we have to check that u is a solution of (1.1).

In order to prove (5.7) we need a first Lemma, inspired of [32, Lemma 6.1], extending [49, Lemma 6 and Lemma 7]:

Lemma 5.3 Let ψ 1,δ , ψ 2,δ ∈ C 1 (Q) be uniformly bounded in W 1,∞ (Q) with values in [0, 1], such that Q ψ 1,δ dµ - s ≦ δ and Q ψ 2,δ dµ + s ≦ δ.
Then, under the assumptions of Theorem 2.1,

1 m {m≦vn<2m} |∇u n | p ψ 2,δ = ω(n, m, δ), 1 m {m≦vn<2m} |∇v n | p ψ 2,δ = ω(n, m, δ), (5.13) 1 m -2m<vn≦-m |∇u n | p ψ 1,δ = ω(n, m, δ), 1 m -2m<vn≦-m |∇v n | p ψ 1,δ = ω(n, m, δ), (5.14) 
and for any k > 0,

{m≦vn<m+k} |∇u n | p ψ 2,δ = ω(n, m, δ), {m≦vn<m+k} |∇v n | p ψ 2,δ = ω(n, m, δ), (5.15) 
{-m-k<vn≦-m}

|∇u n | p ψ 1,δ = ω(n, m, δ), {-m-k<vn≦-m} |∇v n | p ψ 1,δ = ω(n, m, δ).
(5.16)

Proof. (i) Proof of (5.13), (5.14). Set for any r ∈ R and any m, ℓ ≧ 1

S m,ℓ (r) = r 0 -m + τ m χ [m,2m] (τ ) + χ (2m,2m+ℓ] (τ ) + 4m + 2h -τ 2m + ℓ χ (2m+ℓ,4m+2h] (τ ) dτ, S m (r)= r 0 -m + τ m χ [m,2m] (τ ) + χ (2m,∞) (τ ) dτ . Note that S ′′ m,ℓ = χ [m,2m] /m -χ [2m+ℓ,2 (2m+ℓ) 
] /(2m + ℓ). We choose (ξ, J, S) = (ψ 2,δ , T 1 , S m,ℓ ) as test functions in (4.15) for u n , and observe that, from (5.5),

µ n,0 = µ n,0 -(h n ) t = λ n,0 + ρ n,0 -η n,0 = f n -div g n + ρ n,0 -η n,0 .
(5.17)

Thus we can write 6 i=1 A i ≦ 12 i=7 A i , where

A 1 = - Ω ψ 2,δ (0)T 1 (S m,ℓ (u 0,n ))S m,ℓ (u 0,n ), A 2 = - Q (ψ 2,δ ) t T 1 (S m,ℓ (v n )), A 3 = Q S ′ m,ℓ (v n )T 1 (S m,ℓ (v n ))A(x, t, ∇u n )∇ψ 2,δ , A 4 = Q S ′ m,ℓ (v n ) 2 ψ 2,δ T ′ 1 (S m,ℓ (v n ))A(x, t, ∇u n )∇v n , A 5 = 1 m {m≦vn≦2m} ψ 2,δ T 1 (S m,ℓ (v n ))A(x, t, ∇u n )∇v n , A 6 = - 1 2m + ℓ {2m+ℓ≦vn<2(2m+ℓ)} ψ 2,δ A(x, t, ∇u n )∇v n , A 7 = Q S ′ m,ℓ (v n )T 1 (S m,ℓ (v n ))ψ 2,δ f n , A 8 = Q S ′ m,ℓ (v n )T 1 (S m,ℓ (v n ))g n .∇ψ 2,δ , A 9 = Q S ′ m,ℓ (v n ) 2 T ′ 1 (S m,ℓ (v n ))ψ 2,δ g n .∇v n , A 10 = 1 m m≦vn≦2m T 1 (S m,ℓ (v n ))ψ 2,δ g n .∇v n , A 11 = - 1 2m + ℓ {2m+ℓ≦vn<2(2m+ℓ)} ψ 2,δ g n .∇v n , A 12 = Q S ′ m,ℓ (v n )T 1 (S m,ℓ (v n ))ψ 2,δ d (ρ n,0 -η n,0 ) . Since ||S m,ℓ (u 0,n )|| 1,Ω ≦ {m≦u 0,n } u 0,n dx, we find A 1 = ω(ℓ, n, m). Otherwise |A 2 | ≦ ψ 2,δ W 1,∞ (Q) {m≦vn} v n , |A 3 | ≦ ψ 2,δ W 1,∞ (Q) {m≦vn} |a| + c 2 |∇u n | p-1 ,
which implies A 2 = ω(ℓ, n, m) and A 3 = ω(ℓ, n, m). Using (4.3) for u n , we have

A 6 = - Q ψ 2,δ d(ρ n,s -η n,s ) + + ω(ℓ) = ω(ℓ, n, m, δ).
Hence A 6 = ω(ℓ, n, m, δ), since (ρ n,sη n,s ) + converges to µ + s as n → ∞ in the narrow topology, and Q ψ 2,δ dµ + s ≦ δ. We also obtain

A 11 = ω(ℓ) from (4.10). Now S ′ m,ℓ (v n )T 1 (S m,ℓ (v n )) ℓ converges to S ′ m (v n )T 1 (S m (v n )), S ′ m (v n )T 1 (S m (v n )) n converges to S ′ m (v) T 1 (S m (v)), S ′ m (v)T 1 (S m (v)) m converges to 0, * -weakly in L ∞ (Q), and {f n } converges to f weakly in L 1 (Q), {g n } converges to g strongly in (L p ′ (Q)) N . From Remark 5.

2, we obtain

A 7 = Q S ′ m (v n )T 1 (S m (v n ))ψ 2,δ f n + ω(ℓ) = Q S ′ m (v)T 1 (S m (v))ψ 2,δ f + ω(ℓ, n) = ω(ℓ, n, m), A 8 = Q S ′ m (v n )T 1 (S m (v n ))g n .∇ψ 2,δ + ω(ℓ) = Q S ′ m (v)T 1 (S m (v))g∇ψ 2,δ + ω(ℓ, n) = ω(ℓ, n, m).
Otherwise, A 12 ≦ Q ψ 2,δ dρ n , and Q ψ 2,δ dρ n converges to Q ψ 2,δ dµ + s , thus A 12 ≦ ω(ℓ, n, m, δ). Using Holder inequality and the condition (1.2) we have

g n .∇v n -A(x, t, ∇u n )∇v n ≤ C 1 |g n | p ′ + |∇h n | p + |a| p ′ with C 1 = C 1 (p, c 2 ), which implies A 9 -A 4 ≦ C 1 Q S ′ m,ℓ (v n ) 2 T ′ 1 (S m,ℓ (v n ))ψ 2,δ |g n | p ′ + |h n | p + |a| p ′ = ω(ℓ, n, m).
Similarly we also show that A 10 -A 5 /2 ≦ ω(ℓ, n, m). Combining the estimates, we get A 5 /2 ≦ ω(ℓ, n, m, δ). Using Holder inequality we have

A(x, t, ∇u n )∇v n ≥ c 1 2 |∇u n | p -C 2 (|a| p ′ + |∇h n | p ).
with

C 2 = C 2 (p, c 1 , c 2 ), which implies 1 m {m≦vn<2m} |∇u n | p ψ 2,δ T 1 (S m,ℓ (v n )) = ω(ℓ, n, m, δ).
Note that for all m > 4, S m,ℓ (r) ≧ 1 for any r ∈ [ 3 2 m, 2m]; hence T 1 (S m,ℓ (r) = 1. So,

1 m { 3 2 m≦vn<2m} |∇u n | p ψ 2,δ = ω(ℓ, n, m, δ). Since |∇v n | p ≦ 2 p-1 |∇u n | p + 2 p-1 |∇h n | p , there also holds 1 m { 3 2 m≦vn<2m}
|∇v n | p ψ 2,δ = ω(ℓ, n, m, δ).

We deduce (5.13) by summing on each set ( 43 ) ν m ≦ v n ≦ ( 4 3 ) ν+1 m for ν = 0, 1, 2. Similarly, we can choose (ξ, ψ, S) = (ψ 1,δ , T 1 , Sm,ℓ ) as test functions in (4.15) for u n , where Sm,ℓ (r) = S m,ℓ (-r), and we obtain (5.14).

(ii) Proof of (5.15), (5.16). We set, for any k, m, ℓ ≧ 1,

S k,m,ℓ (r) = r 0 T k (τ -T m (τ ))χ [m,k+m+ℓ] + k 2(k + ℓ + m) -τ k + m + ℓ χ (k+m+ℓ,2(k+m+ℓ)] dτ S k,m (r) = s 0 T k (τ -T m (τ ))χ [m,∞) dτ.
We choose (ξ, ψ, S) = (ψ 2,δ , T 1 , S k,m,ℓ ) as test functions in (4.15) for u n . In the same way we also obtain Next we look at the behaviour near E.

{m≦vn<m+k} |∇u n | p ψ 2,δ T 1 (S k,m,ℓ (v n )) = ω(ℓ, n, m, δ). Note that T 1 (S k,m,ℓ (r) 
Lemma 5.4 Estimate (5.7) holds.

