
HAL Id: hal-00874942
https://hal.science/hal-00874942v1

Submitted on 19 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architecture-Based Conformance Testing
Elena Leroux, Flavio Oquendo, Qin Xiong

To cite this version:
Elena Leroux, Flavio Oquendo, Qin Xiong. Architecture-Based Conformance Testing. The Eighth
International Conference on Software Engineering Advances (ICSEA’13), Oct 2013, Venice, Italy.
pp.55-64. �hal-00874942�

https://hal.science/hal-00874942v1
https://hal.archives-ouvertes.fr


Architecture-Based Conformance Testing
Elena Leroux, Flavio Oquendo, and Qin Xiong

IRISA, University of South-Brittany, France
E-mails: {elena.leroux | flavio.oquendo | qin.xiong}@irisa.fr

Abstract—In the last two decades, software architecture
has played a central role in the development of software
systems. It provides a high-level description for large-size
and complex systems using suitable abstractions of the
system’s components and their interactions. In our work, the
software architecture is described using a formal Architec-
ture Description Language (ADL) designed in the ArchWare
European Project, π-ADL-C&C. One of the purposes of
this ADL is to allow formal validation of an implemented
system with respect to its architectural model. In this paper,
we propose a conformance testing approach for validating
a software system with respect to its architecture. The
architectural abstract test cases are derived from an Input-
Output Symbolic Transition System (IOSTS) representing
the architecture structure and behaviors, which are then
translated into concrete test cases to be executed on the
system under test. To illustrate our approach we use the
coffee machine example.

Keywords—Software Architecture, Architecture Description
Language, Architectural Conformance Testing, Validation

I. Introduction

During the past years a continuous growth, in size and com-
plexity, of software and hardware systems has been observed.
The problems, which were important in the pass, and which are
related to a code development, e.g., the choice of data structure
and algorithms, became less important than the ones related
to the system design. This is not only due to the increased
amount of code, but also to the need to distribute different
components of the system and to have them interact in complex
ways. To deal with these problems and to rise the level of
abstraction at which software is conceived and developed, a
software architecture has emerged. It was rapidly considered as
an important sub-discipline of software engineering [1]. Software
architecture allows developers: (1) to abstract away the details
of the individual components of a system, (2) to represent a
system as sets of components with associated connectors that
describe the interactions (a) among these components, and
(b) between the components and the environment, and (3) to
guide the system design and evolution. In order to describe
the software architecture of a system, a set of formal and
semi-formal languages has been proposed [2], [3]. These ADLs
help specify an architecture according to different viewpoints.
The two following viewpoints are frequently used at a runtime
perspective in the software architecture discipline.

The structural viewpoint is specified in terms of: (1) compo-
nents (i.e., units of computation of a system), (2) connec-
tors (interconnections among components for supporting
their interactions), and (3) configurations of components
and connectors. Thereby, an architecture description, from
a structural viewpoint, should provide a formal specifi-
cation of the architecture in terms of components and
connectors, and how they are composed together.

The behavioral viewpoint is specified in terms of: (1) actions a
system executes or participates in, (2) relations among ac-
tions to specify behaviors, and (3) behaviors of components
and connectors, and how they interact.

An ADL challenge is the ability of a language to enable vali-
dation of designed systems very early in the software life cycle
in addition to verification all along the software process. The
π-ADL [4] language has been designed in order to meet this
challenge. π-ADL is an executable specification language that
allows formal description of software architectures of a system
under development. A virtual machine of π-ADL runs specifi-
cations of the software architecture and enables its validation
by simulation and testing as described in this paper.

The analysis and validation, by using, for example, software
testing techniques, of software systems play a crucial role in the
system development process. That is one of the reasons of the
raising interest to the use of the architectural models in order to
test systems behaviors with respect to their early architectural
specification. Software testing [5] is a process consisting in the
dynamic verification of system behaviors, which is performed
by observing the execution of the system on a selected test
case. Several contributions [6]–[13] have been proposed to tackle
the problem of the validation of software systems by means
of architectural testing. The brief overview of them is done in
Section VI of this paper.

In this paper, we focus on model-based conformance test-
ing [14], [15], which permits to derive test cases from a model
representing the behavior of a software system, in order to
check that this system fulfills its behavior. We use IOSTS
as a model, which we generate from a formal architectural
specification designed in the π-ADL language. The goal is to
propose an approach for validation of software systems using
their architectural specifications, and to illustrate its feasibility
with a simple example.

The remainder of this paper is structured as follows: Sec-
tion II presents the π-ADL language, which is used for ar-
chitecture design, and a working example, used all along this
paper, for the demonstration of our approach. Section III briefly
describes the IOSTS formalism, which is used to model an ar-
chitectural π-ADL specification and abstract test cases derived
from this specification. Section IV presents our approach ex-
plaining how to generate test cases from a π-ADL architecture
and execute them on a black-box system under test. Section V
lists the tools used or/and developed to support our approach.
Section VI summarizes our work, positions it with respect to the
other works done in the field of the software architecture-based
testing and gives a brief overview of related work. Section VII
closes the paper with summary remarks.

II. The π-Architecture Description Language

In this section, we briefly present π-ADL, which we are using
for the architecture description of a system under development,
and we illustrate it with a working example of a coffee machine.

A. Overview

The π-ADL language [4], designed in the ArchWare Euro-
pean Project, is a formal, well-founded theoretically language



based on the higher-order typed π-calculus [16]. It supports de-
scription of software architectures from a runtime perspective.
Moreover, π-ADL has a virtual machine allowing execution of
architectural specifications, and therefore, the validation of a
software architecture by simulation is enabled. In the following,
we briefly explain how the π-ADL language can be used for the
formal definition of a software architecture.

In π-ADL, an architecture is described in terms of compo-
nents, connectors, and their composition.

