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Stability properties for quasilinear parabolic equations with
measure data and applications

Marie-Francoise BIDAUT-VERON* Hung NGUYEN QUOCT

Abstract
Let © be a bounded domain of RV, and Q =  x (0,7'). We first study the problem

ur — Apu=p in Q,
u=0 on 002 x (0,7,
u(0) = ug in £,

where p > 1, 1 € My(Q) and ug € L(Q). Our main result is a stability theorem extending the
results of Dal Maso, Murat, Orsina, Prignet, for the elliptic case.
As an application, we consider the perturbed problem

up — Apu+Gu) = p in Q,
u=0 on 00 x (0,7,
u(0) = ug in Q,

where G(u) may be an absorption or a source term. In the model case G(u) = =+ |u|!" " u (¢ >
p—1), or G has an exponential type. We give existence results when ¢ is subcritical, or when
the measure p is good in time and satisfies suitable capacity conditions.
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1 Introduction

Let Q be a bounded domain of RY, and Q = Q x (0,T), T > 0. We denote by My(€2) and M,(Q)

the sets of bounded Radon measures on €2 and @ respectively. We are concerned with the problem

up — Apu = in Q,
u=20 on 09 x (0,7), (1.1)
u(0) = ug in Q,

where A, is the p-Laplacian (p > 1), p € M,(Q2) and ug € L*(Q); and problems with a nonlinear

term of order 0O:
u — Apu+G(u) = p in @,
u=0 on 0f2 x (0,7), (1.2)
u(0) = up in Q,

where G(u) may be an absorption or a source term, and possibly depend on (z,t) € . The model
problem is the case where G has a power-type G(u) = + |u|q_1 u (¢ > p—1), or an exponential

type.

First make a brief survey of the elliptic problem associated to problem (1.1):

—Apu = p in €,
u=0 on 0f),

with g € M(Q2). When p = 2, existence and uniqueness are proved for general elliptic operators
by duality methods in [58]. For p > 2 —1/N, the existence of solutions in the sense of distributions
is obtained in [23] and [24]. The condition on p ensures that the gradient Vu is well defined in
L' (Q). For general p > 1, new classes of solutions are introduced, first when pu € L'(Q), such as
entropy solutions, and renormalized solutions, see [13], and also [57], and existence and uniqueness
is obtained. For any p € My(£2) the main work is done in [32, Theorems 3.1, 3.2, where not only
existence is proved, but also a stability result, fundamental for applications. Uniqueness is still an
open problem.

Next recall the mains results about problem (1.1).

The first results concern the case p € LP (Q) and ug € L%(2), where existence and uniqueness
is obtained by variational methods, see [45]. In the general case u € M;(Q) and ug € Mp(£2), the
pionner studies come from [23], proving the existence of solutions in the sense of distributions for
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— 1.
N +1’ (1.3)

p>pL=2-—

see also [55], [56], and [26]. The approximated solutions of (1.1) lie in Marcinkiewicz spaces u €

LPo™> (Q) and |[Vu| € L™= (Q), where

P N
pe=p—1+-45, Me =P N1 (1.4)



This condition (1.3) ensures that v and |Vu| belong to L' (Q), since m. > 1 means p > p; and
pe > 1 means p > 2N/(N + 1). Uniqueness follows in the case p = 2, by duality methods, see [48].
For i € L'(Q), uniqueness is obtained in new classes of solutions: entropy solutions, and
renormalized solutions, see [19], [54], see also [3] for a semi-group approach.
Then a class of regular measures is studied in [33]: they introduce a notion of parabolic capacity
cg, defined for any Borel set £ C @, by

cl?(E) = inf(ECUiglpfenCQ{HuHW cu€Wou 2 xy ae in Q}),

where

X = LP(0, T; Wy P(Q) N LA(Q)),
W={z:2€X, 2z €X'}, embedded with the norm |[u|lw = [|ul|x + ||u]|x’-

Let My(Q) be the set of Radon measures p on @ that do not charge the sets of zero cg—capacity:

VE Borel set C Q, cg(E) =0= |u(E)| =0.

Then existence and uniqueness of renormalized solutions holds for any measure p € My(Q2) N
My(Q),called regular (or diffuse) and ug € L'(Q2), and p > 1. The equivalence with the notion of
entropy solutions is shown in [34]; see also [20] for more general equations.

Next consider any measure u € Mp(Q). Let M4(Q) be the set of all bounded Radon measures
on  with support on a set of zero cg capacity, also called singular. Let M (Q), M{(Q), M (Q)
be the positive cones of My(Q), Mo(Q), Ms(Q). From [33], i can be written (in a unique way)
under the form

W= o + s, Ho € MO(Q)7 Hs = M:_ - :u's_7 M:?MS_ € M;_(Q)a (15)

and pp € Mo(Q) admits (at least) a decomposition under the form
po=f—divg+h, feL'Q), ge (@), heX (1.6)

and we write ug = (f, g, h). The solutions of (1.1) are searched in a renormalized sense linked to this
decomposition, introduced in [19],[49]. In the range (1.3) the existence of a renormalized solution
relative to the decomposition (1.6) is proved in [49], using suitable approximations of uy and fs.
Uniqueness is still open, as well as in the elliptic case.

Next consider the problem (1.2). First we consider the case of an absorption term: G(u)u = 0.

Let us recall the case p = 2 and G(u) = |u|? tu (¢ > 1). The first results concern the case y = 0
and wug is a Dirac mass in €2, see [28]: existence holds if and only if ¢ < (N 4 2)/N. Then optimal
results are given in [7], for any u € Mp(Q) and ug € M;(2). Here two capacities are involved: the
elliptic Bessel capacity Cy k, (a, k > 1) defined, for any Borel set £ C RN by

Car(E) = inf{||ol|r@v) : 0 € LFRY), Gaxo 2 x5},
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where G, is the Bessel kernel of order «; and a capacity cg; (k > 1) adapted to the operator of
the heat equation of kernel G(x,t) = X(07oo)(47Tt)_N/26_|$|2/4t : for any Borel set £ C RNt

cai(E) = nf{||o||pr@n+1y o € LFRYTY, G = xp}

From [7], there exists a solution if and only if 1 does not charge the sets of cq o (E) capacity zero
and g does not charge the sets of Cy/, » capacity zero. Observe that one can reduce to a zero
initial data, by considering the measure p+u® 4} in Qx (=T, T), where ® is the tensorial product
and 4 is the Dirac mass in time at 0.

For p # 2 such a linear parabolic capacity cannot be used. Most of the contributions are relative
to the case p = 0 with Q bounded, or = RY. The case where v is a Dirac mass in Q is studied
in [36], [40] when p > 2, and [29] when p < 2. Existence and uniqueness hold in the subcritical
case q < pe. If ¢ 2 p. and ¢ > 1, there is no solution with an isolated singularity at ¢ = 0. For
q < pe, and ug € M (Q), the existence is obtained in the sense of distributions in [60], and for any
up € My(Q) in [16]. The case u € LY(Q), ug = 0 is treated in [30], and p € LY(Q), uo = L*() in
[4] where G can be multivalued. The case p € Mo(Q) is studied in [50], with a new formulation
of the solutions, and existence and uniqueness is obtained for any function G € C(R) such that
G(u)u = 0. Up to our knowledge, up to now no existence results have been obtained for a general
measure p € My(Q).

The case of a source term G(u) = —u? with u = 0 has beeen treated in [6] for p = 2, where
optimal conditions are given for existence. As in the absorption case the arguments of proofs cannot
be extended to general p.

2 Main results
In all the sequel we suppose that p satisfies (1.3). Then
X =IP0,T; WP (), X =LV(0,T; W7 (Q)).

We first study problem (1.1). In Section 3 we give some approximations of p € My(Q), useful
for the applications. In Section 4 we recall the definition of renormalized solutions, that we call
R-solutions of (1.1), relative to the decomposition (1.6) of ug, and study some of their properties.

Our main result is a stability theorem for problem (1.1), proved in Section 5, extending to the
parabolic case the stability result of [32, Theorem 3.4], and improving the result of [49]:

Theorem 2.1 Let ug € L*(Q),
p=f—divg+h +pl —pg € My(Q),
with f € L'(Q),9 € (L7 (@)Y, h € X and uf,u; € MF(Q). Let uo, € LN(9),

pn = fn—divg, + (hn)t + Pn—Tn € Mb(Q),



with f, € LY(Q), gn € (LPI(Q))N,hn € X, and pp,n, € M;(Q), such that
pr= P = AV o+ pss i = 1y — VI + s,
with pl, 0k e LYQ), p2, 12 € (LP(Q))N and Py Mn,s € MT(Q). Assume that
sup | in| (Q) < 00,

and {ugn} converges to ug strongly in L*(Q), {f.} converges to f weakly in L*(Q), {gn} converges
to g strongly in (LP (Q))N, {hn} converges to h strongly in X, {p,} converges to ut and {n,}
converges to pg in the narrow topology of measures; and {p}l} , {77111} are bounded in L'(Q), and
{p2} . {n2} bounded in (L (Q))N. Let {u,} be a sequence of R-solutions of

Ut — Dplly, = Ly, in Q,

Uup =0 on 02 x (0,7T), (2.1)

un(0) = uopn in Q.
relative to the decomposition (f, + p,ll — n}b,gn + ,0% — 777%, hy) of pno. Let v, = w, — hy. Then
up to a subsequence, {u,} converges a.e. in @ to a R-solution w of (1.1), and {v,} converges

a.e. in Q to v =u— h. Moreover, {Vu,},{Vuv,} converge respectively to Vu,Vv a.e. in Q, and
{Tx(un)} ,{Tk(vn)} converge to Ty (u), Tx(v) strongly in X for any k > 0.

In Section 6 we give applications to problems of type (1.2).
We first give an existence result of subcritical type, valid for any measure u € My(Q) :

Theorem 2.2 Let (x,t,7) — G(z,t,r) be a Caratheodory function on Q x R and G € C(R") be a
nondecreasing function with values in RY, such that

|G(z,t,7)| = G(|r|]) forae. (z,t) € Q and any r € R, (2.2)
/OO G(s)s 1 Peds < oo. (2.3)
1

(i) Suppose that G(x,t,r)r 2 0, for a.e. (z,t) in Q and any r € R. Then, for any u € My(Q) and
ug € LY(QQ), there exists a R-solution u of problem
u — Apu+G(u) =p in Q,
u=0 in 02 x (0,T), (2.4)
u(0) = ug in €.
(ii) (without assumption on the sign of G). There exists € > 0 such that for any X > 0, any
1€ My(Q) and ug € L' () with A+ |ul(Q) + ||uol| 1) < €, problem

up — Apu + AG(u) = in Q,
u=0 in 002 x (0,7T), (2.5)
u(0) = ug in Q,

admits a R-solution. Besides, if G(x,t,r)r < 0, fora.e. (x,t) € Q and anyr € R, anduy = 0, = 0,
then there exists a nonnegative R-solution.



In particular if G(u) = + |u|q71 u, existence holds for any 0 < ¢ < p., for any measure y €
My(Q), small enough if G(u) = — |[u|7 ' u. In the supercritical case ¢ = p,, the class of ”admissible”
measures, for which there exist solutions, is not known.

Next we give new results relative to measures that have a good behaviour in t, based on recent
results of [17] relative to the elliptic case. We recall the notions of (truncated) Wolf potential for
any nonnegative measure w € MT(RY) any R > 0, 29 € RV,

R 1
Wil (z0) = [ (Nl Ban.) 7T

Any measure w € My(Q) is identified with its extension by 0 to RY. In case of absorption, we
obtain the following:

Theorem 2.3 Let p< N, ¢>p—1, u € Mp(Q), f € LYQ) and ug € L*(Q). Assume that
W SweF, withwe M (Q),FeL'((0,T)),F 20,

and w does not charge the sets of C, = -capacity zero. Then there exists a R- solution u of
’q+1-p

problem
up — Apu+ |ulilu = f+p in Q,
u=0 on 92 x (0,7), (2.6)
u(0) = ug in Q.

We show that some of these measures may not lie in M(Q), which improves the existence
results of [50], see Proposition 3.3 and Remark 6.7. Otherwise our result can be extended to a more
general function G, see Remark 6.9. We also consider a source term:

Theorem 2.4 Letp < N,q>p—1. Let p € ./\/lzr(Q), and ug € L>®(Q),up = 0. Assume that
pEw®Xor), Withwe M;(Q)
Then there exist A\g = \o(N, p, q,diam§) and by = bo(N, p, q,diam) such that, if

w(E) £ X\C - (E), YE compact C RN, [|uo |0, = bo,

q9—p

there exists a nonnegative R-solution u of problem

u— Apu=ul+p n Q,
u=0 on 99 x (0,7, (2.7)
u(0) = ug in Q,

which satisfies, a.e. in Q,
u(z,t) £ Onp W15 W](@) + 2lJuoll =, (28)

where Cnp, 15 a constant depending on N, p.



Corresponding results in case where G has exponential type are given at Theorems 6.10 and
6.15.

Notice that all our results are still available when A, is replaced by a more general operator
u +— A(u) = —div(a(z,t, Vu)), where a is a Caratheodory function on @ x R¥, satisfying the
following assumptions, where C7,Cs > 0 and b € Lp/(Q) : for a.e. (x,t) € Q, and any &,¢ € RV,

a(w,t,6) £ 2 C1lEl,  la(a.t,€)] S bla,t) + Co €771,

(a(x’taé) - a(xat’ C)) (5 - C) >0 if 5 7£ C

3 Approximations of measures
For any open set @ of R™ and F € (L*(w)), k € [1,00] ,m, v € N*, we set 1F ke = I1F Ml Lk () -

First we give approximations of nonnegative measures in M(Q). We recall that any measure 1 €
Mp(Q) N My(Q) admits a decomposition under the form p = (f, g, h) given by (1.6). Conversely,
any measure of this form, such that h € L>®(Q), lies in M(Q), see [50, Proposition 3.1].