Proof. There holds

I 1 = Q Φ δ 1 ,δ 2 A(x, t, ∇u n ).∇T k (v n )- {|vn|≦k} Φ δ 1 ,δ 2 A(x, t, ∇u n ).∇ T k (v) ν .
From Proposition 4.10, (iv), {A(x, t, 

∇ (T k (v n ) + h n )).∇ T k (v) ν } converges weakly in L 1 (Q) to F k ∇ T k (v) ν .
Φ δ 1 ,δ 2 A(x, t, ∇u n ).∇ T k (v) ν = Q χ {|vn|≦k} Φ δ 1 ,δ 2 A(x, t, ∇ (T k (v n ) + h n )).∇ T k (v) ν = Q χ |v|≦k Φ δ 1 ,δ 2 F k .∇ T k (v) ν + ω(n) = ω(n, ν, δ 1 ).
Therefore, if we prove that

Q Φ δ 1 ,δ 2 A(x, t, ∇u n ).∇T k (v n ) ≦ ω(n, δ 1 , δ 2 ), (5.18) 
then we deduce (5.7). As noticed in [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF], [START_REF] Petitta | Renormalized solutions of nonlinear parabolic equations with general measure data[END_REF], it is precisely for this estimate that we need the double cut ψ + δ 1 ψ + δ 2 . To do this, we set, for any m > k > 0, and any r ∈ R,

Ŝk,m (r) = r 0 (k -T k (τ )) H m (τ )dτ,
where

H m is defined at (4.14). Hence supp Ŝk,m ⊂ [-2m, k] ; and Ŝ′′ k,m = -χ [-k,k] + 2k m χ [-2m,-m] . We choose (ϕ, S) = (ψ + δ 1 ψ + δ 2
, Ŝk,m ) as test functions in (4.2). From (5.17), we can write

A 1 + A 2 -A 3 + A 4 + A 5 + A 6 = 0,
where

A 1 = - Q (ψ + δ 1 ψ + δ 2 ) t Ŝk,m (v n ), A 2 = Q (k -T k (v n ))H m (v n )A(x, t, ∇u n ).∇(ψ + δ 1 ψ + δ 2 ), A 3 = Q ψ + δ 1 ψ + δ 2 A(x, t, ∇u n ).∇T k (v n ), A 4 = 2k m {-2m<vn≦-m} ψ + δ 1 ψ + δ 2 A(x, t, ∇u n ).∇v n , A 5 = - Q (k -T k (v n ))H m (v n )ψ + δ 1 ψ + δ 2 d λ n,0 , A 6 = Q (k -T k (v n ))H m (v n )ψ + δ 1 ψ + δ 2 d (η n,0 -ρ n,0 ) ;
and we estimate A 3 . As in [49, p.585], since Ŝk,m (v n ) converges to Ŝk,m (v) weakly in X, and Ŝk,m (v) ∈ L ∞ (Q), and from (5.1), there holds

A 1 = - Q (ψ + δ 1 ) t ψ + δ 2 Ŝk,m (v)- Q ψ + δ 1 (ψ + δ 2 ) t Ŝk,m (v) + ω(n) = ω(n, δ 1 ). Next consider A 2 . Notice that v n = T 2m (v n ) on supp(H m (v n )). From Proposition 4.10, (iv), the sequence A(x, t, ∇ (T 2m (v n ) + h n )).∇(ψ + δ 1 ψ + δ 2 ) converges to F 2m .∇(ψ + δ 1 ψ + δ 2 )
weakly in L 1 (Q). Thanks to Remark 5.2 and the convergence of ψ + δ 1 ψ + δ 2 in X to 0 as δ 1 tends to 0, we find

A 2 = Q (k -T k (v))H m (v)F 2m .∇(ψ + δ 1 ψ + δ 2 ) + ω(n) = ω(n, δ 1 ).
Then consider A 4 . Then for some C = C(p, c 2 ),

|A 4 | ≦ C 2k m {-2m<vn≦-m} |∇u n | p + |∇v n | p + |a| p ′ ψ + δ 1 ψ + δ 2 .
Since ψ + δ 1 takes its values in [0, 1] , from Lemma 5.3, we get in particular

A 4 = ω(n, δ 1 , m, δ 2 ). Now estimate A 5 . The sequence (k -T k (v n ))H m (v n )ψ + δ 1 ψ + δ 2
converges weakly in X to (k -

T k (v))H m (v)ψ + δ 1 ψ + δ 2 , and {(k -T k (v n ))H m (v n )} converges * -weakly in L ∞ (Q) and a.e. in Q to (k -T k (v))H m (v).
Otherwise {f n } converges to f weakly in L 1 (Q) and {g n } converges to g strongly in (L p ′ (Q)) N . Thanks to Remark 5.2 and the convergence of ψ + δ 1 ψ + δ 2 to 0 in X and a.e. in Q as δ 1 → 0, we deduce that

A 5 = - Q (k -T k (v n ))H m (v)ψ + δ 1 ψ + δ 2 d ν 0 + ω(n) = ω(n, δ 1 ),
where

ν 0 = f -div g. Finally A 6 ≦ 2k Q ψ + δ 1 ψ + δ 2 dη n ; using (5.
2) we also find A 6 ≦ ω(n, δ 1 , m, δ 2 ). By addition, since A 3 does not depend on m, we obtain

A 3 = Q ψ + δ 1 ψ + δ 2 A(x, t, ∇u n )∇T k (v n ) ≦ ω(n, δ 1 , δ 2 ).
Reasoning as before with (ψ - δ 1 ψ - δ 2 , Šk,m ) as test function in (4.2), where Šk,m (r) = -Ŝk,m (-r), we get in the same way

Q ψ - δ 1 ψ - δ 2 A(x, t, ∇u n )∇T k (v n ) ≦ ω(n, δ 1 , δ 2 ).
Then, (5.18) holds.

Next we look at the behaviour far from E.

Lemma 5.5 . Estimate (5.8) holds.

Proof. Here we estimate I 2 ; we can write

I 2 = {|vn|≦k} (1 -Φ δ 1 ,δ 2 )A(x, t, ∇u n )∇ (T k (v n )-T k (v) ν ) .
Following the ideas of [START_REF] Porretta | Existence results for nonlinear parabolic equations via strong convergence of truncations[END_REF], used also in [START_REF] Petitta | Renormalized solutions of nonlinear parabolic equations with general measure data[END_REF], we define, for any r ∈ R and ℓ > 2k > 0,

R n,ν,ℓ = T ℓ+k (v n -T k (v) ν ) -T ℓ-k (v n -T k (v n )) . Recall that T k (v) ν ∞,Q ≦ k, and observe that R n,ν,ℓ = 2k sign(v n ) in {|v n | ≧ ℓ + 2k} , |R n,ν,ℓ | ≦ 4k, R n,ν,ℓ = ω(n, ν, ℓ) a.e. in Q, (5.19) lim n→∞ R n,ν,ℓ = T ℓ+k (v -T k (v) ν ) -T ℓ-k (v -T k (v)) ,
a.e. in Q, and weakly in X.

(5.20)

Next consider ξ 1,n 1 ∈ C ∞ c ([0, T )), ξ 2,n 2 ∈ C ∞ c ((0, T ]) with values in [0, 1]
, such that (ξ 1,n 1 ) t ≦ 0 and (ξ 2,n 2 ) t ≧ 0; and {ξ 1,n 1 (t)} (resp. {ξ 1,n 2 (t)}) converges to 1, for any t ∈ [0, T ) (resp. t ∈ (0, T ] ); and moreover, for any a ∈ C([0, T ]; L 1 (Ω)), Q a(ξ 1,n 1 ) t and Q a(ξ 2,n 2 ) t converge respectively to -Ω a(T, .) and Ω a(0, .). We set

ϕ = ϕ n,n 1 ,n 2 ,l 1 ,l 2 ,ℓ = ξ 1,n 1 (1 -Φ δ 1 ,δ 2 )[T ℓ+k (v n -T k (v) ν )] l 1 -ξ 2,n 2 (1 -Φ δ 1 ,δ 2 )[T ℓ-k (v n -T k (v n ))] -l 2 .
We can see that

ϕ -(1 -Φ δ 1 ,δ 2 )R n,ν,ℓ = ω(l 1 , l 2 , n 1 , n 2 )
in norm in X and a.e. in Q.

(5.21)

We can choose (ϕ, S) = (ϕ n,n 1 ,n 2 ,l 1 ,l 2 ,ℓ , H m ) as test functions in (4.7) for u n , where H m is defined at (4.14), with m > ℓ + 2k. We obtain

A 1 + A 2 + A 3 + A 4 + A 5 = A 6 + A 7 ,
with

A 1 = Ω ϕ(T )H m (v n (T ))dx, A 2 = - Ω ϕ(0)H m (u 0,n )dx, A 3 = - Q ϕ t H m (v n ), A 4 = Q H m (v n )A(x, t, ∇u n ).∇ϕ, A 5 = Q ϕH ′ m (v n )A(x, t, ∇u n ).∇v n , A 6 = Q H m (v n )ϕd λ n,0 , A 7 = Q H m (v n )ϕd (ρ n,0 -η n,0 ) .
Estimate of A 4 . This term allows to study I 2 . Indeed, {H m (v n )} converges to 1, a.e. in Q; thanks to (5.21), (5.19) (5.20), we have

A 4 = Q (1 -Φ δ 1 ,δ 2 )A(x, t, ∇u n ).∇R n,ν,ℓ - Q R n,ν,ℓ A(x, t, ∇u n ).∇Φ δ 1 ,δ 2 +ω(l 1 , l 2 , n 1 , n 2 , m) = Q (1 -Φ δ 1 ,δ 2 )A(x, t, ∇u n ).∇R n,ν,ℓ +ω(l 1 , l 2 , n 1 , n 2 , m, n, ν, ℓ) = I 2 + {|vn|>k} (1 -Φ δ 1 ,δ 2 )A(x, t, ∇u n ).∇R n,ν,ℓ +ω(l 1 , l 2 , n 1 , n 2 , m, n, ν, ℓ) = I 2 + B 1 + B 2 + ω(l 1 , l 2 , n 1 , n 2 , m, n, ν, ℓ),
where