Components are described in terms of external ports and an
internal behavior. Their architectural role is to specify
computational elements of a software system. The focus is
on computation to deliver system functionality. Ports are
described in terms of connections between a component
and its environment. Their architectural role is to put
together connections providing an interface between the
component and its environment. Protocols may be enforced
by ports and among ports.

Connectors are basic interaction points. Their architectural
role is to provide communication channels between two
architectural elements. A component can send or receive
values via connections. They can be declared as output
connections (values can only be sent), input connections
(values can only be received), or input-output connections
(values can be sent or received).

From a black-box perspective, only ports (with their con-
nections) of components and connectors and values passing
through connections are observable. From a white-box perspec-
tive, internal behaviors are also observable.

π-ADL consists of a family of related ADLs. The π-ADL-
C&C language describes an architecture at an abstract high
level. This language is user-friendly, and it allows rapid design
of architectures using the notions of component and connector.
The π-ADL-Spec language is a canonical form of π-ADL.
Finally, the π-ADL.NET language is a low level ADL, that
makes possible an execution of architectural specification as it
is equipped with a virtual machine.

B. Working Example

In this section, we present a working example of a simple
coffee machine, which will be used all along the paper. Fig.1
shows the abstract architecture of the coffee machine in terms of
components and connectors. This coffee machine accepts coins
(thought the Coin(Natural) connector), the request for a bev-
erage (thought the PressButton() connector), and the request
for a command canceling (thought the Cancel() connector), and
then either delivers the beverage (thought the Deliver() connec-
tor) or returns money back (thought the Return(Natural) con-
nector). It consists of two components: Payment and Beverage.

A request for a beverage is received by the Beverage compo-
nent from the user interface of the coffee machine. The purpose
of this component is (1) to stock the information about the
availability and the price of a coffee, (2) to wait until the
beverage button is pressed, (2) to communicate the price to the
Payment component, (3) to prepare a coffee, and (4) to deliver
it to a customer. The Beverage component serves the coffee
whenever the two following conditions are satisfied: first, a
customer has paid enough (this information should be received
from the Payment component), and second, coffee is not out

Coin(Natural)

Cancel()

PressButton()

Return(Natural)

Deliver()

P
a
id

()
/

P
a
id

()

N
o
tP

a
id

()
/

N
o
tP

a
id

()

S
en

d
P

ri
ce

(N
a
tu

ra
l)

/

R
ec

ei
ve

P
ri

ce
(N

a
tu

ra
l)

Coffee Machine

Payment

Beverage

Fig. 1. The coffee machine architecture.

of stock. If the first condition is not satisfied, the component
Beverage waits for another request for coffee and then checks
again if the payment is sufficient. If the second condition is
not satisfied, then the delivery of coffee is impossible, and the
Beverage component is blocked.

The requests for a payment and for a command cancel-
ing coming from the user interface of the coffee machine are
accepted by the Payment component. This component allows
(1) to memorize the amount of money already paid by the
customer, the number of coins inserted into the coffee machine,
and the price of a coffee received form the Beverage component,
(2) to communicate the information about sufficient/insufficient
payment to the Beverage component, (3) to return the money
back if the Cancel button has been pressed, or if the customer
inserted more coins than authorized by the coffee machine, and
(4) to return the difference between the price and the paid
amount in the case of a coffee delivery.

Note that, the Beverage and Payment components com-
municate not only with their environment, but also with
themself. Indeed, the Beverage component sends the price
of a coffee through the SendPrice(Natural) connector to the
Payment component. The latter receives the price through
the ReceivePrice(Natural) connector. Moreover, the Payment
component notifies the Beverage component if the customer has
paid enough or not using the Paid() and NotPaid() connectors.

C. Architecture Description using π-ADL-C&C

In the previous section, we have informally described the
structure and behavior of the coffee machine. In this section,
we explain how this structure and behavior can be formalized
using the π-ADL-C&C language. We begin with the description
of two components of the coffee machine, namely the Beverage
(see Fig.2) and the Payment (see Fig.3) components.

1) The beverage component. The Beverage component,
shown on Fig.2, is declared as an abstraction (see line 1) with
two Natural parameters: (1) cBeverageQuantity indicating the
quantity of the beverage in the coffee machine, (2) cPrice
indicating the price of the beverage. The external ports of
this component are shown on lines 3-9, and described in terms



1 component Beverage is abstraction(cBeverageQuantity : Natural, cPrice : Natural){

2 port is {

3 connection PressButton is in().

4 connection Deliver is out().

5 connection SendPrice is out(Natural).

6 connection Paid is in().

7 connection NotPaid is in().

8 }

9 drink is abstraction(vBeverageQuantity : location[Natural]){

10 if (vBeverageQuantity >= cBeverageQuantity) then{

11 via PressButton receive.

12 drink(vBeverageQuantity)

13 }else{

14 via PressButton receive.

15 via SendPrice send cPrice.

16 choose{

17 via NotPaid receive.

18 drink(vBeverageQuantity)

19 or

20 via Paid receive.

21 via Deliver send.

22 vBeverageQuantity := vBeverageQuantity’+1.

23 drink(vBeverageQuantity)

24 }

25 }

26 }.

27 behaviour is {

28 drink(location(0))

29 }

30 }

Fig. 2. The beverage component expressed in π-ADL-C&C.

of connections: PressButton, Paid, NotPaid, and SendPrice,
Deliver, where the three first connections permit to receive
the information from the environment (they are declared as
input connections by using the keyword in) and the two last
ones allow to send the information to the environment (they
are declared as output connections by using the keyword out).
Notice that, the SendPrice connection permits to send one
value of the Natural type (see line 6) in order to be able to
communicate the price of the beverage.

1 component Payment is abstraction(cCoinNumber: Natural){

2 port is {

3 connection Coin is in (Natural).

4 connection Return is out (Natural).

5 connection Cancel is in ().

6 connection ReceivePrice is in (Natural).

7 connection Paid is out ()

8 connection NotPaid is out ()

9 }.