Lemma 3.1 Let p € My(Q) N M (Q) and € > 0.
(i) Then, we can find a decomposition = (f, g, h) with f € L'(Q),g € (L* (Q))N,h € X such that

e + gl o+ 1hllx = A +e)u@), gl q+Ilhllx = e (3.1)

(ii) Furthermore, there exists a sequence of measures py, = (fn,n,hn), such that fn,gn, hy €
C>®(Q) and strongly converge to f,g,h in LY(Q), (LP (Q))N and X respectively, and jui, converges
to p in the narrow topology, and satisfying

fnllr@ + llgnlly g + [1hnllx = (1 4+26)u(Q), lgnlly g + 1hnllx = 2e. (3.2)

Proof. (i) Step 1. Case where p has a compact support in (. By [33], we can find a decompo-
sition u = (f, g, h) with f, g, h have a compact support in Q. Let {¢,} be sequence of mollifiers in
RN*L Then p, = ¢, * p € C°(Q) for n large enough. We see that 1, (Q) = p(Q) and p,, admits

the decomposition u, = (fn,gq,hn) = (on * fyon * g,on *x h). Since {fn},{gn},{hn} strongly
converge to f,g,h in LY(Q), (L” (Q))" and X respectively, we have for ng large enough,

1f = Frolli@ + 119 = gnollpr.@ + 17 = hng[[x = e min{u(Q), 1}.
Then we obtain a decomposition p = (f,§,h) = (ting + f — Fros 9 — Gno> h — g ), such that
1fllie +ally@ + llhllx < X +)u(@),  lldllyq +Ihllx Se. (3-3)

Step 2. General case. Let {6,} be a nonnegative, nondecreasing sequence in C2°(Q) which
converges to 1, a.e. in Q. Set fip = Oop, and fi, = (6, — 0,—1)p, for any n = 1. Since fi, €



Mp(Q)N M;(Q) has compact support, by Step 1, we can find a decomposition fin, = ( fn, Gn, hn)
such that

1fall@ + 19l g + 1hallx S (L+)ua(@),  [[gally @ + [[hnllx S 27" e

Let ?n = Z fka In = Z Ik and hn = Z hk Cleaﬂy, an;u = (?naynahn), and {?n}’{gn} ) {Bn}
k=0 k=0 k=0

converge strongly to some f, g, h, respectively in L(Q), (L? (Q))N, X, with

1fallue +Fally.@ + 1hnllx = 1 +e)u(@),  lgnllyq +1nllx Se.
Therefore, p1 = (f, g, h) and (3.1) holds.

(ii) We take a sequence {m,} in N such that f, = ©m, * f1, 9n = Cm, * Gns Pn = Pm,, * b €
02(Q) and

— _ — £ .
1 = Fulli +119n = Fally. +1ha = Bullx £ ——= min{u(Q), 1}

Let pun = @m,, * (anﬂ) = (fmgnahn)' Therefore, {fn} ) {gn} ) {hn} strongly converge to f,g,h in
LY(Q),(L” (Q))N and X respectively. And (3.2) holds. Furthermore, {/,} converges weak-* to s,

and 11, (Q) = [, ¢ Ondp converges to w1(Q), thus {u,} converges in the narrow topology. [ ]

As a consequence, we get an approximation property for any measure p € MZF(Q) :

Proposition 3.2 Let yu € M} (Q) and ¢ > 0. Let {u,} be a nondecreasing sequence in M (Q)
converging to p in My(Q). Then, there exist fr,f € LYQ), gn,g € (L¥(Q)YN and hy,h € X,
s, s € MT(Q) such that

M:f_dng+ht+N5a Nn:fn_divgn+(hn)t+ﬂn,3a

and {fn},{gn} , {hn} strongly converge to f, g, h in LY(Q), (L? (Q))N and X respectively, and { i, s}
converges to s (strongly) in My(Q) and

nllr@ + llgnlly @ + [hnllx + pns(Q) = A +e)u(@),  and [lgnlly.q + [lhnllx S (3.4)

Proof. Since {u,} is nondecreasing, then {0}, {tn,s} are too. Clearly, ||n— finlpg,0) =

o — I“mOHMb(Q) + ||lpus — “"SHMb(Q) Hence, {pn,s} converge to pg and {un0} converge to po
(strongly) in My(Q). Set g0 = = H0,0, and fin,0 = fin,0 — fin—1,0 for any n = 1. By Lemma 3.1, (i),
we can find f,, € LYQ), g, € (L”(Q))" and h,, € X such that ji,o = (fn,gn, n) and

1allng + lanlly@ + lnllx < (14 €)iino(@), llanlly.q +[lhnllx < 27"e.

Let f, = z fo, Gn = Z Jr and h, = z hy. Clearly, pno = (fn,gn,hn) and the convergence
k=0 k=0

properties hold with (3.4), since

I fallr@ + llgnllpr.@ + [Pallx = (1 + €)po(Q)-



[ |
In Section 6 we consider some measures p € M;(Q) which satisfy |u| £ w® F, with w € M;(Q)
and F € L'((0,T)). It is interesting to compare the properties of w ® F and w :

Let cg be the elliptic capacity in 2 defined by

S(K) = inf{ /Q Vol : o = i, € C2(Q),

for any compact set K C Q.

Let Mg ((2) be the set of Radon measures w on that do not charge the sets of zero c]?—capacity.
Recall that My(€2) N Mo (£2) is characterised as the set of measures w € My(€2) which can be
written under the form f — divg with f € LY(Q) and § € (L? (Q))V, see [25].

Proposition 3.3 For any F € L'((0,T)), F #0, and w € My(Q),
wE Mp(Q) <= waF € My(Q).

Proof. Recall that My(2) NM () is the set of measures w € My (£2) which can be written
R N . N
under the form f—div g with f € L'(2) and g € (Lp (Q)) , see [25]. Assume that w@ F € My(Q).

) N
Then, there exist f € LY(Q), g € (Lp (Q)) and h € X, such that

g(w,t).Vgo(x,t)dmdt—/ h(z,t)pe(t, x)dxdt,

Q
(3.5)
for all ¢ € C°(Q x [0,T7]), see [50, Lemma 2.24 and Theorem 2.27]. By choosing ¢(z,t) = ¢(x) €
C2°(Q) and using Fubini’s Theorem, (3.5) is rewritten as

| ettt = [ c@idn+ [ ga).Tpla)da.

_ B T R N
whete f(z) = | Fll3} oy J& £t € LH) and 3(2) = [1FIgk o) 9l € (7))
hence w € Mg ().
_ _ , N
Conversely, assume that w = f — divg € Mg(Q), with f € LY(Q) and § € <Lp Q> . So

x,t)F(t)dw(z)dt = x, x,t)dxd
/Qso( D F(t)do(x)dt /Qso( 0f (1) t+/Q

(
_ . N
w @ Tp(F) = fo — divgn, with f, = fT.(F) € LY(Q) and g, = §TL(F) € <Lp (Q)) . Then
w ® T, (F) admits the decomposition (fy, gn, ), with h = 0 € L>(Q), thus w @ T,,(F) € My(Q).
And {w@T,(F)} converges to w ® F' strongly in M;(Q), since ||w @ (F — T,(F))l|m, @) =

|l a2 [1F" = To(E)| 10,7y) - Then w @ F' € Mo(Q), since Mo(Q) N M, (Q) is strongly closed in
Mb(Q) |



4 Renormalized solutions of problem (1.1)

4.1 Notations and Definition

For any function f € L'(Q), we write fQ f instead of fQ fdzxdt, and for any measurable set £ CQ,
fEf instead of fE fdzdt.

We set Ty (r) = max{min{r, k}, —k}, for any k£ > 0 and r € R. We recall that if u is a measurable
function defined and finite a.e. in @, such that Ty (u) € X for any k > 0, there exists a measurable
function w from @ into RY such that VT}(u) = X|u|kW, a-e. in Q, and for any k > 0. We define
the gradient Vu of u by w = Vu.

Let p = pp+ps € Mp(Q), and (f, g, h) be a decomposition of g given by (1.6), and g = o —he =
f —divg. In the general case g ¢ M(Q), but we write, for convenience,

/wdﬁﬁ::/(fw—kg.Vw), Yw € XNL2(Q).
Q Q

Definition 4.1 Let ug € LY(Q), i = po + ps € Mp(Q). A measurable function u is a renor-
malized solution, called R-solution of (1.1) if there exists a decompostion (f,g,h) of po such
that

v=u—helL0,T; WOI’U(Q) NL>®0,T;LY(Q)), Voe[l,m); Ti(v) € X, Vk>0, (4.1)

and:

(i) for any S € W2(R) such that S’ has compact support on R, and S(0) = 0,

—/S(uo)go(O)dx—/ <ptS(v)+/ S’(v)\Vu]pQVu.th—F/ S"(v)ap[Vu\p2Vu.Vv:/ S’ (v)dig,
Q Q Q Q Q

(4.2)
for any ¢ € X N L>(Q) such that ¢, € X' + LY(Q) and o(T,.) = 0;
(ii) for any ¢ € C(Q),
lim / O|VulP~2Vu.Vo = / pdut, (4.3)
m—o0 M Q
{m<v<2m}
lim — / B Vu|P2Vu.Vv = / pduy . (4.4)

{mzv>-2m}

Remark 4.2 As a consequence, S(v) € C([0,T]; L' (Q2)) and S(v)(0,.) = S(ug) in Q; and u satisfies
the equation

(S(v)), — div(S' (v)|VuP~2Vu) + 5" (v)|VulP = fS'(v) — div(gS'(v)) + 5" (v)g.Vv, (4.5)
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in the sense of distributions in Q, see [49, Remark 3]. Moreover

div(S' () |Vl ~2Vu) H )| VulP 2V WH

IS@lxrsz1(0) £ |

\ HS & le,Q+ s 9],

div(s' (w)g)|

X
Thus, if [—M, M| D suppS’,
1S@)illxryr1ig) = 1SIwae @y CIVulxp<all} - || IVulP~ VT ()] g

+ 1 fl1,q + llglly H|Vu|pX|v|<MH +llglly o) (4.6)

We also deduce that, for any ¢ € X N L>®(Q), such that g€ X'+ LY(Q),

/S(v( dw—/Suo dx—/ weS(v /S' )| VulP~2Vu. Vo
Q Q
+/ S”(v)\Vu]pQVu.pr:/ S’ (v)dg. (4.7)
Q Q

The conditions (4.3),(4.4) can be formulated in another way:

Proposition 4.3 Let u be a function satisfying definition (4.1). Then for any ¢ € C(Q)

1 1
i = [ over = [edet,  im o~ [ o= [ead. @y

{mZv<2m} {m<v<2m}

) 1 _ . 1 _

lim — / ¢|Vu|p:/ odpy , lim — / ¢|Vv|p:/ pdpg . (4.9)
{mzv>—-2m} {mzv>—-2m}

Moreover, for any ¢ € LP (Q) there holds

1 1
lim — / |Vulp =0, lim — / |[Voulp = 0. (4.10)

m—0o0 M m—00 M
m<|v|<2m m<|v|<2m

Proof. For proving (4.8),(4.9) we can assume that ¢ = 0. For any € > 0 there is C.; > 0 for
i =1,2,3,4 such that

(1 —28)|VulP — Co1|[VAPPE(1 — €)|VulP — Cea| VAP < |VulP2Vu.Vu
< (14 8)|VulP + C. 3| VAP Z(1 + 26)|Vo|P + C. 4| VAP

11



Thus,

1 —1
- [ o2Vl - CalvnS T - [ 6(( - 9)IVuP - CalVAP)
m—o0 M, m—oom
{mZv<2m} {msv<2m}
1
< lim — / B Vu|P2Vu.Vou
m—oo m
{m<v<2m}
<l & (1+&)|Vul? + Cug | VHP?)
m—oo 1M
{mZv<2m}
1
< lim L / 6 (14 22)|Vol? + C4|VhP) .
m—oo M
{mZv<2m}

Since limp 400 = [ |Vh|P¢ = 0 and using (4.3), then letting ¢ — 0 we deduce (4.8), and
mZv<2m

similarly (4.9).

Finally, for any ¢ > 0, |Vu| |g| < |VulP + (p — 1)p P e /@D P, hence we deduce (4.10) as

m — oo, and then ¢ — 0. [

Remark 4.4 (i) Any function U € X such that Uy € X' + LY(Q) admits a unique cg—quasi
continuous representative, defined cg—quasi a.e. in Q, still denoted U. Furthermore, if U € L*(Q),

then for any poy € Mo(Q), there holds U € L*™°(Q, dug), see [49, Theorem 8 and Corollary 1].

(ii) Let u be any R- solution of problem (1.1). Then, v = u — h admits a cz?—quasz' continuous
functions representative which is finite cg—quasz' a.e. in Q, and u satisfies definition 4.1 for every

decomposition (f,§,h) such that h —h € L>(Q), see [49, Proposition 3 and Theorem 4 ].

4.2 Steklov and Landes approximations

A main difficulty for proving Theorem 2.1 is the choice of admissible test functions (S, ) in (4.2),
valid for any R-solution. Because of a lack of regularity of these solutions, we use two ways of
approximation adapted to parabolic equations:

Definition 4.5 Let € € (0,T) and z € L}, .(Q). For anyl € (0,e) we define the Steklov time-
averages [z];, (2] of z by

[2]i(z,t) = % / z(z, s)ds fora.e. (x,t) € A x (0,T —¢),

~+

¢
/z(x,s)ds for a.e. (x,t) € Q x (g,T).
-
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The idea to use this approximation for R-solutions can be found in [22]. Recall some properties,
see [50]. Let € € (0,T), and

01 € CX(Q % [0,T)), w2 € C(Q x (0,T]), with Suppyp; C Q x [0,T — ], Suppys C Q x [, T].