B 1 = {|vn|>k} (1 -Φ δ,η )(χ |vn-T k (v) ν |≦ℓ+k -χ ||vn|-k|≦ℓ-k )A(x, t, ∇u n ).∇v n , B 2 = - {|vn|>k} (1 -Φ δ 1 ,δ 2 )χ |vn-T k (v) ν |≦ℓ+k A(x, t, ∇u n ).∇ T k (v) ν . Now {A(x, t, ∇ (T ℓ+2k (v n ) + h n )).∇ T k (v) ν } converges to F ℓ+2k ∇ T k (v) ν , weakly in L 1 (Q). Oth- erwise χ |vn|>k χ |vn-T k (v) ν |≦ℓ+k converges to χ |v|>k χ |v-T k (v) ν |≦ℓ+k , a.e. in Q. And { T k (v) ν } converges to T k (v) strongly in X.
Thanks to Remark 5.2 we get

B 2 = - Q (1 -Φ δ 1 ,δ 2 ) χ |v|>k χ |v-T k (v) ν |≦ℓ+k F ℓ+2k .∇ T k (v) ν + ω(n) = - Q (1 -Φ δ 1 ,δ 2 ) χ |v|>k χ |v-T k (v)|≦ℓ+k F ℓ+2k .∇T k (v) + ω(n, ν) = ω(n, ν), since ∇T k (v) χ |v|>k = 0.
Besides, we see that, for some C = C(p, c 2 ),

|B 1 | ≦ C {ℓ-2k≦|vn|<ℓ+2k} (1 -Φ δ 1 ,δ 2 ) |∇u n | p + |∇v n | p + |a| p ′ .
Using (5.3) and (5.4) and applying (5.15) and (5.16

) to 1 -Φ δ 1 ,δ 2 , we obtain, for k > 0 {m≦|vn|<m+4k} (|∇u n | p + |∇v n | p )(1 -Φ δ 1 ,δ 2 ) = ω(n, m, δ 1 , δ 2 ). (5.22) Thus, B 1 = ω(n, ν, ℓ, δ 1 , δ 2 ), hence B 1 + B 2 = ω(n, ν, ℓ, δ 1 , δ 2 ).
Then

A 4 = I 2 + ω(l 1 , l 2 , n 1 , n 2 , m, n, ν, ℓ, δ 1 , δ 2 ). ( 5 

.23)

Estimate of A 5 . For m > ℓ + 2k, since |ϕ| ≦ 2ℓ, and (5.21) holds, we get, from the dominated convergence Theorem,

A 5 = Q (1 -Φ δ 1 ,δ 2 )R n,ν,ℓ H ′ m (v n )A(x, t, ∇u n ).∇v n + ω(l 1 , l 2 , n 1 , n 2 ) = - 2k m {m≦|vn|<2m} (1 -Φ δ 1 ,δ 2 )A(x, t, ∇u n ).∇v n +ω(l 1 , l 2 , n 1 , n 2 );
here, the final equality followed from the relation, since m > ℓ + 2k,

R n,ν,ℓ H ′ m (v n ) = - 2k m χ m≦|vn|≦2m , a.e. in Q. (5.24)
Next we go to the limit in m, by using (4.3), (4.4) for u n , with φ = (1 -Φ δ 1 ,δ 2 ). There holds

A 5 = -2k Q (1 -Φ δ 1 ,δ 2 )d (ρ n,s -η n,s ) + + (ρ n,s -η n,s ) -+ω(l 1 , l 2 , n 1 , n 2 , m).
Then, from (5.3) and (5.4), we get

A 5 = ω(l 1 , l 2 , n 1 , n 2 , m, n, ν, ℓ, δ 1 , δ 2 ).
Estimate of A 6 . Again, from (5.21),

A 6 = Q H m (v n )ϕf n + Q g n .∇(H m (v n )ϕ) = Q H m (v n )(1 -Φ δ 1 ,δ 2 )R n,ν,ℓ f n + Q g n .∇(H m (v n )(1 -Φ δ 1 ,δ 2 )R n,ν,ℓ )+ω(l 1 , l 2 , n 1 , n 2 ).
Thus we can write

A 6 = D 1 + D 2 + D 3 + D 4 + ω(l 1 , l 2 , n 1 , n 2 ),
where

D 1 = Q H m (v n )(1 -Φ δ 1 ,δ 2 )R n,ν,ℓ f n , D 2 = Q (1 -Φ δ 1 ,δ 2 )R n,ν,ℓ H ′ m (v n )g n .∇v n , D 3 = Q H m (v n )(1 -Φ δ 1 ,δ 2 )g n .∇R n,ν,ℓ , D 4 = - Q H m (v n )R n,ν,ℓ g n .∇Φ δ 1 ,δ 2 .
Since {f n } converges to f weakly in L 1 (Q), and (5.19)-(5.20) hold, we get from Remark 5.2,

D 1 = Q (1 -Φ δ 1 ,δ 2 ) (T ℓ+k (v-T k (v) ν ) -T ℓ-k (v -T k (v))) f +ω(m, n) = ω(m, n, ν, ℓ).
We deduce from (4.10) that

D 2 = ω(m). Next consider D 3 . Note that H m (v n ) = 1 + ω(m)
, and (5.20) holds, and {g n } converges to g strongly in (L p ′ (Q)) N , and T k (v) ν converges to T k (v) strongly in X. Then we obtain successively that

D 3 = Q (1 -Φ δ 1 ,δ 2 )g.∇ (T ℓ+k (v -T k (v) ν ) -T ℓ-k (v -T k (v))) +ω(m, n) = Q (1 -Φ δ 1 ,δ 2 )g.∇ (T ℓ+k (v -T k (v)) -T ℓ-k (v -T k (v))) +ω(m, n, ν)
= ω(m, n, ν, ℓ).

Similarly we also get D 4 = ω(m, n, ν, ℓ).

Thus A 6 = ω(l 1 , l 2 , n 1 , n 2 , m, n, ν, ℓ, δ 1 , δ 2 ).
Estimate of A 7 . We have

|A 7 | = Q S ′ m (v n ) (1 -Φ δ 1 ,δ 2 ) R n,ν,ℓ d (ρ n,0 -η n,0 ) + ω(l 1 , l 2 , n 1 , n 2 ) ≦ 4k Q (1 -Φ δ 1 ,δ 2 ) d (ρ n + η n ) + ω(l 1 , l 2 , n 1 , n 2 ).
From (5.3) and (5.4) we get

A 7 = ω(l 1 , l 2 , n 1 , n 2 , m, n, ν, ℓ, δ 1 , δ 2 ). Estimate of A 1 + A 2 + A 3 . We set J(r) = T ℓ-k (r-T k (r)) , ∀r ∈ R,
and use the notations J andJ of (4.11). From the definitions of ξ 1,n 1 , ξ 1,n 2 , we can see that

A 1 + A 2 = - Ω J(v n (T ))H m (v n (T )) - Ω T ℓ+k (u 0,n -z ν )H m (u 0,n ) + ω(l 1 , l 2 , n 1 , n 2 ) = - Ω J(v n (T ))v n (T ) - Ω T ℓ+k (u 0,n -z ν )u 0,n + ω(l 1 , l 2 , n 1 , n 2 , m), (5.25) 
where

z ν = T k (v) ν (0). We can write A 3 = F 1 + F 2 ,
where

F 1 = - Q ξ n 1 (1 -Φ δ 1 ,δ 2 )[T ℓ+k (v n -T k (v) ν )] l 1 t H m (v n ), F 2 = Q ξ n 2 (1 -Φ δ 1 ,δ 2 )[T ℓ-k (v n -T k (v n )))] -l 2 t H m (v n ).
Estimate of F 2 . We write

F 2 = G 1 + G 2 + G 3 , with G 1 = - Q (Φ δ 1 ,δ 2 ) t ξ n 2 [T ℓ-k (v n -T k (v n ))] -l 2 H m (v n ), G 2 = Q (1 -Φ δ 1 ,δ 2 )(ξ n 2 ) t [T ℓ-k (v n -T k (v n ))] -l 2 H m (v n ), G 3 = Q ξ n 2 (1 -Φ δ 1 ,δ 2 ) [T ℓ-k (v n -T k (v n ))] -l 2 t H m (v n ).
We find easily

G 1 = - Q (Φ δ 1 ,δ 2 ) t J(v n )v n +ω(l 1 , l 2 , n 1 , n 2 , m), G 2 = Q (1 -Φ δ 1 ,δ 2 )(ξ n 2 ) t J(v n )H m (v n )+ω(l 1 , l 2 ) = Ω J(u 0,n )u 0,n +ω(l 1 , l 2 , n 1 , n 2 , m).
Next consider G 3 . Setting b = H m (v n ), there holds from (4.13) and (4.12),

(([J(b)] -l 2 ) t b)(., t) = b(., t) l 2 (J(b)(., t)-J(b)(., t -l 2 )). Hence [T ℓ-k (v n -T k (v n ))] -l 2 t H m (v n ) ≧ J (H m (v n )) -l 2 t = [J (v n )] -l 2 t , since J is constant in {|r| ≧ m + ℓ + 2k} .
Integrating by parts in G 3 , we find