10 paying is abstraction(

11 cCoinNumber: Natural,

12 vPaid: location[Natural],

13 vCoinNumber: location[Natural],

14 vPrice: location[Natural]

15 ){

16 choose {

17 if vCoinNumber < cCoinNumber then {

18 via Coin receive pCoin : Natural.

19 vPaid := vPaid’+pCoin.

20 vCoinNumber := vCoinNumber’+1.

21 paying(cCoinNumber, vPaid, vCoinNumber, vPrice)

22 } else {

23 via Return send vPaid.

24 paying(cCoinNumber, location(0), location(0), location(0))

25 }

26 or

27 via ReceivePrice receive pPrice : Natural.

28 vPrice := pPrice.

29 paying(cCoinNumber, vPaid, vCoinNumber, vPrice)

30 or

31 via Cancel receive.

32 via Return send vPaid.

33 paying(cCoinNumber, location(0), location(0), location(0))

34 or

35 if vPaid >= vPrice then {

36 via Paid send.

37 via Return send (vPaid-vPrice).

38 paying(cCoinNumber, location(0), location(0), location(0))

39 } else {

40 via NotPaid send.

41 paying(cCoinNumber, vPaid, vCoinNumber, vPrice)

42 }

43 }

44 }.

45 behaviour is {

46 paying(cCoinNumber, location(0), location(0), location(0))

47 }

48 }

Fig. 3. The payment component expressed in π-ADL-C&C.

The behavior of the Beverage component is shown on lines
27-29, and described as a call to the drink abstraction carry-

ing 0. The value 0 initializes the variable vBeverageQuantity
memorizing the quantity of beverage already used. The body
of the drink abstraction describes formally the behavior of the
Beverage component of the coffee machine, explained informally
in Section II-B. More precisely, the Beverage component verifies
if the quantity of beverage is sufficient or not (see line 10).
In the both cases above, it lets the customer to press the
button (see lines 11 and 14), but (1) in the last case (the
quantity of beverage is insufficient), the component is blocked
(see the call to the same abstraction drink with the same
value of parameter vBeverageQuantity on line 12), while (2)
in the first case (the quantity of beverage is sufficient), the
component communicates the price of the beverage using the
SendPrice connection (see line 15), and then: (a) either returns
into its initial state (see the call to the abstraction drink on
line 18), if it has received the notification of insufficient payment
through the NotPaid connection (see line 17), or (b) delivers the
beverage using the Deliver connection (see line 21) and increases
vBeverageQuantity by one (see line 22), if it has received the
notification of sufficient payment through the Paid connection
(see line 20), and comes back to its initial state (see the call to
the abstraction drink on line 23).

2) The payment component. The formal description of the
Payment component is given on Fig.3 and is similar to one of
the Beverage component. Therefore, we do not detail it.

3) The architecture of the coffee machine. The architec-
ture of the coffee machine is formally described in Fig.4. It
is an abstraction whose behavior (see 2-12) is composed of
two instantiated components Beverage(10,3) and Payment(10)
(see lines 3-7). These components communicate via the unified
connections shown on lines 8-10.

1 architecture CoffeeMachine is abstraction() {

2 behaviour is {

3 compose{

4 beverage is Beverage(10, 3)

5 and

6 payment is Payment(10)

7 } where {

8 payment::ReceivePrice unifies beverage::SendPrice and

9 payment::Paid unifies beverage::Paid and

10 payment::NotPaid unifies beverage::NotPaid

11 }

12 }

13 }

Fig. 4. The architecture of a coffee machine in π-ADL-C&C.

III. Underlying Model for Test Case Generation

In this paper, we are interested in conformance testing of
a system under development with respect to its architectural
specification expressed at the user-level using π-ADL-C&C
language. For test cases generation using STG [17], [18], we
automatically translate a high-level architectural specification
into the low-level model called IOSTS. We use IOSTS for
describing architectural specifications, test purposes, and test
cases, and assume that the black-box implementation can be
described by an IOSTS of which only the external interface
is known. The formal syntax and semantics of IOSTS are
defined in [19]. The intuitive explanation is given below using
the example depicted in Fig.5, which represents the payment
component of the coffee machine. Notice that, the beverage
component can also be modeled by IOSTS as it is shown in
Fig.5.

An IOSTS is made up of locations, for example, p1, p2,
p3 and p4, where p1 is the initial location, and transitions.



The transitions are labeled with actions, guards, and variable
assignments. For example, the transition with origin p2 and des-
tination p2 has the guard (vCoinNumber < cCoinNumber),
the input action Coin? carrying the data pCoin from the envi-
ronment, and two variable assignments vP aid := vP aid+pCoin

and vCoinNumber + +. The set of actions is partitioned into
three disjoint subsets of input, output, and internal actions.
The input/output actions interact with the environment and
may carry data from/to it, while internal actions are used
for internal computations. By convention, the names of input
(resp. output) actions end with “?” (resp. “!”). The IOSTS in
Fig.5 has two inputs: Coin? and Cancel?, three outputs: Paid!,
NotPaid!, Return!, and one internal action: τinit payment. It
operates with symbolic data consisting of variables, constants,
and parameters. Intuitively, variables are data to compute with,
constants are symbolic constants, and parameters are data to
communicate with the environment. Note that the scope of
parameters is only a transition labeled by an action, which
carries these parameters. Thus, if the value of a parameter
should be used in later computations, it should be memorized
through an assignment to a variable.

p1

p2

p3 p4

cCoinNumber¿0

τinit payment
vPaid:=0
vCoinNumber:=0
vPrice:=0(vCoinNumber ≥ vCoinNumber)

Return!(vPaid)

ReceivePrice?(pPrice)
vPrice:=pPrice

(vCoinNumber ¡ cCoinNumber)
Coin?(pCoin)

vPaid:=vPaid+pCoin
vCoinNumber++

(vPaid ¡ vPrice)
NotPaid!()

Cancel?()

Return!(vPaid)

(vPaid ≥ vPrice)
Paid!()

Return!(vPaid-vPrice)

Fig. 5. The payment component modelled by an IOSTS.

b1

b2

b3

b4

b5

(cBeverageQuantity¿0) and (cPrice¿0)

τinit beverage
vBeverageQuantity:=0

(vBeverageQuantity ¡ cBeverageQuantity)
PressButton?()

SendPrice!(cPrice)

Paid?()

(vBeverageQuantity ≥ cBeverageQuantity)
PressButton?()

NotPaid?()

Deliver!()
vBeverageQuantity++

Fig. 6. The beverage component modelled by an IOSTS.