(i) If z € X, then ¢;[z]; and pa[z]_; € W.

(i) If 2 € X and 2 € X' + LY(Q), then, as | — 0, (1[2];) and (p2[z]_;) converge respectively to
@12 and oz in X, and a.e. in Q; and (¢1[2])),, (p2[z]—1), converge to (p12)t, (p22)¢ in X'+ LY(Q).
(iii) If moreover z € L*™(Q), then from any sequence {l,} — 0, there exists a subsequence {l,}
such that {[z];, },{[#]-i, } converge to z, ¢;-quasi everywhere in Q.

Next we recall the approximation introduced in [42], used in [30], [26], [21]:
Definition 4.6 Let u € My(Q) and ug € L*(Q). Let u be a R-solution of (1.1), and v = u — h

gien at (4.1), and k > 0. For any v € N, the Landes-time approximation (Ty(v)), of the
truncate function Ty (v) is defined in the following way:

Let {z,} be a sequence of functions in Wol’p(Q) NL>(Q), such that ||2,||cc.0 S k, {2} converges
to Ti(up) a.e. in Q, and V_1||ZV||€VLP converges to 0. Then, (Ty(v)), is the unique solution of

0" ()
the problem

(T (v))o)t = v (Tk(v)—(Tk(v))y) in the sense of distributions, (T}(v)),(0) = z,, in Q.
Therefore, (T (v)), € X N L*(Q) and (Ty(v)),): € X, see [42]. Furthermore, up to subse-
quences, {(Tx(v)),} converges to Ti(v) strongly in X and a.e.. in Q, and || (Tx(v)), ||z (q) = k-
4.3 First properties

In the sequel we use the following notations: for any function J € W1 >°(R), nondecreasing with
J(0) =0, we set
J(r) = / J(T)dr, J(r) = / J'(7)7dT. (4.11)
0 0
It is easy to verify that J(r) =0,
J(r)+J(r)=J(r)r, and J(r)—T(s) 2 s(J(r)— J(s)) Vr,s € R. (4.12)

In particular we define, for any k > 0, and any r € R,

Ti(r) = /07" Ty (7)dT, Ti(r) = /07‘ Ty (T)7dT, (4.13)

and we use several times a truncature used in [32]:

2m — |s|

Hm(r) = X[-m,m)] (T) + m

Yomcisfam()s ) = /OTHmmdr (4.14)

The next Lemma allows to extend the range of the test functions in (4.2). Its proof, given in
the Appendix, is obtained by Steklov approximation of the solutions.
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Lemma 4.7 Let u be a R-solution of problem (1.1). Let J € WH(R) be nondecreasing with
J(0) =0, and J defined by (4.11). Then,

/ S (0)|VulP2Vu.V (£1(S())) + /Q S (0) [Vl V. Vue J (S(v))

— [ €075 u0))S(u0) /Q §T(S(0))

/ S/(0)€J(S(v))diia, (4.15)
for any S € W2®(R) such that S’ has compact support on R and S(0) = 0, and for any & €
CHQ)NW=(Q),& 2 0.

Next we give estimates of the gradient, following the first estimates of [26], see also [33], [49,
Proposition 2], [43].

Proposition 4.8 If u is a R-solution of problem (1.1), then there exists C(p) > 0, only depending
on p, such that, for any k =1 and ¢ = 0,

|VulP+ / |Vo|P < C(p)kM, (4.16)
(< v| S04k <o <tk
and
V]l oo 0,7y L1 (2)) = C(P) (M + [82]), (4.17)
where

M = [[uolly g + s @)+ £l + llgllty  + IRl
As a consequence, for any k = 1,
meas {|v| > k} < C1 M k™ Pe, meas {|Vv| > k} £ CoMok™™e, (4.18)
meas {|u| > k} £ C3Mak™Pe, meas {|Vu| > k} < CyMak™ ™, (4.19)
where C; = C;(N,p), i = 1-4, and M; = (M—|—|Q|)%M and My = My + M.
Proof. Set for any » € R, and m, k,£ > 0,
Ty o(r) = max{min{r — £, k},0} + min{max{r + ¢, —k},0}.

For m > k+¢, we can choose (J, S, &) = (Ty.¢, Hp, €) as test functions in (4.15), where H,, is defined
at (4.14) and ¢ € C*([0,T]) with values in [0, 1], independent on z. Since Ty ¢(Hyp, (1)) = Ty o(r) for
all » € R, we obtain

— Jo £(0) Ty ¢ (o) Hopa ( fQ &Tk o(Hpm (v))

+ [ gvuPveve—E [ gVuf TPV £ [ Hi(0)ETk e (v)diio.
{e2|v|<b+k} {m<|v|<2m}
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And

— k
/ H, (0)ET 0 (v)dpo :/ Hy (0)ETy 0 (v) f+ / §Vv.g—a / &Vu.g.
Q Q {<)v|<l+Ek} {m<|v|<2m}
Let m — oo; then, for any k = 1, since v € L}(Q) and from (4.3), (4.4), and (4.10), we find

—/thmw) + / E|Vul" A Vu Vo < / EVv.g + k([[uolly ot 1l (@)+ 1 f1l1.)-

{<)v|<l+k} {l<|v|<l+k}
(4.20)
Next, we take £ = 1. We verify that there exists ¢ = ¢(p) such that

1 /
V" *Vu. Vo = Vo.g 22 (IVul’ + [Vol?) = c(lg” +[VAP);

hence (4.16) follows. Thus, from (4.20) and the Holder inequality, we get, with another constant
c = c(p), for any & € C1([0,T]) with values in [0, 1],

—/ &y o(v) < ckM.
Q

Thus fﬂ@(v)(t) < ckM, for a.e. t € (0,T). We deduce (4.17) by taking k& = 1, = 0, since
Tio(r)=Ti(r) 2 |r| — 1, for any r € R.

Next, from the Gagliardo-Nirenberg embedding Theorem, we have

p(N+1) 2
/Q )5 < ClolEe o /Q V)P,

where C' = C(N,p). Then, from (4.16) and (4.17), we get, for any k = 1,

_ p(N+1)

_ p(N+1) (N+1) 2 _
meas {[v] > k} S k7 /QITk(v)Ip NS Cllllteoryni@y kTN /Q|VT,§(U)|1’ < CyMkPe,

with Cp = C1(V,p). We obtain

1
meas {|Vv| > k} < > meas ({|Vv|P > s})ds
0

< meas {|v| > k:NLH} + % /’f” meas <{|Vv|p > s, |v] = k‘NLH}) ds
0

1
< CyMik™™e + ﬁ / ’VU’p < CoMok™™e,
N
]Sk N+
with Cy = Co(N, p). Furthermore, for any k = 1,
meas {|h| > k} + meas {|Vh| > k} < Ck7P||h|%,

where C' = C(N, p). Therefore, we easily get (4.19). n
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Remark 4.9 If data pn € LY(Q), then (4.16) holds for all k > 0 and the term |Q| in inequality
(4.17) can be removed where M = ||uo||1,0 + |¢|(Q). Furthermore, (4.19) is stated as follows:

meas {|u| > k} < C3M% k~Pe, meas {|Vu| > k} < C4M%—ﬁ k=™ Yk > 0. (4.21)

To see last inequality, we do in the following way:
1 [+
meas {|Vv| > k} < > meas ({|Vv|P > s})ds
0
1N 1 [+ 1N
< meas {]v[ > MV EN+T } + > meas {]Vv[p > s, [v] S M N+TEN+T }ds
0

N+2
S CyM N+ ™™,
Proposition 4.10 Let {{,} C My(Q), and {ug,} C LY(Q), with

sup |pa| (Q) < 00, and sup[[uon|l1,0 < oo.
n n

Let uy, be a R-solution of (1.1) with data pn, = pno + pin,s and ug,, relative to a decomposition
(fns Gns hn) Of pino, and vy, = u, — hy. Assume that {f,} is bounded in L'(Q), {gn} bounded in
(L (Q)N and {h,} bounded in X.

Then, up to a subsequence, {v,} converges a.e. to a function v, such that Ty(v) € X and v €
L?((0,7); WOI’J(Q)) N L>((0,T); LY () for any o € [1,m,.). And
(i) {vn} converges to v strongly in L°(Q) for any o € [1,m.), and sup anHLoo((07T);L1(Q)) < 00,

(i) supysgsup, k+r1 fQ VT (v,)|P < o0,
(iii) {T(vyn)} converges to Ty (v) wealkly in X, for any k > 0,
() {IV (T (vn) + hy) P72V (T (vn) + hn) } converges to some Fy, weakly in (LP' (Q))N.

Proof. Take S € W2>(R) such that S’ has compact support on R and S(0) = 0. We combine
(4.6) with (4.16), and deduce that {S(v,);} is bounded in X’ + L'(Q) and {S(v,)} bounded in X.
Hence, {S(v,)} is relatively compact in L'(Q). On the other hand, we choose S = S}, such that
Sk(2) = z, if |2| < k and S(z) = 2ksignz, if |z| > 2k. Thanks to (4.17), we obtain

meas {|vp, — | > o} < meas {|v,| > k} + meas {|vp,| > k} + meas {|Sk(vn) — Sk(vm)| > o}
1

S 2Ulonllyg + vmllyq) + meas {[Sk(vn) — Sk(vm)| > o}
C
< - + meas {|Sk(v,) — Sk(vm)| > o} . (4.22)
Thus, up to a subsequence {u,} is a Cauchy sequence in measure, and converges a.e. in @ to a
function w. Thus, {T}(v,)} converges to Tj(v) weakly in X, since sup,, [|Ti(v,)| x < oo for any
k> 0. And {|V (Tx(vn) + hn) [PV (T)(vy) + hy) } converges to some Fj, weakly in (L (Q)N.
Furthermore, from (4.18), {v,,} converges to v strongly in L?(Q), for any o < p.. ]
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5 The convergence theorem
We first recall some properties of the measures, see [49, Lemma 5], [32].

Proposition 5.1 Let us = pt — p; € My(Q), where puf and py are concentrated, respectively,
on two disjoint sets ET and E~ of zero ¢ -capacity. Then, for any § > 0, there exist two compact
sets K; C E" and Ky C E~ such that

pf(EN\KF) <6,  py (E\K;) <6,

and there exist ¢;’, Py € CHQ) with values in [0,1], such that 1/)3', Y5 =1 respectively on K;', Ky,
and supp(v) N supp(ys ) = 0, and

i 1 x + 1@ )il xrsrr @) S 0, Y5 1x + (W5 el x40y = 0

There exist decompositions (1#;')15 = (1/)3')2 + (1#3')? and (Y5 )¢ = (1#5_): + (1/)5_)? in X'+ LYQ),
such that

[ WSS (o =S [

Both {w;} and {wé_} converge to 0, *-weakly in L°°(Q), and strongly in L'(Q) and up to subse-
quences, a.e. in Q, as § tends to 0.
Moreover if p, and n, are as in Theorem 2.1, we have, for any 6,091,609 > 0,

S (03 S S

/Q Oy dpn + /Q G di = w(n,5), /Q ydut <6, /Q SEdus <6, (5.2)
/Q (1= -0 dpn = w(n, b1, 62), /Q (1= Gf 0 )t < 61+ 6, (5.3)
/Q (1 — 5 65 )i = w(n,61,62), /Q (1= 5 5 )iy < 61 + 6. (5.4)

Hereafter, if n,e,...,v are real numbers, and a function A depends on n,¢,...,v and eventual
other parameters «,f3,..,v, and n — ng,e — €o,.., v — vy, we write A = w(n,¢,..,v), then
this means Eyﬁyo..limeﬁwﬁn%no |A|] = 0, when the parameters «,f,.., are fixed. In the
same way, A < w(n,e,0,...,v) means lim,_,,..lim. . lim, ,,, A <0, and A > w(n,e, .., ) means
—A S w(n,e,..,v).

Remark 5.2 In the sequel we use a convergence property, consequence of the Dunford-Pettis the-
orem, still used in [32]: If {an} is a sequence in L'(Q) converging to a weakly in L'(Q) and {b,}
a bounded sequence in L*°(Q) converging to b, a.e. in @, then lim,,_, fQ anby, = fQ ab.
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Next we prove Thorem 2.1.