G 3 ≧ Q ξ 2,n 2 (1 -Φ δ 1 ,δ 2 ) [J (v n )] -l 2 t = - Q (ξ 2,n 2 (1 -Φ δ 1 ,δ 2 )) t [J (v n )] -l 2 + Ω ξ 2,n 2 (T )[J (v n )] -l 2 (T ) = - Q (ξ 2,n 2 ) t (1 -Φ δ 1 ,δ 2 )J (v n ) + Q ξ 2,n 2 (Φ δ 1 ,δ 2 ) t J (v n ) + Ω ξ 2,n 2 (T )J (v n (T ))+ω(l 1 , l 2 ) = - Ω J (u 0,n ) + Q (Φ δ 1 ,δ 2 ) t J (v n )+ Ω J (v n (T ))+ω(l 1 , l 2 , n 1 , n 2 ). Therefore, since J (v n ) -J(v n )v n = -J(v n ) and J(u 0,n ) =J(u 0,n )u 0,n -J (u 0,n ), we obtain F 2 ≧ Ω J(u 0,n ) - Q (Φ δ 1 ,δ 2 ) t J(v n ) + Ω J (v n (T ))+ω(l 1 , l 2 , n 1 , n 2 , m). (5.26) Estimate of F 1 . Since m > ℓ+2k, there holds T ℓ+k (v n -T k (v) ν ) = T ℓ+k H m (v n )-T k (H m (v)) ν on suppH m (v n ). Hence we can write F 1 = L 1 + L 2 , with L 1 = - Q ξ 1,n 1 (1 -Φ δ 1 ,δ 2 ) T ℓ+k H m (v n )-T k (H m (v)) ν l 1 t H m (v n )-T k (H m (v) ν L 2 = - Q ξ 1,n 1 (1 -Φ δ 1 ,δ 2 ) T ℓ+k H m (v n )-T k (H m (v)) ν l 1 t T k (H m (v)) ν .
Integrating by parts we have, by definition of the Landes-time approximation,

L 2 = Q ξ 1,n 1 (1 -Φ δ 1 ,δ 2 ) T ℓ+k H m (v n )-T k (H m (v)) ν l 1 T k (H m (v)) ν t + Ω ξ 1,n 1 (0) T ℓ+k H m (v n )-T k (H m (v)) ν l 1 (0) T k (H m (v)) ν (0) = ν Q (1 -Φ δ 1 ,δ 2 )T ℓ+k (v n -T k (v) ν ) (T k (v)-T k (v) ν ) + Ω T ℓ+k (u 0,n -z ν ) z ν +ω(l 1 , l 2 , n 1 , n 2 ).
(5.27)

We decompose

L 1 into L 1 = K 1 + K 2 + K 3 ,
where

K 1 = - Q (ξ 1,n 1 ) t (1 -Φ δ 1 ,δ 2 ) T ℓ+k H m (v n )-T k (H m (v)) ν l 1 H m (v n )-T k (H m (v)) ν K 2 = Q ξ 1,n 1 (Φ δ 1 ,δ 2 ) t T ℓ+k H m (v n )-T k (H m (v)) ν l 1 H m (v n )-T k (H m (v)) ν K 3 = - Q ξ 1,n 1 (1 -Φ δ 1 ,δ 2 ) T ℓ+k H m (v n )-T k (H m (v)) ν l 1 t H m (v n )-T k (H m (v) ν .
Then we check easily that

K 1 = Ω T ℓ+k (v n -T k (v) ν ) (T ) (v n -T k (v) ν ) (T )dx+ω(l 1 , l 2 , n 1 , n 2 , m), K 2 = Q (Φ δ 1 ,δ 2 ) t T ℓ+k (v n -T k (v) ν ) (v n -T k (v) ν ) +ω(l 1 , l 2 , n 1 , n 2 , m).
Next consider K 3 . Here we use the function T k defined at (4.13). We

set b = H m (v n )-T k (H m (v)) ν .
Hence from (4.12),

(([T ℓ+k (b)] l 1 ) t b)(., t) = b(., t) l 1 (T ℓ+k (b)(., t + l 1 ) -T ℓ+k (b)(., t)) ≦ 1 l 1 (T ℓ+k (b)((., t + l 1 )) -T ℓ+k (b)(., t)) = ([T ℓ+k (b)] l 1 ) t .
Thus

T ℓ+k H m (v n )-T k (H m (v)) ν l 1 t H m (v n )-T k (H m (v)) ν ≦ T ℓ+k H m (v n )-T k (H m (v)) ν l 1 t = [T ℓ+k (v n -T k (v) ν ] l 1 t .
Then

K 3 ≧ - Q ξ 1,n 1 (1 -Φ δ 1 ,δ 2 ) [T ℓ+k (v n -T k (v) ν )] l 1 t = Q (ξ 1,n 1 ) t (1 -Φ δ 1 ,δ 2 )[T ℓ+k (v n -T k (v) ν )] l 1 - Q ξ 1,n 1 (Φ δ 1 ,δ 2 ) t [T ℓ+k (v n -T k (v) ν )] l 1 + Ω ξ 1,n 1 (0)[T ℓ+k (v n -T k (v) ν )] l 1 (0) = - Ω T ℓ+k (v n (T ) -T k (v) ν (T )) - Q (Φ δ 1 ,δ 2 ) t T ℓ+k (v n -T k (v) ν ) + Ω T ℓ+k (u 0,n -z ν ) +ω(l 1 , l 2 , n 1 , n 2 ).
We find by addition, since T ℓ+k (r) -T ℓ+k (r) = T ℓ+k (r) for any r ∈ R,

L 1 ≧ Ω T ℓ+k (u 0,n -z ν ) + Ω T ℓ+k (v n (T ) -T k (v) ν (T )) + Q (Φ δ 1 ,δ 2 ) t T ℓ+k (v n -T k (v) ν ) +ω(l 1 , l 2 , n 1 , n 2 , m). (5.28) 
We deduce from (5.28), (5.27), (5.26),

A 3 ≧ Ω J(u 0,n ) + Ω T ℓ+k (u 0,n -z ν ) + Ω T ℓ+k (u 0,n -z ν ) z ν (5.29) + Ω T ℓ+k (v n (T )-T k (v) ν (T )) + Ω J (v n (T )) + Q (Φ δ 1 ,δ 2 ) t T ℓ+k (v n -T k (v) ν ) -J(v n ) + ν Q (1 -Φ δ 1 ,δ 2 )T ℓ+k (v n -T k (v) ν ) (T k (v)-T k (v) ν ) +ω(l 1 , l 2 , n 1 , n 2 , m).
Next we add (5.25) and (5.29). Note that

J (v n (T )) -J(v n (T ))v n (T ) = -J(v n (T ))
, and also

T ℓ+k (u 0,n -z ν ) -T ℓ+k (u 0,n -z ν ) (z ν -u 0,n ) = -T ℓ+k (u 0,n -z ν ) .
Then we find

A 1 + A 2 + A 3 ≧ Ω J(u 0,n ) -T ℓ+k (u 0,n -z ν ) + Ω T ℓ+k (v n (T ) -T k (v) ν (T )) -J (v n (T )) + Q (Φ δ 1 ,δ 2 ) t T ℓ+k (v n -T k (v) ν ) -J(v n ) + ν Q (1 -Φ δ 1 ,δ 2 )T ℓ+k (v n -T k (v) ν ) (T k (v)-T k (v) ν ) +ω(l 1 , l 2 , n 1 , n 2 , m). Notice that T ℓ+k (r-s) -J(r) ≧ 0 for any r, s ∈ R such that |s| ≦ k; thus Ω T ℓ+k (v n (T )-T k (v) ν (T )) -J(v n (T )) ≧ 0.
And {u 0,n } converges to u 0 in L 1 (Ω) and {v n } converges to v in L 1 (Q) from Proposition 4.10. Thus we obtain

A 1 + A 2 + A 3 ≧ Ω J(u 0 ) -T ℓ+k (u 0 -z ν ) + Q (Φ δ 1 ,δ 2 ) t T ℓ+k (v-T k (v) ν ) -J(v) +ν Q (1 -Φ δ 1 ,δ 2 )T ℓ+k (v-T k (v) ν ) (T k (v)-T k (v) ν ) +ω(l 1 , l 2 , n 1 , n 2 , m, n).
Moreover T ℓ+k (r-s) (T k (r)s) ≧ 0 for any r, s ∈ R such that |s| ≦ k, hence

A 1 + A 2 + A 3 ≧ Ω J(u 0 ) -T ℓ+k (u 0 -z ν ) + Q (Φ δ 1 ,δ 2 ) t T ℓ+k (v-T k (v) ν ) -J(v) +ω(l 1 , l 2 , n 1 , n 2 , m, n).
As ν → ∞, {z ν } converges to T k (u 0 ), a.e. in Ω, thus we get

A 1 + A 2 + A 3 ≧ Ω J(u 0 ) -T ℓ+k (u 0 -T k (u 0 )) + Q (Φ δ 1 ,δ 2 ) t T ℓ+k (v -T k (v)) -J(v) + ω(l 1 , l 2 , n 1 , n 2 , m, n, ν).
Finally T ℓ+k (r-T k (r)) -J(r) ≦ 2k|r|χ {|r|≧ℓ} for any r ∈ R, thus

A 1 + A 2 + A 3 ≧ ω(l 1 , l 2 , n 1 , n 2 , m, n, ν, ℓ).
Combining all the estimates, we obtain I 2 ≦ ω(l 1 , l 2 , n 1 , n 2 , m, n, ν, ℓ, δ 1 , δ 2 ) which implies (5.8), since I 2 does not depend on l 1 , l 2 , n 1 , n 2 , m, ℓ.

Next we conclude the proof of Theorem 2.1:

Lemma 5.6
The function u is a R-solution of (1.1).

Proof. (i) First show that u satisfies (4.2). Here we proceed as in [START_REF] Petitta | Renormalized solutions of nonlinear parabolic equations with general measure data[END_REF].