Informal semantics. Consider the IOSTS (cf. Fig.5) rep-
resenting the Payment component of the coffee machine.
The payment starts in the location p1 with some value of
the cCoinNumber constant satisfying the initial condition
cCoinNumber > 0, that is, the number of coins accepted by the
coffee machine is strictly positive. Then, it fires the transition
labeled by the internal action τinit payment, assigns the three
variables: vPaid storing the amount already paid, vCoinNumber
memorizing the number of coins inserted into the machine, and
vPrice storing the price of the beverage, to 0, and reaches the
location p2. Next, the Payment component expects either:

– a coin, denoted by the Coin? input action that carries in the
pCoin parameter the value of the inserted coin. The vari-

ables vPaid and vCoinNumber are increased respectively
by pCoin and by 1. Note that the Coin? action can be
executed only in the case, where the number of the already
inserted coins is less than the value of the cCoinNumber
constant. Otherwise, the payment component returns the
amount already paid (through the Return!(vPaid) output
action) and moves back to the initial location p1. Or

– the price of a beverage, denoted by the ReceivePrice? input
action that carries in pPrice the cost of the beverage, the
variable vPrice is initialized to the value of pPrice.

In the two cases above, the machine stays in the location
p2. If the payment is enough, i.e., vPaid ≥ pPrice, the pay-
ment component, first of all, emits the Paid!() output action
and moves to the location p4, and then returns (through the
Return!(pPrice − vPaid) output action) the difference between
the paid amount and the cost of a beverage, i.e., pPrice − vPaid,
and moves to the initial location p1. Otherwise, the payment
component sends the NotPaid!() output action and stays in
the location p2. Note that in the location p2, the Cancel? input
action can be received, which signifies that the Cancel button
has been pressed. In this case, the payment component returns
the amount already paid (through the Return!(vPaid) output
action) and moves back to the initial location p1.

Formal semantics. A state s is a pair 〈l, ϑ〉, where l is
a location and ϑ is a valuation of the constants and vari-
ables, e.g., s = 〈Coin, cCoinNumber=10, vPrice=3, vPaid=2,
vCoinNumber=4〉. An initial state s0 = 〈l0, ϑ0〉 is a state where
l0 is the initial location, and ϑ0 is a valuation of the constants
and variables which satisfy the initial condition. We denote
by S (resp. S0) the set of all states (resp. initial states). A
valued action α is a pair 〈a, ω〉, where a is an action and ω is a
valuation of the parameters of a, e.g., α = 〈Coin, pCoin = 1〉
or α = 〈τinit payment〉. We denote by Λ = Λ? ∪ Λ! ∪ Λτ the
set of valued actions, which is partitioned into three subsets
of valued input, valued output, and internal actions. Next, we
define the transition relation → as the set of triples 〈s, α, s′〉,
where s = 〈l, ϑ〉, s′ = 〈l′, ϑ′〉 are states and α = 〈a, ω〉
is a valued action. Here, (1) ϑ and ω are valuations of the
constants, variables, and parameters, which satisfy the guard
of a transition t with the origin l and the destination l′ that
is labeled with the action a, and (2) ϑ′ is the new valuation
of the variables and constants obtained from ϑ by the variable
assignments of t.

Definition 1: A behavior β is a sequence of states and valued
actions starting from an initial state and following the transition
relation, i.e., β : s0 α1→ s1

α2→ s2 . . . sn−1

αn→ sn where → is the
transition relation, s0 ∈ S0, and for all i ∈ [1, n]: si ∈ S, αi ∈ Λ.

To describe observable behaviors of IOSTS we define the rela-
tion ⇒ as follows:

– s
ε

⇒ s′ , (s = s′) ∨ (∃s0, . . . , sn ∈ S. s = s0

τ1→

s1 . . . sn−1

τn→ sn = s′), where for all i ∈ [1, n]: τi ∈ Λτ ;
– s

α
⇒ s′ , ∃s1, s2 ∈ S. s

ε
⇒ s1

α
→ s2

ε
⇒ s′, where α ∈ Λ?∪Λ!.

Definition 2: An observable behavior β is a sequence of
states and valued input or output actions, i.e., β : s0 α1⇒
s1

α2⇒ s2 . . . sn−1

αn⇒ sn where s0 ∈ S0, and for all i ∈ [1, n]:
si ∈ S, αi ∈ Λ? ∪ Λ!.

Definition 3: A trace σ is the sub-sequence of an observable
behavior β : s0 α1⇒ s1

α2⇒ s2 . . . sn−1

αn⇒ sn, which consists of



High-Level Formal
Architectural Specification

(π-ADL C&C)

High-Level Formal
Architectural Specification

(π-ADL Spec)

Specification
(π-ADL.NET)

Compilation
Implementation

(.NET)

Implementation
(Java,C++)

Specification
(IOSTS)

Test Purpose
(IOSTS)

STG
Test Cases
(IOSTS)

Executable Test Cases
(π-ADL.NET,Java,C++)

Parallel Execution

Test Result:

Pass, Fail,
Inconclusive

Fig. 7. Outline of the approach.

valued input or output actions, i.e., σ : α1α2 . . . αn where for
all i ∈ [1, n]: αi ∈ Λ? ∪ Λ!.