Scheme of the proof. Let {y,}, {uo,} and {u,} satisfying the assumptions of Theorem 2.1.
Then we can apply Proposition 4.10. Setting v, = wu, — hy, up to subsequences, {u,} converges
a.e. in @ to some function u, and {v,} converges a.e. to v = u — h, such that Ty(v) € X and
v e L7((0,T); W&’U(Q))HLOO((O, T); LY(2)) for every o € [1,m,.). And {v,} satisfies the conclusions
(i) to (iv) of Proposition 4.10. We have

pin = (fo = div gn + (hn)e) + (o, = div p7) = (i, = div i) + s = 1n,s
= Hn,0 + (pn,s - 77n,s)Jr - (pn,s - nn,s)ia

where

Hn,0 = )\n,0+Pn,0_77n,0a with >\n,0 = fn—divg,+ (hn)ta Pn,0 = Prll —div P?p T, = U}L—diV 7772;'
(5.5)

Hence
Pn,05Tn,0 € M;(Q) N MO(Q); and Pn Z Pn,0s Tin Z TIn,0- (56)

Let E*, E~ be the sets where, respectively, uf and u; are concentrated. For any &1, 52 > 0, let
w;,ng; and g , ;s as in Proposition 5.1 and set

D5, 5, = 7/);11#3; + ¥5, ¥, -

Suppose that we can prove the two estimates, near E

L = / q)51,62|vun|p_2vun-v (Un_<Tk(v)>l/) é w(n, v, 51’52)’ (57)
{lvn|=k}

and far from E,

Iy = / (1= ©5,.6,) | Vun P>V V (v, —(Ti(v)),) £ w(n, v, b1,0). (5.8)
{lvn|=k}

Then it follows that

lim,, ,, / |V, P2V, V (v,— (T (v)),) £ 0, (5.9)
{|vn| <k}
which implies
Tim,, o0 / |Vt [P~ 2Vu,.V (v, — Ti(v)) £ 0, (5.10)

{lonl=k}

since {(T(v)),} converges to Ty (v) in X. On the other hand, from the weak convergence of {T}(vy,)}
to Tx(v) in X, we verify that

/ IV (Ti(0) + hn) P72V (Tio(0) + hn) V (T (vg) — Ti(v)) = w(n).
{lon|=k}
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Thus we get

(IVun|P 2V, — |V (T () + b)) P72V (T (v) + b)) .V (un — (Ti(v) + b)) = w(n).
{lvnl=k}

Then, it is easy to show that, up to a subsequence,
{Vu,} converges to Vu, a.e. in Q. (5.11)

Therefore, {|Vu,[P~2Vu, } converges to |[VulP~?Vu weakly in (LP(@))N ; and from (5.10) we find
M,HOO/ |V P2V, VT (v,) < / |VuP~2Vu. VT (v).
Q Q

Otherwise, {|V (T (v) + hy) P72V (T (v) + hy)} converges weakly in (LP'(Q))Nto some Fj, from
Proposition 4.10, and we obtain that Fy, = |V (Tj(v) + h) P72V (T} (v) + h) . Hence

Q Q
+ limy, o0 / IV (Th(vn) + ) [P 2V (Tio(vn) + h).Vhy,
Q

< /Q IV (Tk(0) + h)P.

As a consequence
{T(vyn)} converges to Ty (v), strongly in X, Vk > 0. (5.12)
Then to finish the proof we have to check that u is a solution of (1.1). ]

In order to prove (5.7) we need a first Lemma, inspired of [32, Lemma 6.1], extending [49,
Lemma 6 and Lemma 7]:

Lemma 5.3 Let 15,925 € CH(Q) be uniformly bounded in W1(Q) with values in [0,1], such
thath Y1 sdpy <6 and fQ o sdpt < 8. Then, under the assumptions of Theorem 2.1,

1
- / |Vug|P1)e 5 = w(n,m,d),

1
— Vo [Pia 5 = w(n,m, ), 5.13
= S B\ G RN N CRE)

{mZv,<2m} {mZv,<2m}

1 1
p” / |Vun [Py 5 = w(n,m,d), p” / |V, [P s = w(n,m,d), (5.14)

—2m<vp,S—m —2m<vp<—m

and for any k > 0,

/ |Vun|P1ps 5 = w(n,m,d), / |V PP s = w(n,m,d), (5.15)

{mZvn<m+k} {mZv,<m+k}
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|Vug P15 = w(n,m,d), / Vv, P15 = w(n,m,d). (5.16)

{—-m—k<v,<—m} {—-m—k<v,<—m}

Proof. (i) Proof of (5.13), (5.14). Set for any r € R and any m, ¢ = 1

" —m+T dm+2h — 1
Sm(r) = /0 ( m X[m,2m] (1) + X (2m,2m+4) (7) + WX(zmHAmmh] (T)> dr,

T —m+
Sm(r):/o < TX[m,Zm] (T) + X (2m,00) (T)> dr.

m

Note that Sy, /= X[m,2m] /™ = X[2m+e,202m+0)]/ (2m +£). We choose (£, J, S) = (Y25, T1, Sm,r) as test
functions in (4.15) for u,, and observe that, from (5.5),

,Jn\,o = HUn,0 — (hn)t = )\n,O + Pn,0 — Mo = fn —divg, + Pn,0 — TIn,0- (5-17)
Thus we can write Z?:1Ai < 2;2714@-, where

A= —/¢2,5(0)T1(Sm,e(uo,n))sm,z(uo,n), Ay = —/ (¥2,6),T1(Sm,e(vn)),
o Q

AS - /QS?IR,K(Un)Tl (Smj(vn))\Vun\p’2Vun.V¢2,5,

’ 2 ’ _
A= /Q S o(0n) 25T (S (1)) Vit P2Vt T,

1
As = m / V2.6T1 (Sm.e(vn)) | Vtun|P >V, Vo,
{m§vn§2m}
A — 1 / ’IIZ) |vu |p*2vu V’U
6 2m + /¢ 2,0 n n-VUp,
{2m+eZv, <2(2m+0)}

A7=/QS’m,zz(vn)ﬂ(Sm,z(vn))%,afn, AS:/QS;n,f(vn)Tl(Sm,z(vn))gn-VIbg,g,

/ 2 / 1
A9 = /Q <Sm7£(vn)) Tl(Sm,Z(Un))wzzggn-vvny AlO - E / Tl(Sm,Z(Un))wlzggn-vvna

mZv, <2m

1 /

A = — / V2,6Gn-Vn, Az = / St (Vn)T1 (S e(vn))2,6d (Pr,0 — Mno) -
{2m+4-LZvp, <2(2m+-L)}
Since ||Spe(uon)li0 S [ uondz, we find Ay = w(l,n,m). Otherwise
{mZuo,n}
Al S Waillyrmigy [ on 14al S lnsllyrnigy [ [Tual
{m=vn} {m=vn}
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which implies A2 = w(¢,n,m) and A3z = w(¢,n,m). Using (4.3) for u,, we have
AG = - /Q w2,5d(pn,s - nn,s)+ + w(ﬁ) = w(€7n7m75)-
Hence Ag = w(f,n,m,d), since (pns —1ns)’ converges to uf as n — oo in the narrow topology,
and fQ Vo sdpt < 5. We also obtain Ay = w(¢) from (4.10).
Now {S;n,g(?)n)Tl(Sm,z(Un))}g converges to S, (v )1 (Sm (vn)), {S,/n(vn)Tl(Sm(vn))} converges to

S, (v) Ti(Sm(v)), {S;n(v)Tl(Sm(v))} converges to 0, x-weakly in L*°(Q), and {f,} converges to
f weakly in L'(Q), {gn} converges to g strongly in (L (Q))". From Remark 5.2, we obtain

A= /QS/m(vn)Tl(Sm(v"))%’éf" +w(l) = /Qslm(v)Tl(Sm(U))%,sf +w(l,n)=wl,n,m),

Ag = /QS’m(Un)Tl(Sm(Un))gn.Vl/JQ,a +w(l) = /QS’m(v)Tl(Sm(v))szpg,g +w(l,n) =w(,n,m).

Otherwise, A13 < fQ Yy sdpp, and {fQ ¢2,5dpn} converges to fQ Vo sdp, thus Ajg < w(l,n,m,d).
Using Holder inequality, we have

gn.-Vu, — |Vun|p_2Vun.an = gn-Vy — gn.Vhy, — |[Vu,|P + |Vun|p_2Vun.th
;1 1
§ C1|gn|p + §|Vun|p - gthn - |Vun|p + §|vun|p + C2|th|p
< Cs(|gnl”" + | VhalP),

for some C; = C;(p), i = 1-3, which implies
< ’ 2 / p/ p .
A9 — Ay =03 o (S m,K(Un)) Tl(Sm,K(vn))wQ,é |gn| + |hn| = W(Eanam)-

Similarly we also show that Aj9 — A5/2 < w(¢,n,m). Combining the estimates, we get A5/2 =
w(l,m,m,d). Thus,

p— |V |P1pa sT1 (Sme(vn)) = w(l,n,m,d).
{mZv,<2m}

Note that for all m > 4, Sy, ¢(r) = 1 for any r € [3m, 2m]; hence T (S, (r) = 1. So,

1
p” |V [Phy s = w(l,n,m,9).
{%m§0n<2m}

Since |V, |P < 2P~ 1 Vu, [P + 2P~ Vh,|P, there also holds

1
— / Vo, [Pihas = w(l,n,m,d).

m
{ gmgvn <2m}
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We deduce (5.13) by summing on each set {(3)"m < v, < (%)”Hm} for v = 0,1, 2. Similarly, we
can choose (§,%,5) = (Y15, 11, Sml) as test functions in (4.15) for w,,, where gmj(r) = Spme(—r),
and we obtain (5.14).

(ii) Proof of (5.15), (5.16). We set, for any k,m,¢ = 1,

(k+l4+m)—T1
k+m+4¢

T 2
Skme(r) = /0 <Tk(7' = T (7)) X etmtq) + K X(k+m+£,2(lc+m+£)]> dr

Sem(r) = / To(r = Ton (1)) Xy 7
0

We choose (§,v,5) = (Y25, T1, Skm,e) as test functions in (4.15) for u,. In the same way we also
obtain

’vun’pr,éTl (Sk,m,f(vn)) = w(ga n,m, 5)

{mSvp<m+k}
Note that T1(Skme(r)) = 1 for any r = m + 1, thus J |Vu,|P1)e,s = w(n,m,d), which
{m+1Sv,<m+k}
implies (5.15) by changing m into m — 1. Similarly, we obtain (5.16). |

Next we look at the behaviour near E.
Lemma 5.4 Estimate (5.7) holds.

Proof. There holds

I = / @51752\Vun\p_QVun.VTk(vn)— / @51752]Vun]p_QVun.V<Tk(v)>y.
Q
{lvn|=k}

From Proposition 4.10, (iv), {|V (Tk(vn) + ha) P72V (Tk(vn) + hn) V{Tk(v)), } converges weakly in
LY(Q) to F,V{(Tx(v)), . And {X{|vn|§k}} converges to X|y|<k, a-€.. in @ , and Pg, 5, converges to 0
a.e.. in Q as 0y — 0, and P, 5, takes its values in [0, 1]. Thanks to Remark 5.2, we have

(1351,52 ]Vun ]p_ZVun.V<Tk (U)>V

{lon|=k}

- /Q X<y @152V (T(0m) + B [P2 (T (o) + b)) V{Ti(0))
- /Q o[k 861 5 F- V(T (0)),, + w(n) = w(n, v, ).
Therefore, if we prove that

/ (1351,52 ]Vun]p_ZVun.VTk(vn) § w(n, (51, (52), (5.18)
Q
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then we get (5.7). As noticed in [32], [49], it is precisely for this estimate that we need the double
cut w;{wg. To do this, we set, for any m > k > 0, and any r € R,

Stnr) = [ (k= Tu(r)) Hn(r)ar
0
where H,, is defined at (4.142. Hence suppghm C [-2m, k] ; and S"k,m = ~Xj_pp T %X[_Qm’_m].
We choose (¢, S) = (Ib(—stl/};;, Sk.m) as test functions in (4.2). From (5.17), we can write
A+ Ay — A3+ Ay + A5+ A =0,
where
A= - /Qw;wg)ték,m(vn), Ay = /Q (k = T (0n)) Hon (00) [Vt ">V V (05 65,
_ 2k _
Az = /QT,Z)EE%EWUMP 2vun-VTk(vn), A4 = m / T/)EE%EWUMP 2Vun.an,

{—2m<vp,<—m}

As = _/ (k- Tk(vn))Hm(vn)w({wgdm)v As = / (k — Tk‘(vn))Hm(Un)wg:wg;d(Wn,O — Pn0);
Q Q

and we estimate As. As in [49, p.585], since {Skm(vn)} converges to S'km(v) weakly in X, and
Sk.m(v) € L®(Q), and from (5.1), there holds

A =— /Q(%Z);)twgﬁk,m(v)—/Qlﬁg (¢$)t§k7m(v) +w(n) = w(n,d).

Next consider Ay. Notice that v, = Toy,(vy,) on suppH,,(vy,). From Proposition 4.10, (iv), the
sequence {]V (Tom (vn) + ha) [P72V (Tam (0n) + ha) V(05 1/13;)} converges to Fu,, .V (¢ 1) ) weakly
in L'(Q). Thanks to Remark 5.2 and the convergence of 1/1;1 ¢;; in X to 0 as é; tends to 0, we find

Ay = / (= Tx(0)) Hon (0) Fomn. V(65 98 + w(n) = w(n, 61).
Q
Then consider A4. There holds

2k
=20 [ vl [ el
{—2m<vp,<—m} {—2m<vp,£—m}
Since w;rl takes its values in [0,1], from Lemma 5.3, we get in particular Ay = w(n,dy, m,d2).
Now estimate As. The sequence {(k - Tk(vn))Hm(vn)¢(§Llw(;;} converges weakly in X to (k —

Tk(v))Hm(v)qbgqbg;, and {(k — T (vy,))Hpm(v,)} converges *-weakly in L>°(Q) and a.e.. in @ to
(k—Ty(v))Hp,(v). Otherwise { f,,} converges to f weakly in L' (Q) and {g,,} converges to g strongly
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in (L” (Q))"N. Thanks to Remark 5.2 and the convergence of z/)grliﬁg; to 0 in X and a.e. in Q) as
61 — 0, we deduce that

A5 = - /Q (k = To(vn)) Hn (0)85, 95, A + w(n) = w(n, 61),

where vy = f — divg.
Finally Ag < 2k fQ w;wg;dnn; using (5.2) we also find Ag < w(n,d1,m,d2). By addition, since
Asz does not depend on m, we obtain

Az = / w;wg;\Vun\pQVun.VTk(vn) < w(n, d1,82).
Q

Reasoning as before with (1/)571%;2,5&,”) as test function in (4.2), where S (r) = —Sk,m(—r), we
get in the same way

/ wé_li/}(;;\Vun\p_QVun.VTk(vn) < w(n, d1,82).
Q

Then, (5.18) holds. u

Next we look at the behaviour far from E.
Lemma 5.5 . Estimate (5.8) holds.