Let ϕ ∈ X ∩ L ∞ (Q) such ϕ t ∈ X ′ + L 1 (Q), ϕ(., T ) = 0, and S ∈ W 2,∞ (R), such that S ′ has compact support on R, S(0) = 0. Let M > 0 such that suppS ′ ⊂ [-M, M ].
Taking successively (ϕ, S) and (ϕψ ± δ , S) as test functions in (4.2) applied to u n , we can write

A 1 + A 2 + A 3 + A 4 = A 5 + A 6 + A 7 , A 2,δ,± + A 3,δ,± + A 4,δ,± = A 5,δ,± + A 6,δ,± + A 7,δ,± ,
where

A 1 = - Ω ϕ(0)S(u 0,n ), A 2 = - Q ϕ t S(v n ), A 2,δ,± = - Q (ϕψ ± δ ) t S(v n ), A 3 = Q S ′ (v n )A(x, t, ∇u n ).∇ϕ, A 3,δ,± = Q S ′ (v n )A(x, t, ∇u n ).∇(ϕψ ± δ ), A 4 = Q S ′′ (v n )ϕA(x, t, ∇u n ).∇v n , A 4,δ,± = Q S ′′ (v n )ϕψ ± δ A(x, t, ∇u n ).∇v n , A 5 = Q S ′ (v n )ϕd λ n,0 , A 6 = Q S ′ (v n )ϕdρ n,0 , A 7 = - Q S ′ (v n )ϕdη n,0 , A 5,δ,± = Q S ′ (v n )ϕψ ± δ d λ n,0 , A 6,δ,± = Q S ′ (v n )ϕψ ± δ dρ n,0 , A 7,δ,± = - Q S ′ (v n )ϕψ ± δ dη n,0 .
Since {u 0,n } converges to u 0 in L 1 (Ω), and {S(v n )} converges to S(v) strongly in X and weak * in L ∞ (Q), there holds, from (5.2),

A 1 = - Ω ϕ(0)S(u 0 ) + ω(n), A 2 = - Q ϕ t S(v) + ω(n), A 2,δ,ψ ± δ = ω(n, δ). Moreover T M (v n ) converges to T M (v), then T M (v n ) + h n converges to T k (v) + h strongly in X, thus A 3 = Q S ′ (v n )A(x, t, ∇ (T M (v n ) + h n )).∇ϕ = Q S ′ (v)A(x, t, ∇ (T M (v) + h)).∇ϕ + ω(n) = Q S ′ (v)A(x, t, ∇u).∇ϕ + ω(n);
and

A 4 = Q S ′′ (v n )ϕA(x, t, ∇ (T M (v n ) + h n )).∇T M (v n ) = Q S ′′ (v)ϕA(x, t, ∇ (T M (v) + h)).∇T M (v) + ω(n) = Q S ′′ (v)ϕA(x, t, ∇u).∇v + ω(n).
In the same way, since ψ ± δ converges to 0 in X,

A 3,δ,± = Q S ′ (v)A(x, t, ∇u).∇(ϕψ ± δ ) + ω(n) = ω(n, δ), A 4,δ,± = Q S ′′ (v)ϕψ ± δ A(x, t, ∇u).∇v + ω(n) = ω(n, δ).
And {g n } converges strongly in (L p ′ (Ω)) N , thus

A 5 = Q S ′ (v n )ϕf n + Q S ′ (v n )g n .∇ϕ+ Q S ′′ (v n )ϕg n .∇T M (v n ) = Q S ′ (v)ϕf + Q S ′ (v)g.∇ϕ+ Q S ′′ (v)ϕg.∇T M (v) + ω(n) = Q S ′ (v)ϕd µ 0 + ω(n).
and A 5,δ,± = Q S ′ (v)ϕψ ± δ d λ n,0 + ω(n) =ω(n, δ). Then A 6,δ,± + A 7,δ,± = ω(n, δ). From (5.2) we verify that A 7,δ,+ = ω(n, δ) and A 6,δ,-= ω(n, δ). Moreover, from (5.6) and (5.2), we find

|A 6 -A 6,δ,+ | ≦ Q S ′ (v n )ϕ (1 -ψ + δ )dρ n,0 ≦ S W 2,∞ (R) ϕ L ∞ (Q) Q (1 -ψ + δ )dρ n = ω(n, δ).
Similarly we also have |A 7 -A 7,δ,-| ≦ ω(n, δ). Hence A 6 = ω(n) and A 7 = ω(n). Therefore, we finally obtain (4.2):

-

Ω ϕ(0)S(u 0 ) - Q ϕ t S(v)+ Q S ′ (v)A(x, t, ∇u).∇ϕ+ Q S ′′ (v)ϕA(x, t, ∇u).∇v = Q S ′ (v)ϕd µ 0 .
(5.30)

(ii) Next, we prove (4.3) and (4.4). We take ϕ ∈ C ∞ c (Q) and take ((1ψ - δ )ϕ,H m ) as test functions in (5.30), with H m as in (4.14). We can write D 1,m + D 2,m = D 3,m + D 4,m + D 5,m , where

D 1,m = - Q (1 -ψ - δ )ϕ t H m (v), D 2,m = Q H m (v)A(x, t, ∇u).∇ (1 -ψ - δ )ϕ , D 3,m = Q H m (v)(1 -ψ - δ )ϕd µ 0 , D 4,m = 1 m m≦v≦2m
(1ψ - δ )ϕA(x, t, ∇u).∇v,

D 5,m = -1 m -2m≦v≦-m
(1ψ - δ )ϕA(x, t, ∇u)∇v.

(5.31)

Taking the same test functions in (4.2) applied to u n , there holds

D n 1,m +D n 2,m = D n 3,m +D n 4,m +D n 5,m
, where

D n 1,m = - Q (1 -ψ - δ )ϕ t H m (v n ), D n 2,m = Q H m (v n )A(x, t, ∇u n ).∇ (1 -ψ - δ )ϕ , D n 3,m = Q H m (v n )(1 -ψ - δ )ϕd( λ n,0 + ρ n,0 -η n,0 ), D n 4,m = 1 m m≦v≦2m (1 -ψ - δ )ϕA(x, t, ∇u n ).∇v n , D n 5,m = -1 m -2m≦vn≦-m (1 -ψ - δ )ϕA(x, t, ∇u n ).∇v n
(5.32) In (5.32), we go to the limit as m → ∞. Since H m (v n ) converges to v n and {H m (v n )} converges to 1, a.e. in Q, and {∇H m (v n )} converges to 0, weakly in (L p (Q)) N , we obtain the relation ϕ(1ψ + δ )A(x, t, ∇u).∇v

D n 1 + D n 2 = D n 3 + D n , where D n 1 = - Q (1 -ψ - δ )ϕ t v n , D n 2 = Q A(x, t, ∇u n )∇ (1 -ψ - δ )ϕ , D n 3 = Q (1 -ψ - δ )ϕd λ n,0 D n = Q (1 -ψ - δ )ϕd(ρ n,0 -η n,0 )+ Q (1 -ψ - δ )ϕd((ρ n,s -η n,s ) + -(ρ n,s -η n,s ) -) = Q (1 -ψ - δ )ϕd(ρ n -η n ). Clearly, D i,m -D n i = ω(n, m) for i = 1, 2,
Since Q (1 -ψ - δ )ϕdη n ≦ ϕ L ∞ Q (1 -ψ - δ )dη n , it follows that Q (1 -ψ - δ )ϕdη n = ω(n, m, δ) from (5.4). And Q ψ - δ ϕdρ n ≦ ϕ L ∞ Q ψ - δ dρ n , thus, from (5.2), Q (1 -ψ - δ )ϕdρ n = Q ϕdµ + s + ω(n, m, δ). Then D n = Q ϕdµ + s + ω(n,
= Q ϕψ + δ dµ + s + lim m→∞ 1 m {m≦v<2m} ϕ(1 -ψ + δ )A(x, t, ∇u).∇v = Q ϕdµ + s + D,
where,

D = Q ϕ(1 -ψ + δ )dµ + s + lim n→∞ 1 m {m≦v<2m} ϕ(1 -ψ + δ )A(x, t, ∇u).∇v = ω(δ).
Therefore, (5.33) still holds for ϕ ∈ C ∞ (Q), and we deduce (4.3) by density, and similarly, (4.4). This completes the proof of Theorem 2.1. As a consequence of Theorem 2.1, we get the following:

Corollary 5.7 Let u 0 ∈ L 1 (Ω) and µ ∈ M b (Q).
Then there exists a R-solution u to the problem 1.1 with data (µ, u 0 ). Furthermore, if v 0 ∈ L 1 (Ω) and ω ∈ M b (Q) such that u 0 ≦ v 0 and µ ≦ ω, then one can find R-solution v to the problem 1.1 with data (ω, v 0 ) such that u ≦ v.

In particular, if a ≡ 0 in (1.2), then u satisfies (4.21) and v L ∞ ((0,T );

L 1 (Ω)) ≦ M with M = ||u 0 || 1,Ω + |µ|(Q).

Equations with perturbation terms

Let A : Q × R N → R N satisfying (1.2), (1.3) with a ≡ 0. Let G : Ω × (0, T ) × R → R be a Caratheodory function. If U is a function defined in Q we define the function G(U ) in Q by G(U )(x, t) = G(x, t, U (x, t))
for a.e. (x, t) ∈ Q.