A. Conformance Relation

The conformance relation defines the set of system’s imple-
mentations which are correct with respect to its architectural
specification. Intuitively, an implementation is conformant to a
specification if for each trace of the specification, the implemen-
tation produces only outputs, which are allowed by the spec-
ification. To define the conformance relation formally, we first
define the set of states in which an IOSTS M can be after the
observable trace σ: (M after σ) , {s ∈ S | ∃s0 ∈ S0. s0 σ

⇒ s},
and the set of valued output (resp. input) actions which can
be generated by M when it is in some state s among the set of
states S̃: Out(S̃) , {α ∈ Λ! | ∃s ∈ S̃. s

α
→} (resp. In(S̃) , {α ∈

Λ? | ∃s ∈ S̃. s
α
→}), where s

α
→ , ∃s′ ∈ S. s

α
→ s′. Finally,

denote by T races(M) the set of traces of M . Note that if a
trace σ does not belong to T races(M) then Out(M after σ)
and In(M after σ) are the empty set. For two IOSTS M1,
M2 and each trace σ ∈ T races(M1) \ T races(M2) we define
Out(M2 after σ) and In(M2 after σ) to be the empty set.

Definition 4: The conformance relation between
two IOSTS IUT and Spec with fixed, identical
constants is defined as follows: (IUT conf Spec) ,

∀σ ∈ T races(Spec).Out(IUT after σ) ⊆ Out(Spec after σ).

IV. Approach for Architecture Validation

In this section, we describe the approach, which we use for
the architecture validation of a system under development. This
approach is depicted in the Fig.7 and presented below.

A. From π-ADL-C&C to π-ADL-Spec

The first step of our approach consists in the transformation
of a high-level architectural specification described in π-ADL-
C&C into its canonical form in π-ADL-Spec. To illustrate this
transformation we use the payment component whose π-ADL-
C&C code is shown in Fig.3. The result of the transformation
is shown on Fig.8.

a) The components and their internal behaviors de-
clared as abstractions are translated into the individual abstrac-
tions of behaviors. These individual abstractions can be later
instantiated as behaviors by an application. Moreover, to enable
a recursive call of an abstraction instance, this abstraction
should be declared as a recursive abstraction in the π-ADL-
Spec language by using the keyword “recursive”. For example,
the payment component (see lines 1-44 of Fig.3) corresponds
to its individual abstraction shown on lines 43-45 of Fig.8;

and its internal behavior “paying” (see lines 12-45 of Fig.3)
corresponds to the recursive abstraction shown on lines 1-42 of
Fig.8. Notice that, the parameters of components and internal
behaviors are the same as the parameters of the corresponding
individual abstractions. See, for example, the line 1 of Fig.3 and
the corresponding line 43 of Fig.8.

1 recursive value paying = abstraction(

2 cCoinNumber: Natural,

3 vPaid: location[Natural],

4 vCoinNumber: location[Natural],

5 vPrice: location[Natural]

6 ){

7 value Coin = connection(Natural);

8 value Return = connection(Natural);

9 value Cancel = connection();

10 value ReceivePrice = connection(Natural);

11 value Paid = connection();

12 value NotPaid = connection();

13
14 choose{

15 if(’vCoinNumber < cCoinNumber) then{

16 via Coin receive pCoin : Natural;

17 vPaid := ’vPaid+pCoin;

18 vCoinNumber := ’vCoinNumber+1;

19 paying(cCoinNumber, vPaid, vCoinNumber, vPrice)

20 } else {

21 via Return send vPaid;

22 paying(cCoinNumber, location(0), location(0), location(0))

23 }

24 or

25 via ReceivePrice receive pPrice : Natural;

26 vPrice := pPrice;

27 paying(cCoinNumber, vPaid, vCoinNumber, vPrice)

28 or

29 via Cancel receive;

30 via Return send ’vPaid;

31 paying(cCoinNumber, location(0), location(0), location(0))

32 or

33 if(’vPaid >= ’vPrice) then{

34 via Paid send;

35 via Return send (’vPaid-’vPrice);

36 paying(cCoinNumber, location(0), location(0), location(0))

37 } else {

38 via NotPaid send;

39 paying(cCoinNumber, vPaid, vCoinNumber, vPrice)

40 }

41 }

42 };

43 value Payment = abstraction(cCoinNumber: Natural){

44 paying(cCoinNumber, location(0), location(0), location(0))

45 }

Fig. 8. The payment component expressed in π-ADL-Spec.

b) The connections, declared in a π-ADL-C&C compo-
nent (see for example, lines 3-8 of Fig.3), should be declared
in the scope of a π-ADL-Spec abstraction in which they are
used (see lines 7-12 of Fig.8). Notice that, the syntax for the
declaration of a connection has been changed. Moreover, in
the π-ADL-Spec language we do not need to specify if the
connection is used to receive or to send information from/to
its environment.

B. From π-ADL-Spec to π-ADL.NET

In order to obtain a system ready to be compiled and
executed, we need to transform the π-ADL-Spec specification
into the π-ADL.NET code. This section briefly outlines some
important points of this transformation (see Fig. 8 and 9).



a) For each abstraction of π-ADL-Spec, its list of pa-
rameters, containing more than one parameter (see for example,
lines 2-5 of Fig.8), is encapsulated as a value of the view type
in the π-ADL.NET code (see respectively lines 1-5 of Fig.9).
Each value of the view type view[label1:T1,...,labeln:Tn]

is a view view(label1=v1,...,labeln=vn), where for i ∈ [1, n],
each value vi has type Ti, and each label labeli has the same
name as its corresponding parameter in the π-ADL-Spec code.
The reason is that the π-ADL.NET language does not support
a list of parameters for a value passing.