Proof. Here we estimate Is; we can write
b= [ 0 s Vunl VY (Tion) - (L))
{lvn| =k}
Following the ideas of [51], used also in [49], we define, for any r € R and ¢ > 2k > 0,
R = Tesr (0n—(Ti(0))v) = Tog (vn — Ti (vn)) -
Recall that [[(T;(v))vly o < k, and observe that
Ry 0 =2k sign(vy,) in {|lvg| 2L0+2k},  |[Ruyue S 4k, Ry =w(n,vf) ae in @, (5.19)
lim Ry, .0 =Tk (v— (Tk(v)),) = To—p (v =T (v)) , a.e.in @), and weakly in X.  (5.20)

n—oo

Next consider &1 ,, € C([0,7)),&2.n, € C°((0,T]) with values in [0, 1], such that (&1 ,)¢ < 0 and
(&2.n0)t = 0; and {&1n, (1)} (resp. {&1m,(t)}) converges to 1,for any t € [0,T) (resp. t € (0,T7] );

and moreover, for any a € C([0,T]; L*()), {fQ a({l,nl)t} and fQ a(&2,n,), converge respectively to
— [a(T,.) and [ a(0,.). We set
Q Q

P = Pnninglll = 517711(1 - CI)51,52)[T5+1€ (Un_<Tk(v)>V)]ll _527712(1 - CI)51752)[T€*1€ (Un - Tk(vn))]—lg :
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We can see that
o — (1 =25 5,)Rn e =w(li,l2,n1,n2) innorm in X and a.e.. in Q. (5.21)

We can choose (¢, S) = (Spmm,nzlhlz,bH—m) as test functions in (4.7) for u,, where H,, is defined
at (4.14), with m > ¢ + 2k. We obtain

Ay +As+ A3+ Ay + As = A + Az,

with

A= / (T (0n(T))dz, Ay = — / OV T (g ) e,
Q Q

A3:—/ gptH—m(vn), A4:/Hm(vn)|Vun|p2Vun.Vgo,

Q Q

A5:/ ng'm(vn)|Vun|p_2Vun.an, A6:/ Hm(vn)god)\/n:),
Q Q

A? - AHm(Un)¢d (pn,O - nn,O) .

Estimate of A4. This term allows to study I,. Indeed, { H,,(v,)} converges to 1, a.e.. in @; thanks
to (5.21), (5.19) (5.20), we have

Ay = / (1 — @5, .5,)|Vun|P 2V, VR, 0 — / R | Vun P2V, V&5, s5,4+w(l1, 12, n1,m2,m)
Q Q
= [ 0= )Vl 2T B sl Lz, g ,)
Q

oy / (1= B5,.5) | Vitnl? > VetV R otw(ls, I, 1, migy m, v, )
{lvn|>k}
= Is + By + By + w(ly,l2,n1,n2, m,n, v, 0),

where
b= / (1= @) (X[, (13 (o), <tk — Xllonl—H|<e—0) | Vinl" ™Vt Vo,
{lvn|>k}

By =~ / (1= ®5,.62)Xo,, (1401, |26 Vil ViV (T (0),-
{lon|>k}

Now {|V (Tiqor(vn) + hn) P72V (Tysok(vn) + hn) V{(T)(v)), } converges to Fpy0pV (T (v)),,, weakly

in L'(Q). Otherwise {X|Un|>kx‘vn—<Tk(v))V’§Z+k} converges to Xlol>kX [u—(Ty (v) , |<4k> O-E- in Q.
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And {(Tk(v)), } converges to Tj(v) strongly in X. Thanks to Remark 5.2 we get
By = - /Q (1= ®51,6) Xjol>k Xjoiy,(0), |2etrEer2n-V{Te(v)), +w(n)

= — /Q (1= @5,.55) Xpo|>k X|o—Tx ()| <tk Frro6-VTR(v) +w(n,v) = w(n,v),
since VTj(v) X|v|>k = 0. Besides, we see that
Bl [ 0 em) Vel Ve,
{6—2k<|vn | <0+2k}
Using (5.3) and (5.4) and applying (5.15) and (5.16) to 1 — @, 5,, we obtain, for £ > 0
(|Vun | + |Vu,[P) (1 — @5, 5,) = w(n,m,d1,d2). (5.22)
{mZ|vp|<m+4k}
Thus, B; = w(n,v,{,01,02), hence By + By = w(n,v, £, 61,02). Then
Ay = 1o —|—w(l1,l2,n1,n2,m,n, V,f,(;l,éz). (523)

Estimate of A;. For m > ¢ + 2k, since |¢| < 2¢, and (5.21) holds, we get, from the dominated
convergence Theorem,

As = / (1- @51,52)Rn7y,gH;n(vn)|Vun|p72Vun.an + w(ly,l2,m1,n29)
Q

2k
= _E / (1 — @51,52)\Vun\p_QVun.an—i—w(ll, lQ, ni, nz);

{m<|vn|<2m}
here, the final equality followed from the relation, since m > ¢ + 2k,

/ 2k .
Rn,u,ﬁHm(vn) = _EXmé\UnEQm, a.e. 1 Q (524)

Next we go to the limit in m, by using (4.3), (4.4) for u,, with ¢ = (1 — ®5, 5,). There holds
A5 = _Qk/ (1 - (I)51,52)d ((pn,s - 77n,s)+ + (pn,s - nn,s)_) +w(ll7127n17n27m)'
Q

Then, from (5.3) and (5.4), we get A5 = w(ly,l2,n1,n9,m,n,v, L, 01,02).
Estimate of Ag. Again, from (5.21),

Ao = /Q Ho(on)of, + /Q 9. (Ho (0)9)

- /Q Hy(0n)(1 = ®5, 5, Ruef, + / 00V (Hon(0) (1 = B, 52) R )+, oy 1, 12).
Q
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Thus we can write Ag = D1 + Dy + D3 + Dy + w(ly,l2,n1,n2), where
Di= [ Bl = @5) e Dy = [ (0= @) B, (00)g ¥
D3 = /QHm(Un)(l — ®5,.6,)90-V Ryt D,=- /Q Hp(vn) Ry v 09n -V Ps, 5,
Since {f,} converges to f weakly in L'(Q), and (5.19)-(5.20) hold, we get from Remark 5.2,
D= [ (0= i) (Tirs 0 {T(0),) = Took (0= T 0) -4om,m) = om0,

We deduce from (4.10) that Dy = w(m). Next consider Ds. Note that H,,(v,) =1+ w(m), and
(5.20) holds, and {g,} converges to g strongly in (L (Q))N, and (T}(v)), converges to Ty(v)
strongly in X. Then we obtain successively that

Dy = /Q (1= ®5,,6,)9-V (Toqre (v = (Tk(v)),) = T (v = Ty (v))) +w(m, n)

- /Q (1= @5,5,)9-V (Tesr (v = Tu(v)) = Tocy (v — Ty (0)) +(m, m, )
=w(m,n,v,l).

Similarly we also get Dy = w(m,n,v,¢). Thus Ag = w(ly,l2,n1,n2, m,n,v,£,1,02).

Estimate of A7;. We have
‘A’?’ = ‘A Slm(vn) (1 - @51752) Rn,l/,fd (pn,O - 77n,0) + w(lthanlanQ)
§4k/ (1_@51,62)d(l)n+nn)+w(l17l27n17n2)-
Q

From (5.3) and (5.4) we get A7 = w(ly,la,n1,n9,m,n,v, L, 01,02).
Estimate of A1 + Ay + A3. We set

J(T) =Ty g (T—Tk (7")) ) Vr € R,
and use the notations J andJ of (4.11). From the definitions of & ,,,, &1y, We can see that
Ay + Ay = — /Q T (0 (T)) Hp (v (T)) — / Ty (uon — 20) Hn(uon) +w(l, l2,n1,n9)

Z—/J(Un /T£+k o, — Z)Uoyn + w(l, l2,n1,n2,m), (5.25)
0 Q
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where z, = (Tk(v)),(0). We can write A3 = F} + Fb, where

F = _/Q (5”1(1 - (1)51752)[T€+k (vn — <Tk(v)>v)]l1 H—m(vn)’

t

N—

Estimate of F5. We write Iy = G + G2 + G3, with

G =~ /Q (q)51,52)t§n2 [TZ*]‘? (Un — Tk (vn))]leHm

—
<
S
~—

GQ(/< — @5, ) En )l Tri (tn — T (00))]_y, Fon (),

G3 = / Ens(1 = @5,.6,) ((Tr—k (vn — Ti (vn))] _y,) , Hom (0n)-

We find easily
G = — / (q)61,52)t‘](vn)vn+w(l1’ l2,n1, 12, m)’
Q

Gy = / (1= ®s,,5,) (o) (V) Hin (vn) Fw(ln, 12) = /J(uo,n)uo,n"‘w(llal27n17n27m)-
< Q
Next consider G3. Setting b = H,,(vy,), there holds from (4.13) and (4.12),

(b)) = DTG H-T0 1)

Hence
([Tﬁfk (vn — Tk (Un))]flg)tH—m(UN) Z <[~7(H—M(Un))]_12>t = ([j(vn)]flg)t7

since J is constant in {|r| = m + ¢+ 2k} . Integrating by parts in G3, we find

Gs = /€2n2 — ®5,.5,) ([T (v)]4,),
[ (@m0 = )T )]s, + [ €amDIT(00)] 1, (D)
Q

Q

—/X@m>u—¢&mjwm
/52 2 (®51.65),; T (Vn) /52 o T))+w(ly,l2)

_ / T (o) + /Q (®5,.5,),7 (o) + / T (on(T)) (11, lo, n1, 12).
(9]

Q
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Therefore, since J (vn) — J (vn)vn = —J(v,) and J(ug ) =J (U0 )u0.n—T (uorn), We obtain

B> / T(uon) — /Q (®5,.5,),T(00) + [ T(0n(T))+w(l1, Ia, nr, g, m). (5.26)
Q

Q

Estimate of Fy. Since m > £+2k, there holds Ty x (v, —(Tk(v)),) = To+k (Hom (vn)— (T (Hp (v))),,)
on suppH,,(v,). Hence we can write F} = Ly + Lo, with

L= /Q (€1 (1 = @5,.00) (Lo (i (0) =Tk (o)), )], ), (Fin(00) (T (Hrm(v)),)
Ly = —/Q <§1,n1(1 — @5, 5,) [Tork (H—m(vn)—<Tk(H—m(U))>u)]h>t<Tk(H—m(v))>V'

Integrating by parts we have, by definition of the Landes-time approximation,
Ly = / &1 n1 ‘1)61 52 TK-HC (H—m(vn)_<Tk(H—m(v))>u)] I ((Tk(H—m(’U)»V)t
[ €2 0) Tess ()~ (B F0)), )], O T (Fo(0)), 0)

/Q( = D5,.6,) ok (vn—(T(v)),) (Tk(v)—(Tk(v)), +/T€+k (wo.n — 2) 2utw(ly, l2,n1,n2).
Q

(5.27)
We decompose Ly into L1 = K1 + K9 + K3, where

K =— /Q (517711),5(1 - (I)51,52)[T5+k‘ (H—m(vn)_<Tk(H—m(U))>u)]ll (H—m(vn)_<Tk(H—m(v))>y)
Ky = / E1n1 (Psy,65) [Tk (H—m(vn)—<Tk(H—m(U))>u)]zl (Hn (0n)—(Tho(Hin (v))),,)
/51 i (1 — s, 5,) Tz+k (Hun(vn) = (T3 (Hm (v ))>V)]l1)t (Hun(vn)—(Ti(Him(v)),) -

Then we check easily that

K = /Tz+k (vn—(Ti(v)),) (T) (vn— (T (v)),) (T)dz+w(l1, l2, n1,m2,m),
Q

Ky = /Q ((1)61,52)15TK+/€ (Un_<Tk(v)>y) (vn_<Tk(v)>V) _H'u(ll’ la, 11, ma, m)

Next consider K3. Here we use the function 7 defined at (4.13). We set b = Hyp, (vy)— (T (Hpm(v))),-
Hence from (4.12),

((TewB)];,)eb) (1) = b(é;t) (T () (st +1y) = T (b)(-, 1))
ETer)((t + 1) = Ten(®)0) = (TesaO)l, )

=
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Thus

[Tk (on (o)~ T(Hn (@))),)],, ), (Fon0) =T (Hn(@))),) = ([Tess (Fonon) = Dm0, )],,)

Then

/ €1 (1 = ®s,.5,) (ITerk (00— (Te(0)), >]l1)

t

zﬂgamnx = 5,5 e n= TN,y ~ [ 1 (@) T 0T, )
+/£Mxmwwkwwwnw»»hm>
Q

—/#am%@wwnwn@»<4@%wﬂum%%n@m>
Q

+ /TZJrk (uo,n — 2v) +w(li, la, 1, n2).
Q

We find by addition, since Ty, (1) — Tk (r) = Toip(r) for any r € R,

L1z/Tﬂuwm—a»+/THa%u»—auwn@»
Q

Q

[ @5 T (on=(T(0)),) ol oy, ma, ). (5.25)
Q

We deduce from (5.28), (5.27), (5.26),

Ag > /j (ug n /Tz+k (u(),n —2z,) + /Tngk (u()m — ZV) 2y (5.29)
Q Q
+! Wﬁ@»+!ﬂ%@»fé@&MAEM@fﬂMWJ—ﬂ%»
v 4( — @5, ) Trt (tn—(Tk(0)},) (Te(0)— (T (0)),) +w (I, Io, 1, 1, ).