X respectively, i = 1, 2, such that µ + 0 = (f 1 , g 1 , h 1 ), µ - 0 = (f 2 , g 2 , h 2 ), and µ n,0,i = (f n,i , g n,i , h n,i ), converging respectively to µ + 0 , µ - 0 in the narrow topology. Furthermore, if we set

µ n = µ n,0,1 -µ n,0,2 + µ n,s,1 -µ n,s,2 , then |µ n |(Q) ≤ |µ|(Q). Consider a sequence {u 0,n } ⊂ C ∞ c (Ω) which strongly converges to u 0 in L 1 (Ω) and satisfies ||u 0,n || 1,Ω ≦ ||u 0 || 1,Ω . Let u n be a solution of    (u n ) t -div(A(x, t, ∇u n )) + G(u n ) = µ n in Q, u n = 0 on ∂Ω × (0, T ), u n (0) = u 0,n in Ω.
We can choose ϕ = ε -1 T ε (u n ) as test function of above problem. Then we find

Q ε -1 T ε (u n ) t + Q ε -1 A(x, t, ∇T ε (u n )).∇T ε (u n ) + Q G(x, t, u n )ε -1 T ε (u n ) = Q ε -1 T ε (u n )dµ n . Since Q ε -1 T ε (u n ) t = Ω ε -1 T ε (u n (T ))dx - Ω ε -1 T ε (u 0,n )dx ≧ -||u 0,n || L 1 (Ω) , there holds Q G(x, t, u n )ε -1 T ε (u n ) ≦ |µ n |(Q) + ||u 0,n || L 1 (Ω) ≦ |µ|(Q) + ||u 0 || 1,Ω .
Letting ε → 0, we obtain

Q |G(x, t, u n )| ≦ |µ|(Q) + ||u 0 || 1,Ω . (6.2) 
Next apply Proposition 4.8 and Remark 4.9 to u n with initial data u 0,n and measure data 

µ n - G(u n ) ∈ L 1 (Q), we get meas {|u n | ≧ s} ≦ C(|µ|(Q) + ||u 0 || L 1 (Ω) ) p+N N s -pc , ∀s > 0, ∀n ∈ N, for some C = C(N, p, c 1 , c 2 ). Since |G(x, t, u n )| ≦ G(|u n |),
)} converges to G(u) in L 1 (Q). Therefore, by Theorem 2.1, u is a R-solution of (2.4).
Proof of (ii). Let {u n } n≧1 be defined by induction as nonnegative R-solutions of

   (u 1 ) t -div(A(x, t, ∇u 1 )) = µ in Q, u 1 = 0 on ∂Ω × (0, T ), u 1 (0) = u 0 in Ω,    (u n+1 ) t -div(A(x, t, ∇u n+1 )) = µ -λG(u n ) in Q, u n+1 = 0 on ∂Ω × (0, T ), u n+1 (0) = u 0 in Ω,
Thanks to Corollary 5.7 we can assume that {u n } is nondecreasing and satisfies for any s > 0 and

n ∈ N meas {|u n | ≧ s} ≦ C 1 K n s -pc , (6.3) 
where C 1 does not depend on s, n, and

K 1 = (||u 0 || 1,Ω + |µ|(Q)) p+N N , K n+1 = (||u 0 || 1,Ω + |µ|(Q) + λ||G(u n )|| 1,Q ) p+N N , for any n ≧ 1.Take ε = λ + |µ|(Q) + ||u 0 || L 1 (Ω) ≦ 1.
Denoting by C i some constants independent on n, ε, there holds K 1 ≦ C 2 ε, and for n ≧ 1,

K n+1 ≦ C 3 ε(||G(u n )|| 1+ p N 1,Q + 1).
From (6.1) and ( 6.3), we find

G(u n ) L 1 (Q) ≦ |Q| G(2) + {un|≧2}| G(|u n |)dxdt ≦ |Q| G(2) + C 4 K n ∞ 2 G (s) s -1-pc ds. Thus, K n+1 ≦ C 5 ε(K 1+ p N n + 1 
). Therefore, if ε is small enough, {K n } is bounded. Then, again from (6.1) and the relation |G(x, t, u n )| ≦ G(|u n |) we verify that {G(u n )} converges. Then by Theorem 2.1, up to a subsequence, {u n } converges to a R-solution u of (2.5).

General case with absorption terms

In the sequel we assume that A : Ω × R N -→ R N does not depend on t. We recall a result obtained in [START_REF] Phuc | Quasilinear and Hessian equations of Lane-Emden type[END_REF], [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF] in the elliptic case: Theorem 6.2 Let Ω be a bounded domain of R N . LetA : Ω×R N -→ R N satisfying (1.6),(1.7).Then there exists a constant κ depending on N, p, c where

3 , c 4 such that, if ω ∈ M b (Ω) and u is a R-solution of problem -div(A(x, ∇u)) = ω in Ω, u = 0 on ∂Ω, there holds -κW 2diamΩ 1,p [ω -] ≦ u ≦ κW 2diamΩ 1,p [ω + ]. ( 6 
f n = f 1,n -f 2,n , g n = g 1,n -g 2,n , h n = h 1,n -h 2,n , λ s,n = λ 1,s,n -λ 2,s,n . Then for n large enough, λ 1,n , λ 2,n , λ n ∈ C ∞ c (Q), γ n ∈ C ∞ c (Ω). Thus there exist unique solutions u n , u i,n , v i,n , i = 1, 2, of problems (u n ) t -div(A(x, ∇u n ))+G(u n ) = λ 1,n -λ 2,n in Q, u n = 0 on ∂Ω×(0, T ), u n (0) = u 0,1,n -u 0,2,n in Ω, (u i,n ) t -div(A(x, ∇u i,n ))+G(u i,n ) = λ i,n in Q, u i,n = 0 on ∂Ω×(0, T ), u i,n (0) = u 0,i,n in Ω, -div(A(x, ∇w n )) = γ n in Ω, w n = 0 on ∂Ω, such that -||u 0,2 || ∞,Ω -w n (x) ≦ -u 2,n (x, t) ≦ u n (x, t) ≦ u 1,n (x, t) ≦ w n (x) + ||u 0,1 || ∞,Ω , a.e. in Q.
Moreover, as in the Proof of Theorem 2.2, (i), there holds

Q |G(u n )| ≦ i=1,2 (λ i (Q) + ||u 0,i,n || 1,Ω ) , and Q G(u i,n ) ≦ λ i (Q) + ||u 0,i,n || 1,Ω , i = 1, 2.
By Proposition 4.10, up to a common subsequence, {u n , u 1,n , u 2,n } converge to some (u,

u 1 , u 2 ), a.e. in Q. Since G is bounded, in particular, {G(u n )} converges to G(u) and {G(u i,n )} converges to G(u i ) in L 1 (Q). Thus, (6.9) is satisfied. Morover {λ i,n -G(u i,n ), f i,n -G(u i,n ), g i,n , h i,n , λ i,s,n , u 0,i,n } and {λ n -G(u n ), f n -G(u n ), g n , h n , λ s,n , u 0,1,n -u 0,2,n } are approximations of (λ i -G(u i ), f i - G(u i ), g i , h i , λ i,s , u 0,i ) and (λ -G(u), f -G(u), g, h, λ s , u 0,1 -u 0,2
), in the sense of Theorem 2.1. Thus, we can find (different) subsequences converging a.e. to u, u 1 , u 2 , R-solutions of (6.6) and (6.7). Furthermore, from [START_REF] Quoc | Quasilinear and Hessian equations with exponential reaction and measure data[END_REF]Corollary 3.4], up to a subsequence, {w n } converges a.e. in Q to a R-solution -div(A(x, ∇w)) = γ in Ω, w = 0 on ∂Ω, such that w ≦ cW 2diamΩ 1,p γ a.e. in Ω. Hence, we get the inequality (6.8). The other conclusions follow in the same way. Lemma 6.5 Let G satisfy the assumptions of Theorem 6.3. For

i = 1, 2, let u 0,i ∈ L ∞ (Ω) be nonnegative, λ i ∈ M + b (Q) with compact support in Q, and γ ∈ M + b (Ω) with compact support in Ω, such that λ i ≦ γ ⊗ χ (0,T ) , G((||u 0,i || ∞,Ω + κW 2diam(Ω) 1,p γ)) ∈ L 1 (Q). ( 6 

.10)

Then, there exist R-solutions u, u 1 , u 2 of the problems (6.6) and (6.7), respectively relative to the decompositions

(f 1 -f 2 -G(u), g 1 -g 2 , h 1 -h 2 ), (f i -G(u i ), g i , h i )
, satifying (6.8) and (6.9). Moreover, assume that ω i , θ i have the same properties as λ i and ω i ≦ λ i ≦ θ i , u 0,i,1 , u 0,i,2 ∈ L ∞+ (Ω), u 0,i,2 ≦ u 0,i ≦ u 0,i,1 . Then, one can find solutions u i (ω i , u 0,i,2 ), u i (θ i , u 0,i,1 ), corresponding with (ω i , u 0,i,2 ), (θ i , u 0,i,1 ), such that u i (ω i , u 0,i,2 ) ≦ u i ≦ u i (θ i , u 0,i,1 ). Remark 6.7 Our result improves the existence results of [START_REF] Petitta | Diffuse measures and nonlinear parabolic equations[END_REF], where µ ∈ M 0 (Q). Indeed, let p e = N (p -1)/(Np) be the critical exponent for the elliptic problem -∆ p w + |w| q-1 w = ω in Ω, w = 0 on ∂Ω.