1 value paying is abstraction(args:view[

2 cCoinNumber: Integer,

3 vPaid: Integer,

4 vCoinNumber: Integer,

5 vPrice: Integer]

6 ){

7 Coin : connection[Integer];

8 Return : connection[Integer];

9 Cancel : connection[Void];

10 ReceivePrice : connection[Integer];

11 Paid : connection[Void];

12 NotPaid : connection[Void];

13 pCoin : Integer;

14
15 choose {

16 if (args::vCoinNumber < args::cCoinNumber) do {

17 via Coin receive pCoin;

18 args::vPaid = args::vPaid+pCoin;

19 args::vCoinNumber = args::vCoinNumber+1;

20 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:args::vPaid,

vCoinNumber:args::vCoinNumber, vPrice:args::vPrice);

21 } else do{

22 via Return send vPaid;

23 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:0, vCoinNumber:0,

vPrice:0);

24 }

25 or

26 via ReceivePrice receive pPrice : Natural;

27 vPrice = pPrice;

28 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:args::vPaid,

vCoinNumber:args::vCoinNumber, vPrice:args::vPrice);

29 or

30 via Cancel receive;

31 via Return send vPaid;

32 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:0, vCoinNumber:0, vPrice:0);

33 or

34 if (vPaid >= vPrice) do {

35 via Paid send;

36 via Return send (vPaid-vPrice);

37 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:0, vCoinNumber:0,

vPrice:0);

38 } else do {

39 via NotPaid send;

40 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:args::vPaid,

vCoinNumber:args::vCoinNumber, vPrice:args::vPrice);

41 }

42 }

43 };

44 value Payment is abstraction(cCoinNumber: Integer){

45 via paying send view(cCoinNumber:args::cCoinNumber, vPaid:0, vCoinNumber:0, vPrice:0);

46 }

Fig. 9. The payment component expressed in π-ADL.NET.

b) Each call to a π-ADL-Spec abstraction carrying
parameters, which permit to establish the communications
between behaviors and abstractions (see for example, line 19 of
Fig.8), is transformed, in the π-ADL.NET code, into an output
action sending these parameters via the connection with the
same name as the corresponding π-ADL-Spec abstraction (see
line 20 of Fig.9).

c) Each location type in the π-ADL-Spec language (see
for example, line 3 of Fig.8) is transformed into the type of the
value stored in this location (see line 3 of Fig.9).

C. From Architectural Specification to Implementation

The goal of this step of our approach is to obtain an exe-
cutable software system. To reach this goal we use the π-ADL
compiler [20] developed in C# by Z.Qayyum, and executable
on .NET platform. This compiler takes as input a π-ADL.NET
code and transforms it into an executable system. We then
run this system on a persistent virtual machine developed for
executing architectural descriptions based on the operational
semantics of π-ADL.

D. From π-ADL-Spec to IOSTS

In this section, we informally describe the transformation of
an architectural specification expressed in π-ADL-Spec into its
IOSTS model. We use the example of the payment component,
shown in Fig.8 and called Sπ-ADL-Spec, in order to illustrate this
transformation, which results in the IOSTS, depicted in Fig.5
and called SIOSTS.

a) Each π-ADL-Spec abstraction corresponds to one
IOSTS model. For example, the abstraction shown on lines 44-
46 of Sπ-ADL-Spec corresponds to SIOSTS modeling behaviors of
the payment component of the coffee machine.

b) The connections of a π-ADL-Spec abstraction be-
come the input/output actions of the corresponding IOSTS. For
example, the connections of Sπ-ADL-Spec, i.e., Coin, Cancel, and
Return, Paid, NotPaid (see lines 7-12), are the input/output
actions of SIOSTS.

c) Each input and output prefix, whose respec-
tive syntax is “via connection receive value” and “via

connection send value”, of a π-ADL-Spec abstraction is
transformed into a transition of IOSTS labeled with an action
corresponding to connection carrying out parameters corre-
sponding to value of this prefix. Each silent prefix, indicated
by the keyword “unobservable”, is translated to a transition
of IOSTS labeled with an internal action. Notice that, all the
assignments following the prefix become assignments of the
transition corresponding to this prefix. Moreover, if the prefix
is surrounded with the “if(condition) then{...}” structure,
then its corresponding, in the IOSTS model, transition is
guarded by condition mentioned in this structure. For exam-
ple, the π-ADL-Spec code of lines 15-23 corresponds to two
transitions of SIOSTS leaving from the location p2 and labelled
with the Coin? and Return! actions.

d) A sequence of input, output, and silent prefixes in
the π-ADL-Spec language is modeled by the sequence of the
corresponding transitions in the IOSTS model. For example, the
sequence “via Cancel receive.via Return send ’vPaid” of
Sπ-ADL-Spec (see lines 29-30) is represented by two conse-
quent transitions (p2, Cancel?(), p3). (p3, Return!(pP aid), p1)
of SIOSTS (see Fig.5).

e) The “choice” structure of π-ADL-Spec permits to
model a location of an IOSTS with several outgoing transitions.
For example, the code of lines 14-41 of Sπ-ADL-Spec corresponds
to p2 of SIOSTS and to six transitions outgoing from p2.

f) A call to an abstraction in the π-ADL-Spec language,
means that the transition corresponding to a prefix preceded by
this call, should be redirected to one of already created locations
of the IOSTS. For example, the call of line 19 of Sπ-ADL-Spec

means that the transition of SIOSTS labeled with Coin? should
stay in the same location, while the call of line 22 signifies that
the transition labeled with Return! should go to p1.

The composition of two components (abstractions) is mod-
eled by the parallel composition between two IOSTS with
synchronization on the actions, which should communicate
together. The architectural specification of the coffee machine is
the result of the composition between two IOSTS (see Fig.5 and
Fig.6) used to model behaviors of the payment and beverage
components of the coffee machine. This specification is used in
order to derive test cases, however we did not show it in the
paper due to its size (20 locations and about 70 transitions).