30



Next we add (5.25) and (5.29). Note that J(vn(T)) — J(vn(T))vn(T) = —J(vn(T)), and also
T ok (won — 20) — Tog (o — 20) (20 — won) = =Ttk (W0 — 2) . Then we find

At Ayt Ay 2 [ (Tlao) =T (o = 2)) + [ To (@nT) = (300, (1)) = Toa(1)))

Q Q

+ [ @5, Tea (0a= (o))~ T(wn)
Q
+ V/ ( (1)51 52)Tf+k ( _<Tk(v)>y) (Tk(v)_<Tk(v)>y) _H"J(ll’ l2’ ni, n2, m)

Notice that Ty (r—s) — J(r) = 0 for any 7, s € R such that |s| < k; thus

v

J
[ @k lon @)~ T0) (1) = Ta(T) 20,
Q

And {ug,} converges to ug in L*(Q2) and {v,,} converges to v in L'(Q) from Proposition 4.10. Thus
we obtain

A+ As + A3 2 [ (J(uo) = Terr (uo = 20)) + [ (@5,.5); (T (v—(Ti(v)),) = T (v))

v o (1= @5,.6,) Lok (v—(Tk(v)),) (T (v)—(Tk(v)),) +w (i1, b2, n1, n2,m, ).

Moreover Ty (r—s) (Ti(r) —s) 2 0 for any r, s € R such that |s| < k, hence

A+ A+ A3 2 /ﬂ (J(uo) = Toyk (uo — 2,)) + /Q (®5,,55); (Ter (v—(Tx(v)),) — J(v))
+w(l1,lo,n1,n2,m,n).
As v — 00, {z,} converges to Tj(up), a.e.. in €, thus we get
At Ay Ay 2 [ () =T o = Titw) + [ (@50, o (0~ Telw) =~ T0)

Q
+w(ly,l2,n1,n2, m,n, V).

Finally |Toqp, (r—Tg(r)) — 7(r)| = 2k|r|x{jr|z¢y for any r € R, thus
Al + A2 + A3 2 w(lla l2, niy,no,m,n,v, f)

Combining all the estimates, we obtain Iy < w(ly,la,n1,n2,m,n,v, ¢, ,02) which implies (5.8),
since Is does not depend on [y, 2,111,192, M, £. [

Next we conclude the proof of Theorem 2.1:
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Lemma 5.6 The function u is a R-solution of (1.1).

Proof. (i) First show that u satisfies (4.2). Here we proceed as in [49]. Let ¢ € X N L*>(Q)
such ¢ € X' + LYQ), o(.,T) = 0, and S € W?>(R), such that S’ has compact support on R,
S(0) = 0. Let M > 0 such that suppS’ C [~M, M]. Taking successively (¢,S) and (py5,S) as
test functions in (4.2) applied to u,, we can write

Ay + Ao+ Az + Ay = As + Ag + Az, Ass++ Ags+ +Ass+ = As s+ + Ags+ + A s+,

where

A = —/Qso(O)S(uO,n), Ay = —/ngtS(vn), Ayt = —/Q(Wfst)ts(”")’

A3:/ Sl(vn)’vun’p_Qvun-v‘P7 A3,5,:l: :/ Sl(vn)’vun’p_Qvun-v(QOw(:St)a
Q Q

Ay = / 5" (0n) | Vun [PV, Von, Agss = / 8" (0n) o5 [V un|P 2V Vo,
0 Q
As = /QS’(vn)sodm, Ag = /QS/(vn)sodpn,o, A7 = — /Q S" (vn)pdin 0,

Awizéswww$m5,AM¢=ASWMW%MM,Aw¢=—ésw0mﬁmm.

Since {uo} converges to ug in L*(Q), and {S(v,)} converges to S(v) strongly in X and weak* in
L*>(Q), there holds, from (5.2),

A== [ o050 tam), A= [ oS0+, Ay =wln)
Q

Moreover Ty (vy,) converges to Tas(v), then Thas(vy,) + hy, converges to Ti(v) + h strongly in X, thus

As = /QS/(U”HV (Thr (vn) + o) |p72v (Thr (vn) + ha) Vo
= /Q S'(0)[V (T (v) + h) P72V (T (v) + h) Vo + w(n)

:/ S’ (v)|VulP2Vu.V 4+ w(n);
Q
and

A4 = AS’/(Un)@’v (TM (Un) + hn) ‘p_QV (TM (Un) + hn) VTM (Un)
- /Q 5" ()| V (Tar (v) + h) P72V (Tas (v) + B) VT (v) 4+ w(n)

:/ S" (V)| VulP 2 Vu. Vo + w(n).
Q
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In the same way, since 1/)(‘;5 converges to 0 in X,
Ay = [ S @IV 2TuT (5) + ) = wln, ),
Q
Aysy = / S" (0)pyF |VulP2Vu.Vo + w(n) = w(n,d).
Q
And {g,} converges strongly in (L (Q))V, thus
As = / S'(vn)gofn+/ S'(vn)gn.Vgo—}—/ S"(vn)pgn.- VT (vy)
Q Q Q
— [ SEler+ [ SEaVer [ 0o TTi(0) +u(n)
Q Q Q
:/ S’ (v)edpug + w(n).
Q

and A5,6,i:fQ S’(v)gp¢§tdm +w(n) =w(n,d). Then Ags+ + A75+ = w(n,d). From (5.2) we
verify that A7 54 =w(n,d) and Ags_ = w(n,d). Moreover, from (5.6) and (5.2), we find

|Ag — Ags+| = /Q 15" (vn) | (1= 95 )dpn,o < 1S ll2.co w121l oo () /Q (1 =3 )dpn = w(n, d).

Similarly we also have |A7 — A75_| < w(n,0). Hence Ag = w(n) and A7 = w(n). Therefore, we
finally obtain (4.2):

—/w(O)S(uo) —/QcptS(v)—l—/QS'(v)\Vu]p_ZVu.th—i—/QS"(v)go\Vu]p_QVu.Vv:/QS'(U)@dﬁB.

(5.30)

(ii) Next, we prove (4.3) and (4.4). We take ¢ € C2°(Q) and take ((1 — 5 ). Hp) as test
functions in (5.30), with H,, as in (4.14). We can write D1 ,,, + D2, = D3 + D + D5 1, Where

Dy = —g ((1 — ¢g)go)tH—m(v), Dy, :qf?Hm(v)|Vu|p_2Vu.V ((1 — ¢5)go),

Dam = [ Hu()(L=¥5)ediio,  Dam=g [ (L=w5)elVul*VuVo, g

Q mZv<2m

Dy =—2 i (1 — 5 )| VulP > Vu.Vo.

—2m<v<-m
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Taking the same test functions in (4.2) applied to uy, there holds DY,,,+ D3, = D3 .+ D} ,,,+ Dz .,
where

Dy, = —g (1 =¥5)¢e) Hm(v,), Dy, =£Hm(vn)\vun\pﬁvun-v (1 =v5)e),

D} = [ Hu(va)(1 = 45)ed(Ano + pno — o)y Dim =2 [ (1=5)¢|Vun[’"*Vu, Vo,
Q

mZv<2m

Dy=—m [ (= 5)eVu[ TPV, Vo,

m
—2mZSv,<—m

(5.32)
In (5.32), we go to the limit as m — co. Since {H,(v,)} converges to vy, and {Hp,(vn)} converges
to 1, a.e.. in @, and {VH,,(v,)} converges to 0, weakly in (LP(Q))" , we obtain the relation
DY + D3 = D3 + D", where

= —/Q (1=v5)@),on, Dy = /Q VP2V, V (1= 5)g), Dy = /Q (1 — o )edrng
D" = / (1 =45 )ed(pno — 77n,0)‘|‘/ (1= ¥5)0d((ps — Mns) " — (s — Tms) ")
@ Q
= [ = v)edion —m).
Q

Clearly, D;,, — D} = w(n,m) for i = 1,2,3. From Proposition (4.3) and (5.2)-(5.4), we obtain

(]
D5, = w(n,m,d), and

% w(;_(p\Vu]p_QVu.Vv = w(n,m,d),
{mZv<2m}
thus,
Dy = E / | VulP2Vu. Vo + w(n,m,d).
m{m§v<2m}
Since fQ (1 =95 )edn,| = ol 1o fQ (1 =5 )dny, it follows that fQ (1 =5 )pdn, = w(n,m,?)

from (5.4). And ‘fQ Yy edpn| = ||@ll 100 fQ 5 dpy, thus, from (5.2), fQ (1 =y )pdpy, = fQ pdut +
w(n,m,d). Then D" = fQ edut + w(n,m,d). Therefore by substraction, we get

1
p” / | VulP?Vu.Vo = / odut + w(n,m, o),
{m<v<2m} @
hence )
Jim — / o|VulP 2 Vu.Vo = / wdu?, (5.33)
{mZv<2m} @
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which proves (4.3) when ¢ € C2°(Q). Next assume only ¢ € C*(Q). Then

lim,,— o0 % J o|VulP~2Vu.Vu
{mZv<2m}

=l = [ @ [VuP VUV + limg e 2 [ @1 — 9| VP V.V

m
{mZv<2m} {m<v<2m}

= Jpettdut +limpn k[ @l Vul Va0 = [, pdpt + D,

{m<v<2m}
where,
1
D= / (1 —yHduf + lim — / ol — 1/)3')|Vu|p72Vu.Vv = w(9).
Q n—oo m
{mZv<2m}
Therefore, (5.33) still holds for ¢ € C*°(Q), and we deduce (4.3) by density, and similarly, (4.4).
This completes the proof of Theorem 2.1. [

6 Equations with perturbation terms

Let G: Q x (0,T) x R+— R be a Caratheodory function. If U is a function defined in @ we define
the function G(U) in @ by

GU)(x,t) = G(x,t,U(x,t)) for a.e. (z,t) € Q.
We consider the problem (1.2):
u — Apu+G(u) = p in Q,
u=0 in 00 x (0,7,
u(0) = ug in Q,

where p € My(Q), ug € L'(Q). We say that u is a R-solution of problem (1.2) if G(u) € LY(Q)
and u is a R-solution of (1.1) with data (u — G(u),up).

6.1 Subcritical type results

For proving Theorem 2.2, we begin by an integration Lemma:

Lemma 6.1 Let G satisfying (2.3). If a measurable function V in Q) satisfies
meas {|V| 2t} £ Mt Pe, Vit 21,

for some M > 0, then for any L > 1,

G(V) < poM / G(s) s~ Peds. (6.1)
L
iz
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Proof. Indeed, setting G1.(s) = X[1,00)(5)G(s), we have

/ G(yw)dxdt:/QGL(yw)dxdtg/OOOGL(,V,*(S))ds

{lvizL}
where |V[* is and the rearrangement of |V, defined by
[V|*(s) = inf{a > 0 : meas {|V| > a}) < s}, Vs 2 0.

From the assumption, we get |V|*(s) < sup ((Ms_l)pc_l, 1). Thus, for any L > 1,

G(|V|)dzdt = / G, (Sup ((Ms—l)pc_l’ 1)) ds = pcM/ G (s) s~ 1 Peds,
0 L
{vizL}
which implies (6.1). .

Proof of Theorem 2.2. Let u = pg + pus € Mp(Q), with py € Mp(Q), ns € Ms(Q),
and ug € LY(£2). Then pug,py can be decomposed as ug = (f1,91,h1), g = (f2,92,h2). Let
pnsi € C2(Q), pnsi = 0, converging respectively to u7, u; in the narrow topology. By Lemma

, N
3.1, we can find fy, , gn.i, hni € C°(Q) which strongly converge to fi, i, h; in LY(Q), <Lp (Q)) and
X reSpeCtiVGlY? 1= 1725 such that ,u’(J]r = (flaglyh1)7 lu’a = (f2592)h2)5 and Hn,0,i = (fn,iagn,ia hn,i)a
converging respectively to ,ug , o in the narrow topology. Furthermore, if we set
Hn = Un,0,1 — Hn,0,2 + Hn,s,1 — HUn,s,2,

then |, (@) < |u|(Q). Consider a sequence {ug,} C C°(€2) which strongly converges to ug in
LY(Q) and satisfies ||ugn|l1.0 < |Juol)1.0-
Proof of (i) Let u, be a solution of

(un)t - Apun + g(un)

U, =0 on 90 x (0,T
un(0) = ugn in Q.

Hn, n Q,
)

We can choose ¢ = ¢ 1T, (uy,) as test function of above problem. Then we find

/Q(5_1TE(Un))t+/Q€_1’VT5(Un)’p+/Qg($7taun)€_1Ta(un)Z/fo_ng(un)d,un.

Since

/Q(eli(un))t:/ﬂelﬁ(un(T))dx—/slTe(uo,n)dazz —|wo.nllLr (@)

Q
there holds

/Qg(watun)f:_lTe(un) < (@) + [luonllrr o) = [1(Q) + [uol .0
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Letting ¢ — 0, we obtain

/Q 19t )] < 1l(@) + [0 (6.2)

Next apply Proposition 4.8 and Remark 4.9 to u, with initial data ug, and measure data p, —
G(un) € LN(Q), we get

PN

meas {|un| Z s} < C(|pl(Q) +[luol[pr) ¥ 877, Vs >0,Vn €N,

for some C' = C(N,p). Since |G(x,t,un)| < G(|uy|), we deduce from (6.1) that {|G(u,)|} is equi-
integrable. Then, thanks to Proposition 4.10, up to a subsequence, {u,,} converges to some function
u, a.e. in Q, and {G(u,)} converges to G(u) in L'(Q). Therefore, by Theorem 2.1, u is a R-solution
of (2.4).