Notice that p c < p e , since p > p 1 . If q ≧ p e , there exist measures ω ∈ M + b (Ω) which do not charge the sets of C p, q q+1-p -capacity zero, such that ω ∈ M 0,e (Ω). Then for any F ∈ L 1 ((0, T )),

F ≧ 0, F ≡ 0, we have ω ⊗ F ∈ M 0 (Q). Remark 6.8 Let A : Ω × R N -→ R N satisfying (1.6),(1.7). Let G : Q × R → R
be a Caratheodory function such that the map s → G(x, t, s) is nondecreasing and odd, for a.e. (x, t) in Q. Assume that ω ∈ M 0,e (Ω). Thus, we have ω({x :

W 2diam(Ω) 1,p [ω](x) = ∞}) = 0. As in the proof of Theorem 2.3 with ω n = χ W 2diamΩ 1,p
[ω]≦n ω, we get that (1.5) has a R-solution. Remark 6.9 As in [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF], from Theorem 6.3, we can extend Theorem 2.3 given for G(u) = |u| q-1 u, to the case of a function G(x, t, .), odd for a.e. (x, t) ∈ Q, such that

|G(x, t, u)| ≦ G(|u|), ∞ 1 G(s)s -q-1 ds < ∞,
where G is a nondecreasing continuous, under the condition that ω does not charge the sets of zero C p, q q-p+1 ,1 -capacity, where for any Borel set E ⊂ R N , C p, q q-p+1 ,1 (E) = inf{||ϕ|| L q q-p+1 ,1 (R N )

: ϕ ∈ L q q-p+1 ,1 (R N ), G p * ϕ ≧ χ E } where L q q-p+1 ,1 (R N ) is the Lorentz space of order (q/(qp + 1), 1).

In case G is of exponential type, we introduce the notion of maximal fractional operator, defined for any η ≧ 0, R > 0, x 0 ∈ R N by M η p,R [ω](x 0 ) = sup t∈(0,R) ω(B(x 0 , t)) t N -p h η (t) , where h η (t) = inf((-ln t) -η , (ln 2) -η )).

We obtain the following: Then there exists a R-solution to the problem    u tdiv(A(x, ∇u)) + (e τ |u| β -1)signu = F + µ in Q, u = 0 on ∂Ω × (0, T ), u(0) = u 0 in Ω.

For the proof we use the following result of [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF]: Proposition 6.11 (see [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF], Theorem 2.4) Suppose 1 < p < N. Let ν ∈ M + b (Ω), β > 1, and δ 0 = ((12β) -1 ) β p ln 2. There exists C = C(N, p, β, diamΩ) such that, for any δ ∈ (0, δ 0 ),

Ω exp    δ (W 2diamΩ 1,p [ν]) β ||M p-1 β ′ p,2diam Ω [ν]|| β p-1 L ∞ (R N )    ≦ C δ 0 -δ .
Proof of Theorem 6.10. Let Q n be defined at (6.16), and ω n = ωχ Ωn , where Ω n = {x ∈ Ω : d(x, ∂Ω) > 1/n}. We still consider µ 1 , µ 2 , F n , µ 1,n , µ 2,n as in (6.15), (6.17). Case 1: Assume that ||F || L ∞ ((0,T )) ≦ 1 and (6.18) holds. We have µ 1,n , µ 2,n ≦ nχ Ω + ω. For any ε > 0, there exists c ε = c ε (ε, N, p, β, κ, diamΩ) > 0 such that (n + κW 2diamΩ [nχ Ω + ω]) β ) ∈ L 1 (Ω) for all n. We conclude from Theorem 6.3.

Case 2: Assume that there exists ε > 0 such that M (p-1)/(β+ε) ′ p,2diamΩ

[ω] ∈ L ∞ (R N ). Now we use the inequality µ 1,n , µ 2,n ≦ n(χ Ω + ω). For any ε > 0 and n ∈ N there exists c ε,n > 0 such that

(n + κ β W 2diamΩ 1,p [n(χ Ω + ω)]) β ≦ c ε,n + ε(W 2diamΩ 1,p
[ω]) β 0 Thus, from Proposition 6.11 we get exp(τ (n + κ β W 2diamΩ 1,p

[n(χ Ω + ω)]) β ) ∈ L 1 (Ω) for all n. We conclude from Theorem 6.3. where κ is defined at Theorem 6.2.

Equations with source term

Proof. Let {φ n } be a nonnegative, nondecreasing sequence in C ∞ c (Q) which converges to 1, a.e. in Q. Since {φ n µ + }, {φ n µ -} are nondecreasing sequences, the result follows from Theorem 6.3.

Our proof of Theorem 2.4 is based on a property of Wölf potentials: Theorem 6.13 (see [START_REF] Phuc | Quasilinear and Hessian equations of Lane-Emden type[END_REF]) Let q > p -1, 0 < p < N , ω ∈ M + b (Ω). If for some λ > 0, ω(E) ≦ λC p, q p-q+1

(E)

for any compact set E ⊂ R N , (6.20)

then (W 2diamΩ 1,p

[ω]) q ∈ L 1 (Ω), and there exists M = M (N, p, q, diam(Ω)) such that, a.e. in Ω, W Assume that ω satisfies (6.20) for some λ > 0. Then there exist λ 0 and b 0 , depending on N, p, q, K, and diamΩ, such that, if λ ≦ λ 0 and b ≦ b 0 , then W 2diamΩ 1,p

[µ] ∈ L q (Ω) and for any m ≧ 1,

u m ≦ 2β p KW 2diamΩ 1,p
[ω] + 2b, β p = max(1, 3

2-p

p-1 ). (6.22) Proof. Clearly, (6.22) holds for m = 1. Now, assume that it holds at the order m. Then u q m ≦ 2 q-1 (2β p ) q K q (W 2diamΩ 1,p

[ω]) q + 2 q-1 (2b) q Using (6.21) we get

u m+1 ≤ KW 2diamΩ
1,p 2 q-1 (2β p ) q K q (W 2diamΩ 1,p

[ω]) q + 2 q-1 (2b) q + ω + b 

≤ β p K A 1 W 2diamΩ 1,p (W 2diamΩ 1,p [ω]) q + W 2diamΩ

  see [49, Theorem 3 and Corollary 1]. (ii) Let u be any R-solution of problem (1.1). Then, v = uh admits a c Q p -quasi continuous functions representative which is finite c Q p -quasi a.e. in Q, and u satisfies definition 4.1 for every decomposition ( f , g, h) such that h -h ∈ L ∞ (Q), see [49, Proposition 3 and Theorem 4 ].

Proposition 4 . 8

 48 If u is a R-solution of problem (1.1), then there exists c = c(p) such that, for any k ≧ 1 and ℓ ≧ 0, ℓ≦|v|≦ℓ+k |∇u| p + ℓ≦|v|≦ℓ+k |∇v| p ≦ ckM (4.16)

  ) = 1 for any r ≧ m + 1, thus {m+1≦vn<m+k} |∇u n | p ψ 2,δ = ω(n, m, δ), which implies (5.15) by changing m into m -1. Similarly, we obtain (5.16).

3 .

 3 From Lemma (5.3) and (5.2)-(5.4), we obtain D 5,m = ω(n, m, δ), and 1 m {m≦v<2m} ψ - δ ϕA(x, t, ∇u).∇v = ω(n, m, δ), t, ∇u).∇v + ω(n, m, δ).

. 4 )Theorem 6 . 3

 463 Next we give a general result in case of absorption terms: Let p < N , A : Ω × R N -→ R N satisfying (1.6),(1.7), and G : Q × R -→ R be a Caratheodory function such that the map s → G(x, t, s) is nondecreasing and odd, for a.e. (x, t) in Q.

Theorem 6 .

 6 10 Let A : Ω × R N -→ R N satisfying (1.6),(1.7). Let p < N and τ > 0, β > 1, µ ∈ M b (Q) and u 0 ∈ L 1 (Ω). Assume that |µ| ≦ ω⊗F, with ω ∈ M + b (Ω), F ∈ L 1 ((0, T)) be nonnegative. Assume that one of the following assumptions is satisfied:(i) ||F || L ∞ ((0,T )) ≦ 1 and for some M 0 = M 0 (N, p, β, τ, c 3 , c 4 , diamΩ), ||M p-1 β ′ p,2diam Ω [ω]|| L ∞ (R N ) < M 0 ,(6.18)(ii) there existsβ 0 > β such that M p-1 β ′ 0 p,2diamΩ [ω] ∈ L ∞ (R N ).

[ 1 L

 1 nχ Ω + ω]) β ≦ c ε n βp p-1 + (1 + ε)κ β (W 2diamΩ 1,p [ω]) β a.e. in Ω. Thus, exp τ (n + κW 2diamΩ 1,p [nχ Ω + ω]) β ≦ exp τ c ε n βp p-1 exp τ (1 + ε)κ β (W 2diamΩ 1,p [ω]) βIf (6.18) holds with M 0 = δ 0 /τ κ β (p-1)/β then we can chose ε such thatτ (1 + ε)κ β ||M p-1 β ′ p,2diam Ω [ν]|| β p-∞ (R N ) <δ 0 .From Proposition 6.11, we get exp(τ(1 + ε)κ β W 2diamΩ 1,p [ω]) β ) ∈ L 1 (Ω), which implies exp(τ (n + κ β W 2diamΩ 1,p

  As a consequence of Theorem 6.3, we get a first result for problem (1.1):Corollary 6.12 Let A : Ω × R N -→ R N satisfying (1.6)(1.7). Let u 0 ∈ L ∞ (Ω), and µ ∈ M b (Q) such that |µ| ≦ ω ⊗ χ (0,T ) for some ω ∈ M + b (Ω).Then there exist a R-solution u of (1.1), such that |u(x, t)| ≦ κW 2diam(Ω) 1,p [ω](x) + ||u 0 || ∞,Ω , for a.e. (x, t) ∈ Q, (6.19)

Lemma 6 . 14

 614 Let ω ∈ M + b (Ω), and b ≧ 0 and K > 0. Suppose that {u m } m≧1 is a sequence of nonnegative functions in Ω that satisfiesu 1 ≦ KW 2diamΩ 1,p [ω] + b, u m+1 ≦ KW 2diamΩ 1,p [u q m + ω] + b ∀m ≧ 1.