E. Symbolic Test Generation

Symbolic Test Generation consists in computing, from the
formal specification of a system under test and from a test
purpose describing a set of behaviors to be tested, a reactive
program, called a test case, that observes an implementation of
the system to detect non-conformant behavior, while trying to
control the implementation towards satisfying the test purpose.
The STG tool [17], [18], used for test case generation, takes
as inputs an IOSTS specification and an IOSTS test purpose,
and then it produces an IOSTS test case. In Section IV-D, we
described how to obtain the IOSTS specification from the one
written in the π-ADL-Spec language. Bellow we explain the
notions of test purpose and test case.

tp1

tp2

tp3

tp4

Accept Reject

PressButton?()

Coin?(pCoin)

Deliver!()

Return!(pRemainingValue)

otherwise

otherwise

otherwise

otherwise

Fig. 10. The test purpose represented by an IOSTS.

1) Test purpose. A test purpose is used to select the be-
haviors from the specification that are to be exercised by
the derived test. Fig.10 illustrates a test purpose that selects
from the coffee machine specification a test case that exercises
a coffee delivery in the case where the beverage button is
pressed and a single coin, which should be sufficient for a coffee
payment, is inserted into the coffee machine.

The generation of test cases takes place through the compu-
tation of the product between the specification IOSTS and the
test purpose IOSTS. Thus, locations in the test case are pairs
made up of a location from the specification and a location
from the test purpose, and transitions between these locations
are added when (1) a specification transition action has the
same label as a test purpose action, or (2) the specification
is capable of advancing on an internal action. The locations
“Accept” and “Reject” in the test purpose indicate locations in
the test case that should be interpreted as final. The location
“Accept” indicates a successful execution of the tests, while the
location “Reject” indicates the behavior of the coffee machine
specification in which we are not interested for the moment.

The test purpose of Fig.10 was constructed to select a
behavior that (1) begins with the PressButton?() action, (2)
waits for a coin (see Coin?(pCoin)), and then (3) delivers a
coffee through the Deliver!() action, and (4) returns the rest
of amount that has been paid (see Return!(pRemainingValue)).
Note that, we are not interested in testing behaviors of the
coffee machine canceling a command. That is why theCancel
action leads to the “Reject” location. For the sake of simplicity,
all the arrows of Fig.10 leading to “Reject” are labelled with
otherwise. This indicates that we are not interested in all
the actions except of the authorized ones. For example, in
the location p1b1 tp1 the authorized action is PressButton?(),

all the others, i.e., Cancel?(), Coin?(pCoin), Deliver?(), and
Return?(pReminingValue), go to the “Reject” location.

p1b1 tp1

p2b3 tp2

p2b4 tp3

p4b2 tp4

P ass

InconclusiveF ail

(cBeverageQuantity¿0) and (cPrice¿0) and (cCoinNumber¿0)

PressButton!()
vBeverageQuantity := 0

vPaid := 0
vCoinNumber := 0

vPrice := 0

(pCoin¿0) and
(cPrice¡=pCoin+vPaid)

Coin!(pCoin)
vPaid := vPaid + pCoin

vCoinNumber++
vPrice := cPrice

(vPaid¿=vPrice)
Deliver?()

vBeverageQuantity++

(pPaid=vPaid-vPrice)
Return?(pPaid)

(pPaid=vPaid-vPrice) and
(vPaid ¿= vPrice)

Return?(pPaid)

(pPaid=vPaid) and
(vCoinNumber ¿= cCoinNumber)

Return?(pPaid)

otherwise?

otherwise?

otherwise?

otherwise?

Fig. 11. The test case represented by an IOSTS.

2) Test case. Finally, Fig.11 shows the IOSTS that results
from the symbolic test generation using the architectural spec-
ification of the coffee machine and the test purpose of Fig.10.
Note that, this test case is specific to the test purpose indicated
above. Different test purposes will generate different tests. The
computation steps carried out are identical to those given in the
specification. Actions have had their orientation (i.e., input vs.
output) reversed so that the test case becomes a generator of
commands and a receiver of responses, complementary to an im-
plementation of the specification. The location labeled “Pass”
in Fig.11 indicates that a correct interaction between the tester
and the system under test took place. The symbolic test gen-
eration method also generates transitions from every location
to a new location “Fail” that absorbs incorrect responses from
the system under test and lead to the “Fail” state, indicating
the non-conformance of the implementation. For each possible
erroneous input action received by the tester, the test case
generates a transition to “Fail” labeled, for the sake of clarity of
the presentation, with the otherwise? action from each location
of the graph. Note that, the test shown on Fig.11, like all the
tests generated by this method, incorporates its own oracle. All
of the computation steps necessary to verify the correctness of
numeric results are extracted from the specification and used
by the tester to verify arguments as they are received. This is
in contrast to test generation techniques that simply produce
a sequence of inputs to drive the implementation through a
specific path.

F. From Abstract to Executable Test Case

In this section, we explain how an abstract test case repre-
sented by an IOSTS is translated into an executable code to be
run on the black-box implementation of a system under test.
First of all, the test case, shown in Fig.11 and called T CIOSTS, is
translated into the π-ADL-C&C component, shown on Fig.12
and called T Cπ-ADL-C&C, as follows:

a) The symbolic constants of T CIOSTS, such as
cCoinNumber, cBeverageQuantity, and cPrice, are transformed
into parameters of T Cπ-ADL-C&C (see lines 2-4).



1 component TestCase is abstraction(

2 cCoinNumber : Natural, // 10

3 cBeverageQuantity : Natural, // 15

4 cPrice : Natural) // 2

5
6 port is {

7 connection Coin is out (Natural).

8 connection Cancel is out ().

9 connection PressButton is out().

10 connection Return is in (Natural).

11 connection Deliver is in().

12 }.

13 ...

14 P2B3_TP2 is abstraction(

15 vBeverageQuantity : location[Natural],

16 vPaid : location[Natural],

17 vCoinNumber : location[Natural],

18 vPrice : location[Natural]

19 ){

20 choose {

21 pCoin : location(4).