Proof of (ii). Let {u,},>; be defined by induction as R-solutions of

(u1) — Apur = in Q, (Uny1)t — Aptpny1 = pnt1 — AG (uy,) in Q,
u; =0 on 02 x (0,7), Upt1 =0 on 092 x (0,7),
ul(O) = Uop,1 in Q, un+1(0) = UQ,n+1 in Q,

As above, we apply Proposition 4.8 to u,1 with initial data ug ,+1 and measure data pi,+1—AG(uy),
and obtain

meas {|u,| = s} £ 1 K, s Pe, s>0,Vn e N, (6.3)
where

p+N

K1 = ([Juollie + [11(Q) ™~
Kny1 = ([[uonsillne + (a1 /(@) + MG (un)l1,0) »

for any n = 1.Take e = A + |u|(Q) + |[uol|11 (o) = 1. There holds K; = ci¢, and for n = 1,

< Ity
K1 = ce(||G(un)ll; o + 1),

where ¢1, c2 do not depend on n,e. Thanks to (6.1) and (6.3), we have

1G(un)ll 1) = 1QIG(2) + / G(\un])dwdtg\Q\G(2)+pc(]1](n/2 G () s~ Peds.

{un|22}|

Thus, K,1 < C3€(K}L+% + 1), where ¢3 does not depend on n,e. Therefore, if € is small enough,
{K,} is bounded. Then, again from (6.1) and the relation |G(z,t,u,)| < G(|u,|) we verify that
G(Jupl|) is equi-integrable. As above, from Proposition 4.10 and Theorem 2.1, up to a subsequence,
{un} converges to a R-solution u of (2.5).

Finally, assume that G(z,¢,7)r < 0 for any (z,t,r) € @ xR, and ug = 0, u = 0. We can assume
that fy2,9n,2, hn2, tin,s2 are zero. Then, u,, u are nonnegative. [ ]
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6.2 General case with absorption terms
We recall a result obtained in [17] in the elliptic case:

Theorem 6.2 Let Q2 be a bounded domain of RY. Then there exists a constant Ky, depending
on N,p, such that, if w € My(Q) and u is a R-solution of problem

—Apu=w n €,
u =0 on 052,

there holds

Ky W] S u S Ky W™t (6.4)

Next we give a general result in case of absorption terms:

Theorem 6.3 Let p < N and G : Q@ x R — R be a Caratheodory function such that the map
s+ G(z,t,s) is nondecreasing and odd, for a.e. (z,t) in Q.

Let pi1, o € M (Q) such that there exist w, € M; () and nondecreasing sequences {15} , {fi2,n}
in MZF(Q) with compact support in Q, converging to ui, 2, respectively in the narrow topology,

and
diam (92
H1,n, H2n § Wn & X(O,T)’ g((n + KN,pWip © [wn])) € Ll (Q)’

where the constant Ky p is given at Theorem 6.2. Let ug € LY (), and p = py — pa. Then there
exists a R-solution u of problem (1.2).

Moreover if ug € L>®(Q), and w, < for any n € N, for some v € MZF(Q), then a.e. in @,

e, 1)) £ Ky W) + [[u oo 0. (6.5)

For proving this result, we need two Lemmas:

Lemma 6.4 Let G satisfy the assumptions of Theorem 6.3 and G € L>®(Q x R). Fori=1,2, let
up,; € L>°(§2) be nonnegative, and X\j = X\jo+ i s € M;(Q) with compact support in Q, v € M;(Q)
with compact support in 2 such that A\; = v ® X1y Let Xio = (fi,9i,hi) be a decomposition of
Ai0 into functions with compact support in Q. Then, there exist R-solutions u,u1,us, to problems

u— Apu+Gu) =X — A2 in Q, u=0 ondQ x (0,7T), u(0) =up1 —up2, (6.6)
(wi)t — Apui + G(w)) = N in Q, u; =0 on dQx(0,T), u;(0) = ug,, (6.7)

relative to decompOSitions ((fl,n - f2,n - g(un)agl,n — 92.n, hl,n - h2,n)7 (fz,n - g(ui,n)7gi,na hi,n)a
such that a.e. in @,

—[[uo,2lloc.0 = KnpWIp™ () S —ua(x,t) £ w(w,t) < ui(x,t) £ KnpWig™ My (@) + [[uo,i |0,
(6.8)
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/\g gz Q) + |luollir), and /Qul ) SN(Q) + |uosilho, i=1,2. (6.9)

Furthermore, assume that H,KC have the same properties as G, and H(z,t,s) < G(x,t,s) < K(z,t,s)

for any s € (0,+00) and a.e. in Q. Then, one can find solutions u;(H),u;(K), corresponding to
H, K with data A;, such that u;(H) = u; = u;(K), i =1,2.

Assume that w;,0; have the same properties as \; and w; < N; < 0;, up;1,u042 € LH(Q),
ug,i2 S uo; S ug41. Then one can find solutions u;(w;), ui(0;), corresponding to (wj, uo;2), (8i,10,1),
such that ui(wi, uOmg) § (7 é uZ(HZ, uo,i,l).

Proof. Let {¢1,},{p2n} be sequences of mollifiers in R and RY and ¢, = ©1nP2,n. Set
Yn = P2, * 7, and for i = 1,2, ug;n = p2.n * Uo,,

)‘i,n = ©@n * )\z = fi,n - div(gi,n) + (hi,n)t + )\i,s,ru
where fz’,n = on * fi, Gi;n = Pn * Gi, hz’,n = @y * hy, Az’,s,n = Pn * >\i,3a and
>\n = )\l,n - )\Q,n = fn - div(gn) + (hn)t + )\s,na

where f, = fin — fons 9n = 910 — 92, hn = hin — hopn, Asn = A sn — A2sn. Then for n
large enough, Ai ., Aon, An € C°(Q), 7 € C°(2). Thus there exist unique solutions wuy,, u; n, Vi n,
i = 1,2, of problems

(un)t —Apun+G(up) = A p—A2pn InQ, u,=0 ondQx(0,T), un(0)=1up1n—uo2n inf,
(Win)t — Dpttim +G(Uin) = Xipy in Q, uin =0 on (0,T) x 02, uin(0) =ug;n in
—Apwp, =7, in Q, wy, =0 on 99,

such that

Mo alloes — wal@) € —uzn(wt) < unle,t) S urae,t) S wala) + upillocns  ae. in Q.

Moreover, as in the Proof of Theorem 2.2, (i), there holds

/!Qun =

By Proposition 4.10, up to a common subsequence, {uy,, U, U2, } converge to some (u, ui, us), a.e.
in ). Since G is bounded, in particular, {G(uy)} converges to G(u) and {G(u; )} converges to G(u;)
in LY(Q). Thus, (6.9) is satisfied. Morover {Nin—GWin), fin —G(Win), Gin,sRin, Nisn, U0in}
and {\, — G(up), fn — G(Un), gn, Bny Ao, U010 — Uo2n} are approximations of (A, — G(w;), fi —
G(ui), gi, hi, Nis,u0) and (A — G(u), f — G(u), g, h, A\s,up,1 — up2), in the sense of Theorem 2.1.
Thus, we can find (different) subsequences converging a.e. to u,u;,us, R-solutions of (6.6) and

S (@) + lluosnllia), and /gum < N(Q) + lluginllia, i=1,2.
1=1,2
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(6.7). Furthermore, from [47, Corollary 3.4], up to a subsequence, {w,} converges a.e. in @ to a
R-solution
—Apw =7 in ), w=0 on 012,

such that w £ K W%i)iamgfy a.e. in ). Hence, we get the inequality (6.8). The other conclusions
follow in the same way. ]

Lemma 6.5 Let G satisfy the assumptions of Theorem 6.3. For i = 1,2, let ug; € L*(Q) be
nonnegative, \; € MZF(Q) with compact support in Q, and v € .M;,L(Q) with compact support in €,
such that

NEvexer,  Glluillea + Kvp Wi ™) € L1(Q). (6.10)
Then, there exist R-solutions w,uy,us of the problems (6.6) and (6.7), respectively relative to the
decompositions (fi — fo — G(u), g1 — g2, h1 — ha), (fi — G(u;), gi, hi), satifying (6.8) and (6.9).

Moreover, assume that w;,0; have the same properties as \; and w; = N\ = 6;, ug;1,u042 €
LooH(Q), upi2 < uoi < ugg1. Then, one can find solutions u;(w;, uo42), ui(0i,u041), corresponding
with (wi,v0,i,2), (05,u0,,1), such that u;(w;, uoi2) = u < ui(6;,u04,1)-

Proof. From Lemma 6.4 there exist R-solutions uy, u;, to problems
(un)t — Apun +T5(G(upn)) = A1 — A2 in Q, u, =0 on 90 x (0,7), un(0) = up1 — uo 2

(win)t — ADpttin + T (G(uin)) =N in Q, uin, =0 ondQx(0,T), uin(0) = ug,,

relative to the decompositions (f1 — fo — T.(G(un), g1 — g2, h1 — h2), (fi — T0(G(uin), gi, hi); and
they satisfy

_||u0,2||oo,Q KN,pW2dlamQ'Y( )< —U2 n( z, )é (m t)
< upn(z,t) £ Knpy Wiy (@) + [[uo1]lso.0; (6.11)

[ @) = 0@ ¢ lalhe).  and /QTn<g<uz;n>>§A< ) +lluol

i=1,2

As in Lemma 6.4, up to a common subsequence, {uy, U1, u2n} converges a.e. in @ to {u,uy,us}
for which (6.8) is satisfied a.e. in Q. From (6.10), (6.11) and the dominated convergence Theorem,
we deduce that {T,,(G(u,))} converges to G(u) and {T,(G(u;n))} converges to G(u;) in L'(Q).
Thus, from Theorem 2.1, u and wu; are respective R-solutions of (6.6) and (6.7) relative to the
decompositions (f1 — fa — G(u), g1 — g2, h1 — ha), (fi — G(w;), gi, hi), and (6.8) and (6.9 hold. The
last statement follows from the same assertion in Lemma 6.4. |

Proof of Theorem 6.3. By Proposition 3.2, for i = 1,2, there exist f; , fi € LY(Q), gin, i €
(LP(Q))N and hip, hi € X, fiin.s, pis € MT(Q) such that

pi = fi —divg; + (h)e + ti,s Wi = fin — div gin + (hin)e + tin,s:
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and {fin},{gin},{hin} strongly converge to f;, g;, h; in Ll(Q), (LPI(Q))N and X respectively,
and {ftin}, {in,s} converge to pu;, i s (strongly) in My(Q), and

1 finll@ +19inlly . + [1Pinllx + pin,s(Q) = 20(Q).

By Lemma 6.5, there exist R-solutions u,,, u;, to problems
(un)t — Apup + G(up) = i — o, in Q, up, =0 on dQ x (0,T), u,(0)="T,(up) (6.12)

(Win)t — Dptim + G(Uim) = fim in Q, up=0 ondQx(0,7), u;,(0)= Tn(ugt), (6.13)
for i = 1,2, relative to the decompositions (fi, — forn — G(Un), 91,0 — G20 P n — h2p), (fin —

G(uin), Gin, hin), such that {u;,} is nonnegative and nondecreasing, and —us,, < up < uj,; and

/\gun S (@) + 12(Q) + [luollrg, and /Qum S Q) + luolhe, =12 (6.14)

As in the proof of Lemma 6.5, up to a common subsequence {uy,ui,u2,} converge a.e. in Q
to {u,u1,u2}. Since {G(u;n)} is nondecreasing, and nonnegative, from the monotone convergence
Theorem and (6.14), we obtain that {G(u;,)} converges to G(u;) in L*(Q), i = 1,2. Finally,
{G(un)} converges to G(u) in L1(Q), since |G(un)| < G(u1,n) + G(uan). Thus, we can see that

{Ml,n — H2n — g(un), fl,n - f2,n - g(un),gl,n — 92.n; hl,n - h2,n, H1,s,m — H2,sm;5 Tn(ua—) - Tn(ua)}

is an approximation of (p1 — p2 — G(u), f1 — fa — G(u), g1 — g2, h1 — ha, 11,5 — pi2.s, Uo), in the sense
of Theorem 2.1; and

{:U'i,n - (uz n) fz n (ui,n)7 Gin, hi,n7 Hi,sms Tn (uf)t)}

is an approximation of (u; — G(u;), fi — G(ui), gi, his phi.s, us ). Therefore, u is a R-solution of (1.2),
and (6.5) holds if ug € L*°(2) and w,, <~ for any n € N and some vy € M;r( ) ]

As a consequence we prove Theorem 2.3. We use the following result of [17]:

Proposition 6.6 ( see [17]) Let ¢ > p—1, a € (0,N/p), r > 0 and v € M; (). If v does not
charge the sets of C,, . -capacity zero, there exists a nondecreasing sequence {v,} C M;(Q)
7q+1-p

with compact support in 0 which converges to v in the narrow topology and such that Wghp[un] €
LY(RN), for any n € N.

Proof of Theorem 2.3. Let f € LY(Q), ug € L(2), and p € M,(Q) such that |u| £ w ® F,
where F' € L'((0,T)) and w does not charge the sets of C, = -capacity zero. From Proposition
Tq+1-p

6.6, there exists a nondecreasing sequence {w,} C M (Q) with compact support in € which
converges to w, strongly in M(£2), such that Wffgamﬂ [wn] € LIRYN). We can write

frpu=pm—p, wm=f"+pt,  w=f+p, (6.15)
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and ut, u~ S w® F. We set

1 1 1
Qn={(@t) €Qx (2, T==):d@,02) > -}, Fu=Tuxar_F),  (6.16)

Hin = Tn(XanJ'_) + inf{/ﬁ',wn ® F,}, pon = Th(xQ,f ) +inf{y ", w, ® Fy}. (6.17)

Then {15}, {12n} are nondecreasing sequences with compact support in @, and g, 2, =

Wn ® X(o,r), With @, = n(xa + w,) and (n + KN7pW%ifamQ[wn])q € LYQ). Besides, w, ® F,
converges to w ® F' strongly in M;(Q) : indeed we easily check that

llwn ® Fn — w @ Flla,0) = Fnllzr o, llon — wllmy @) + lwllag @1 Fn = FllLo,r)
Observe that for any measures v, 6,17 € My(Q), there holds
linf{v, 0} — inf{v,n}| <16 —n|,

hence {1}, {p2n} converge to i, po respectively in M;(Q). Therefore, the result follows from
Theorem 6.3. u

Remark 6.7 Our result improves the existence results of [50], where p € Mo(Q). Indeed, let
pe =N(p—1)/(N — p) be the critical exponent for the elliptic problem

—Apw A+ w T w=w inQ, w=0 ondN.