7 .

 7 Let J be defined by(4.11). Let ζ ∈ C 1 c ([0, T )) with values in [0, 1], such that ζ t ≦ 0, and ϕ = ζξ[j(S(v))] l . Clearly, ϕ ∈ X ∩ L ∞ (Q); we choose the pair of functions (ϕ, S) as test function in (4.2). Thanks to convergence properties of Steklov time-averages, we easily will obtain (4.15) if we prove thatlim j(S(v))] l ) t S(v)) ≧ -Q ξ t J(S(v)). We can write -Q (ζξ[j(S(v))] l ) t S(v) = F + G, with F = -Q (ζξ) t [j(S(v))] l S(v), G = -Q ζξS(v) 1 l (j(S(v))(x, t + l)j(S(v))(x, t)) .Using (4.12) and integrating by parts we haveG ≧ -S(v))(x, t + l)-J (S(v))(x, t)) (S(v))] l ) = Q (ζξ) t [J (S(v))] l + Ω ζ(0)ξ(0)[J (S(v))] l (0) ≧ Q (ζξ) t [J (S(v))] l , since J (S(v)) ≧ 0. Hence, -Q (ζξ[j(S(v))] l ) t S(v) ≧ Q (ζξ) t [J (S(v))] l + F = Q (ζξ) t ([J (S(v))] l -[J(S(v))] l S(v))Otherwise, J (S(v)) andJ(S(v) ∈ C([0, T ] ; L 1 (Ω)), thus {(ζξ) t ([J (S(u))] l -[J(S(u))] l S(u))} converges to -(ζξ) t J(S(u)) in L 1 (Q) as l → 0. Therefore, lim J(S(v))] l ) t S(v)) ≧ lim ζ→1 -Q (ζξ) t J(S(v)) ≧ lim ζ→1 -Q ζξ t J(S(v)) = -Q ξ t J(S(v)),which achieves the proof.

  And χ {|vn|≦k} converges to χ |v|≦k , a.e. in Q , and Φ δ 1 ,δ 2 converges to 0 a.e. in Q as δ 1 → 0, and Φ δ 1 ,δ 2 takes its values in [0, 1]. Thanks to Remark 5.2, we have

	{|vn|≦k}

  we deduce from (6.1) that {|G(u n )|} is equi-integrable. Then, thanks to Proposition 4.10, up to a subsequence, {u n } converges to some function u, a.e. in Q, and {G(u n

We consider the problem (1.5):

where µ ∈ M b (Q), u 0 ∈ L 1 (Ω). We say that u is a R-solution of problem (1.5) if G(u) ∈ L 1 (Q) and u is a R-solution of (1.1) with data (µ -G(u), u 0 ).

Subcritical type results

For proving Theorem 2.2, we begin by an integration Lemma:

for some M > 0, then for any L > 1, From the assumption, we get |V | * (s) ≦ sup (M s -1 ) p -1 c , 1 . Thus, for any L > 1,

which implies (6.1).

Proof of Theorem 2.2. Proof of (i)

, respectively in the narrow topology, and

where the constant c is given at Theorem 6.2. Let u 0 ∈ L 1 (Ω), and µ = µ 1µ 2 . Then there exists a R-solution u of problem (1.5).

For proving this result, we need two Lemmas: Lemma 6.4 Let G satisfy the assumptions of Theorem 6.3 and G ∈ L ∞ (Q × R). For i = 1, 2, let u 0,i ∈ L ∞ (Ω) be nonnegative, and

)

and

Furthermore, assume that H, K have the same properties as G, and H(x, t, s) ≦ G(x, t, s) ≦ K(x, t, s)

for any s ∈ (0, +∞) and a.e. in Q. Then, one can find solutions

Assume that ω i , θ i have the same properties as λ i and

Proof. From Lemma 6.4 there exist R-solutions u n , u i,n to problems

As in Lemma 6.4, up to a common subsequence, {u n , u 

Thus, from Theorem 2.1, u and u i are respective R-solutions of (6.6) and (6.7) relative to the decompositions (

, and (6.8) and (6.9 hold. The last statement follows from the same assertion in Lemma 6.4.

Proof of Theorem 6.3. By Proposition 3.2, for i = 1, 2, there exist

and {f i,n } , {g i,n } , {h i,n } strongly converge to f i , g i , h i in L 1 (Q), (L p ′ (Q)) N and X respectively, and {µ i,n } , {µ i,n,s } converge to µ i , µ i,s (strongly) in M b (Q), and

By Lemma 6.5, there exist R-solutions u n , u i,n to problems

As in the proof of Lemma 6.5, up to a common subsequence {u n , u 1,n , u 2,n } converge a.e. in Q to {u, u 1 , u 2 }. Since {G(u i,n )} is nondecreasing, and nonnegative, from the monotone convergence Theorem and (6.14), we obtain that {G(u

). Thus, we can see that

, in the sense of Theorem 2.1; and

. Therefore, u is a R-solution of (1.5), and (6.5) holds if u 0 ∈ L ∞ (Ω) and ω n ≤ γ for any n ∈ N and some γ ∈ M + b (Ω). As a consequence we prove Theorem 2.3. We use the following result of [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF]: Proposition 6.6 ( see [START_REF] Bidaut-Véron | Quasilinear Emden-Fowler equations with absorption terms and measure data[END_REF]) Let q > p -1, α ∈ 0, N (q+1-p) pq , r > 0 and ν ∈ M + b (Ω). If ν does not charge the sets of C αp, q q+1-p -capacity zero, there exists a nondecreasing sequence

where F ∈ L 1 ((0, T )) and ω does not charge the sets of C p, q q+1-p -capacity zero. From Proposition 6.6, there exists a nondecreasing sequence {ω n } ⊂ M + b (Ω) with compact support in Ω which converges to ω, strongly in M b (Ω), such that W 2diamΩ 1,p [ω n ] ∈ L q (R N ). We can write

and µ + , µ -≦ ω ⊗ F. We set

)

Then {µ 1,n } , {µ 2,n } are nondecreasing sequences with compact support in Q, and

Observe that for any measures ν, θ, η ∈ M b (Q), there holds

Therefore, the result follows from Theorem 6.3.

where M is as in (6.21) and A 1 = 2 q-1 (2β p ) q K q 1/(p-1) , A 2 = β p K2 q/(p-1) |B 1 | 1/(p-1) (p ′ ) -1 (2diamΩ) p ′ . Thus, (6.22) holds for m = n + 1 if we prove that

Therefore, we obtain the result with

Proof of Theorem 2.4. From Corollary 5.7 and 6.12, we can construct a sequence of nonnegative nondecreasing R-solutions {u m } m≧1 defined in the following way: u 1 is a R-solution of (1.1), and

Setting u m = sup t∈(0,T ) u m (t) for all m ≧ 1, there holds

From Lemma 6.14, we can find λ 0 = λ 0 (N, p, q,diamΩ) and b 0 = b 0 (N, p, q, diamΩ) such that if (2.7) is satisfied with λ 0 and b 0 , then

Thus {u m } converges a.e. in Q and in L 1 (Q) to some function u, for which (2.9) is satisfied in Ω with c = 2β p κ. Finally, one can apply Theorem 2.1 to the sequence of measures {u q m + µ} , and obtain that u is a R-solution of (2.8).

Next we consider the exponential case.

Theorem 6.15 Let

Then, there exist b 0 and M 0 depending on N, p, β, τ, l and diamΩ, such that if

admits nonnegative R-solution u, which satisfies, a.e. in Q, for some c, depending on N, p, c 3 , c 4 u(x, t) ≦ cW 2diamΩ 1,p

[ω](x) + 2b 0 . (6.26)

For the proof we first recall an approximation property, which is a consequence of [47, Theorem 2.5]: Theorem 6.16 Let τ > 0, b ≧ 0, K > 0, l ∈ N and β ≧ 1 such that lβ > p -1. Let E be defined by (6.24). Let {v m } be a sequence of nonnegative functions in Ω such that, for some K > 0,

Then, there exist b 0 and M 0 , depending on N, p, β, τ, l, K and diamΩ such that if b ≦ b 0 and

then, setting c p = 2max(1,2

[µ] + 2b 0 , ∀m ≧ 1. (6.28)

Proof of Theorem 6.15. From Corollary 5.7 and 6.12 we can construct a sequence of nonnegative nondecreasing R-solutions {u m } m≧1 defined in the following way: u 1 is a R-solution of problem (1.1), and by induction, u m+1 is a R-solution of    (u m+1 ) tdiv(A(x, ∇u m+1 )) = E(τ u β m ) + µ in Q, u m+1 = 0 on ∂Ω × (0, T ), u m+1 (0) = u 0 in Ω.

And, setting u m = sup t∈(0,T ) u m (t), there holds

Thus, from Theorem 6.16, there exist b 0 ∈ (0, 1] and M 0 > 0 depending on N, p, β, τ, l and diamΩ such that, if (6.27) holds, then (6.28) is satisfied with v m = u m . As a consequence, u m is well defined. Thus, {u m } converges a.e. in Q to some function u, for which (6.26) is satisfied in Ω.

Furthermore, E(τ u β m ) converges to E(τ u β ) in L 1 (Q). Finally, one can apply Theorem 2.1 to the sequence of measures E(τ u β m ) + µ , and obtain that u is a R-solution of (6.25).