Notice that p. < pe, since p > p1. If ¢ 2 pe, there exist measures w € M;(Q) which do not
charge the sets of C, __a_-capacity zero, such that w & Mo(S2). Then for any F € L'((0,7)),

q+1-p

F 20,F #0, we have w® F & My(Q).

Remark 6.8 Let G : @ x R — R be a Caratheodory function such that the map s — G(z,t,s)
is nondecreasing and odd, for a.e. (x,t) in Q). Assume that w € Mg (). Thus, we have w({z :
W2diam(@)[)](z) = oo}) = 0. As in the proof of Theorem 2.3 with w, = Xy pdiam )< We get
that (1.2) has a R-solution.

Remark 6.9 As in [17], from Theorem 6.3, we can extend Theorem 2.3 given for G(u) = |u|? v,
to the case of a function G(x,t,.), odd for a.e. (x,t) € Q, such that

Gt SGul). [ G5t s <o,
1

where G is a nondecreasing continuous, under the condition that w does not charge the sets of zero
a__ q-capacity, where for any Borel set E C RN,

Prg—p+1°

— 1 . %71 N
bt (B) = f{llol] s oo € Lot (RY), - Gpxp 2 xm)

where Lq—gﬂ’l(RN) is the Lorentz space of order (#g“, 1).
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In case G is of exponential type, we introduce the notion of maximal fractional operator, defined
for any n =2 0, R > 0, by

B(zo,1))
nl) te(o,r) N Phy(t)

We obtain the following:

where h,(t) = inf((—Int)™", (In2)"")).

Theorem 6.10 Letp < N and 7 > 0,3 > 1,1 € My(Q) and ug € L*(Q). Assume that || £ wRF,
with w € M (Q), F € L'((0,T)) be nonnegative. Assume that one of the following assumptions is
satisfied:

(i) ||F|| o (0,7)) = 1 and for some Mo = Mo(N, p, 3,7, diam(2),

p—1

1ML, iame (91| oo vy < Mo, (6.18)

p,2diamg

p—1

ii) There exists By > [ such that Mpgl)diamﬂ [w] € L®(RN).

Then there exists a R-solution to the problem

up — Apu + (eTMB — Dsignu = F +p m Q,
u=0 on 99 x (0,7, (6.19)
u(0) = ug in .

For the proof we use the following result of [17]:

Proposition 6.11 (see [17], Theorem 2.4) Suppose 1 < p < N. Let v € M; (2), B > 1, and
S0 = ((128)71)PpIn2. There exists C = C(N,p, 3, diamQ) such that, for any & € (0,6),

(W2diamﬂ[ ])B C
/Qexp(é T ) 2

A

|| p2d1amg[ ]||L00(RN

Proof of Theorem 6.10. Let @,, be defined at (6.16), and w,, = wxq,,, where Q,, = {z € Q:
d(z,0Q) > 1/n}. We still consider py, o, Fy, ft1.n, pl2,n as in (6.15), (6.17).
Case 1: Assume that |[F|[ze(0,r)) = 1 and (6.18) holds. We have pi1 n, p2,, = nxo +w. For any
e > 0, there exists ¢. = c.(e, N, p, 8, Knp,diam ) > 0 such that

i B .
(n+ Knp Wi nxq + w])? < ecn?T + (1 + ) Ky (Wi [w])

a.e. in . Thus,

B .
exp ( (n+ KNpWQd‘amQ[nXQ + w])ﬁ) < exp (Tcenz’ﬂ) exp <T(1 + E)K]B\LP(W%%amQ [w])ﬁ)
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p—1

B
If (6.18) holds with My = < I‘;% ) then we can chose ¢ such that

N,p

p—1 B8
7(1 4 ) K IV, g 1o vy <00

From Proposition 6.11, we get exp(7(1 + a)KﬁpW%ijamQ[w])ﬁ) € LY(Q), which implies exp(7(n +
KNJ,W%’CEMHQ [nxa + w])?) € L}(Q) for all n. We conclude from Theorem 6.3.

p—1
Case 2: Assume that there exists € > 0 such that M;Ztl?amg [w] € L®(RY). Now we use the

inequality fi1 5, 2. < n(xq + w). For any € > 0 and n € N there exists ¢, ,, > 0 such that

(n + Knp Wi n(xo + w))’ < cop + (WG [w])

Thus, from Proposition 6.11 we get exp(7(n + KN,pW%iEamQ [n(xa +w)])?) € LY(Q) for all n. We
conclude from Theorem 6.3. ]
6.3 Equations with source term

As a consequence of Theorem 6.3, we get a first result for problem (1.1):

Corollary 6.12 Let ug € L>(Q), and p € My(Q) such that |u| = w®x(o,7) for some w € MF(Q).
Then there exist a R-solution u of (1.1), such that

[z, t)] £ KnpWin™ D w)(@) + [[uolln,  for ace(z,t) € Q, (6.20)

where Ky, is defined at Theorem 6.2.

Proof. Let {¢,} be a nonnegative, nondecreasing sequence in C2°(Q)) which converges to 1,
a.e.. in Q. Since {¢pu*}, {pop~} are nondecreasing sequences, the result follows from Theorem
6.3. ]

Our proof of Theorem 2.4 is based on a property of Walf potentials:

Theorem 6.13 (see [53]) Let g >p—1,0<p <N, w € M} (Q). If for some A > 0,

wE)SAC 4 (E) for any compact set E C RY, (6.21)

Prp—q+1

then (W%g}amg[w])q € LY(Q), and there exists M = M(N,p,q,diam(Q)) such that, a.e.. in S,
: . —p+1 :
Wit [yy2dany)]© < AAGE W) < oo, (6.22)

Lp

We deduce the following:
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Lemma 6.14 Let w € M;(Q), and b 2 0 and K > 0. Suppose that {uy,},>1 is a sequence of
nonnegative functions in S0 that satisfies

w S KWL 4 b gy S KWl 4w +b Ym > 1L

Assume that w satisfies (6.21) for some X\ > 0. Then there exist Ao and by, depending on N, p,q, K,
and diam$), such that, if A < Xy and b < by, then W%i&amﬂ [u] € LYQ) and for any m = 1,

U < 28, KW 4 9p 8, = max(1,351), (6.23)
Proof. Clearly, (6.23) holds for m = 1. Now, assume that it holds at the order m. Then
uf, < 297128, KWL )7 4 911 (2p)1
Using (6.22) we get

1 < KW (2071 (28 J I (WES L)) 4 2971 (26)7 + ] + b

< /BpK < WZdlamQ |:(W2d1amﬂ[ ]) + WZdlamQ [(2()) ] W2d1amﬂ[ ]) +b

q9—ptl p+1 .
< BpK (AL MA©G-D? 4 1YW2damQ] 4 g e widiams [(95)4] 4 p
q—p+1

:,Bp (AlM)\(P 1)2 +1)w2d1amﬂ[ ]‘f‘AQbﬁ —i—b’

1
where M is as in (6.22) and A; = (2971(26,)1K?) 7", Ay = ﬁpK2ﬁ\Bl\P 71(2d1am§2)7
Thus, (6.23) holds for m = n + 1 if we prove that
g—p+1 g
A MM@-1% <1 and Agbr—1 < b,
which is equivalent to
(p=1)° el
A< (A1M)” T and b < A, TP
_ )2 _ _p—1
Therefore, we obtain the result with A\g = (A1 M)~ q »1 and by = A, TP, ]

Proof of Theorem 2.4. From Theorem 6.12 and (6.14), we can construct a sequence of
nonnegative R-solutions {u,},,>; defined in the following way: wu; is a R-solution of (1.1), and
Um+1 1S & nonnegative R-solution of

(um-i-l)t - Apum—I—l = uf + u in Q,
Umt1 =0 on 092 x (0,7T),
um+1(0) = Up in Q.

Setting U, = sup;e (o, 7) um(t) for all m = 1, there holds

W < Ky W) 4 lupllog: Tt € Knp WSOm0, 4 w] + uollen Ym 2 1.
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Then, from Lemma 6.14, we can find Ay = A\o(N, p, ¢,diam$Y) and by = bo(N, p, ¢, diam€) such that
if (?77?) is satisfied with A\g and by, then

U S Uy, S 2ﬁpKN,pW%$amQ[w] + 2||ug |0, VYm 2> 1. (6.24)

Since supm(fQ uhdtdr + p(Q)) < oo, by Proposition 4.10, up to a subsequence, {u,} converges
a.e. in @ to a function u, for which (2.8) is satisfied in Q with Cy , = 28, K p. Furthermore, from
(6.24) and the dominated convergence Theorem, {uf,} converges to u¢ strongly in L'(Q). Finally,

one can apply Theorem 2.1 to the sequence of measures {uz, + u}, and obtain that u is a R-solution
of (2.7). ]

Next we consider the exponential case.

Theorem 6.15 Let 7 > 0,1 € N and 8 2 1 such that I3 > p— 1. Let

-1
j

E(s) =€ — E i', Vs € R. (6.25)
i=0

Let i € M;(Q), w € M;(Q) such that p1 < Xx(0,1) ® w. Then, there exist by and My depending on
N,p, B, 7,1l and diam$2, such that if

(-1(3-1)
M, sginma [@][|zee@yy S Mo, 10|, = Do,

the problem
uy — Apu = E(Tul) + p in Q,
u=0 on 90 x (0,T), (6.26)
u(0) = ug in
admits nonnegative R- solution u, which satisfies, a.e. in Q, for some Cyp, depending on N,p,
u(z,t) < CN7pW%3;amQ [w](x) + 2bo. (6.27)

For the proof we first recall the corresponding approximation property, which is a consequence
of [47, Theorem 2.5]:

Theorem 6.16 Let 7 >0,b=>20, K >0, € N and 8 2 1 such that I3 > p—1. Let £ be defined
by (6.25). Let {v,,} be a sequence of nonnegative functions in Q such that, for some K > 0,

v1 £ KWL 4 b vy £ KWISACE(rul) + p] +b, Ym 2 1.

Then, there exist by and My, depending on N,p, 3, 7,1, K and diam$Q such that if b < by and

(p=1)(8-1)
||Mp,2di§mﬂ [1)l|lco ry = Mo, (6.28)

2
then, setting ¢, = 2maX(1,2P_—117),
ijam B
exp(r(K ey W13 [u] + 2b9)”) € L1(9),

U S chWﬁ‘;iamQ (] + 2by, VYm = 1. (6.29)
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Proof of Theorem 6.15. From Corollary 6.12 we can construct a sequence of nonnegative
R-solutions {,},,>1 defined in the following way: w; is a R-solution of problem (1.1), and by
induction, %,+1 is a R-solution of

(um+1)t — Apum+1 = g(TU,gL) + 12 in Q,
Um41 =0 on 09 x (0,7T),
Um41(0) =up  in €,

and, setting u,, = sup;¢(o,1) U (t), there holds
W < Ky WEE ] 4 luollsog: Tt S K W2 E() + 0] + lupllog,  ¥m 2 L

Thus, by Theorem 6.16 there exist by € (0, 1] and My > 0 depending on N, p, 8, 7,1 and diam) such
that if (6.28) holds then (6.29) is satisfied with v, = u,,. As a consequence, u,, is well defined and
sup,, (fQ E(Tufn) + ,u(Q)> < 00. Thus, by Proposition 4.10, up to a subsequence, {u,,} converges
a.e. in @ to function u for which (6.27) is satisfied in 2. Furthermore, from (6.29) and the dominated

convergence Theorem, {5 (Tu,ﬁn)} converges to £(ru?) in L'(Q). Finally, one can apply Theorem

2.1 to the sequence of measures {E(Tu&) + u} , and obtain that u is a R-solution of (6.26). |

7 Appendix

Proof of Lemma 4.7. Let J be defined by (4.11). Let ¢ € C}([0,T)) with values in [0, 1], such
that ¢; £ 0, and ¢ = (£[j(S(v))];. Clearly, ¢ € X N L>°(Q); we choose the pair of functions (g, S)
as test function in (4.2). Thanks to convergence properties of Steklov time-averages, we easily will
obtain (4.15) if we prove that

lim (— /Q (CEL(S@)]),S(0)) = — /Q £J(S()).

1—0,(—1

We can write — fQ (C&li(S()]),S(v) = A+ B, with
A== [ OUISISE).  B== [ &S0)7 (S0 +) - i(S@)e0).
Q Q
Using (4.12) and integrating by parts we have
B2~ [ (It +)-T(E0)w0)
Q
0
= - [ 65076500 = [ TSN+ [ oo
> [ 0TS0,
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since J(S(v)) = 0. Hence,

- /Q (CEL(S )], S() = /

(CENLT(S @), + A = / (€O (1T (S, — [T (S@)]S®))
Q Q

Otherwise, 7(S(v)) and J(S(v) € C((0,T]; L(92)), thus {(¢€)e ([T (S(w)], — [7(S())],S(u))} con-
verges to —(C€):J(S(u)) in LY(Q) as [ — 0. Therefore,

(= [ (IS0, S0) 2 tin (- / (€500 )

1—0,(—1 (—1

2 I (- / CeI(50)) = - [ s,

which achieves the proof. ]
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