22 if ((cPrice’ <= pCoin’+vPaid’) and (pCoin’ > 0)) then{

23 via Coin send pCoin.

24 vPaid := vPaid’+pCoin.

25 vCoinNumber := vCoinNumber’+1.

26 vPrice := cPrice’.

27 P2B4_TP3(vBeverageQuantity’,vPaid’,vCoinNumber’,vPrice’)

28 }

29 or

30 via Deliver receive.

31 Fail()

32 or

33 via Return receive pPaid : location[Natural].

34 Fail()

35 }

36 }

37 P2B4_TP3 is abstraction(

38 vBeverageQuantity : location[Natural],

39 vPaid : location[Natural],

40 vCoinNumber : location[Natural],

41 vPrice : location[Natural]

42 ){

43 choose {

44 via Deliver receive.

45 if (vPaid’>=vPrice’) then{

46 vBeverageQuantity := vBeverageQuantity’+1.

47 P4B2_TP4(vBeverageQuantity’,vPaid’,vCoinNumber’,vPrice’)

48 }else{ Fail() }

49 or

50 via Return receive pPaid : location[Natural].

51 if ((pPaid’=vPaid’-vPrice’) and (vPaid’>=vPrice’)) then{

52 Inconclusive()

53 }else{ Fail() }

54 or

55 via Return receive pPaid : location[Natural].

56 if ((pPaid’=vPaid’) and (vCoinNumber’>=cCoinNumber’)) then{

57 Inconclusive()

58 }else{ Fail() }

59 }

60 ...

61 Pass is abstraction(){ print("PASS") }

62 ...

63 behaviour is { P1B1_TP1(0,0,0,0) }

64 }

Fig. 12. The extract of the π-ADL C&C test case.

b) The input/output actions of T CIOSTS (Deliver?,
Return?, and Coin!, Cancel!, PressButton!) play the role of
connectors in T Cπ-ADL-C&C (see lines 7-11).

c) Each location of T CIOSTS is transformed into an
abstraction of T Cπ-ADL-C&C. All the abstractions, except the
ones corresponding to the test verdicts, have the same number
of parameters. These parameters correspond to the variables
of T CIOSTS. For example, the location p2b3 tp2 of T CIOSTS

is translated into the abstraction P2B3 TP2 (see lines 14-
36), which has four parameters: vBeverageQuantity, vPaid,
vCoinNumber, and vPrice. Notice that, the special locations,
such as Pass, Fail, and Inconclusive, correspond to the abstrac-
tions without parameters (e.g., the location Pass corresponds
to the abstraction represented by the code on line 61). The role
of these abstractions is to produce a test verdict.

d) For each location of T CIOSTS, each outgoing transi-
tion is translated into one case of the “choose” structure of
the abstraction corresponding to this location. For example,
the transition t1 with origin p2b3 tp2 and destination p2b4 tp3

labeled with the Coin!(pCoin) output action corresponds to the
first case of the “choose” structure of P2B3 TP2 (see lines
21-28). Notice that, the destination of t1 is modeled by a call

to the P2B4 TP3 abstraction. The code, corresponding to a
guarded transition labeled with an output action, is surrounded
by the “if(...)then{...}” structure, where the guard of this
transition appears as a condition. Moreover, in order to fire a
transition labeled with an output action carrying parameters,
a test case should automatically generate values for these
parameters satisfying the guard of this transition if it is present.
At the moment, such parameters are instantiated with values
chosen by the test developer. For example, the pCoin parameter
is instantiated with 4. This value satisfies the guard of the
transition t1, i.e., (pCoin > 0) and (cP rice ≤ pCoin + vP aid)
if the price of the beverage is 3, for example. The code, corre-
sponding to a guarded transition labeled with an input action,
is surrounded by the “if(...)then{...}else{...}” structure,
where the guard of this transition appears as a condition. The
input action should be invoked just before this structure as we
need to know received values of its parameters. Notice that, if
the guard/condition is not satisfied, then the test case generates
the “Fail” verdict. For example, the code corresponding to lines
44-48, models two transitions of T CIOSTS outgoing from the
p2b4 tp3 location and labeled with the Delivery?() action. One
of them permits to reach the p4b2 tp4 location, if the guard
g : vP aid ≥ pP rice is satisfied, and other goes to the “Fail”
location, if the guard g is unsatisfied.

e) The behavior of the test case T Cπ-ADL-C&C is modeled
by a call to the P1B1 TP1 abstraction, which corresponds to
the initial location of T CIOSTS.

To obtain an executable test case, a test case expressed in
the π-ADL-C&C language is automatically translated into π-
ADL-Spec code (see Section IV-A), and then into a concrete
executable test program expressed in the π-ADL.NET language
(see Section IV-B).

G. Test Case Execution

The last step of our approach is to compile and to execute
the π-ADL.NET test case obtained from an abstract test case,
represented by IOSTS, as was explained in Section IV-F. This
test case is executed on a real black-box implementation of
the system under development, where the execution is modeled
by the parallel composition between the test case and the
implementation with synchronization on common input/output
actions. The results of a test execution are: “Pass”, meaning
no errors were detected and the test purpose was satisfied,
“Inconclusive” – no errors were detected but the test purpose
was not satisfied, or “Fail” – the implementation exhibits a non-
conformance with respect to the architectural specification in a
behavior targeted by the test purpose.

V. Tool Support

A major impetus behind developing formal languages for
architectural description is that their formality renders them
suitable to be manipulated by software tools. The usefulness
of an ADL is thereby directly related to the kinds of tools it
provides to support architectural description, but also analysis,
refinement, code generation, and evolution. Indeed, we have
developed a comprehensive toolset for supporting architecture-
centric formal development around π-ADL. It is composed of:

– a callable compiler and a persistent virtual machine for ex-
ecuting architecture descriptions based on the operational



semantics of π-ADL (implemented in C# on the .NET
platform) [20];

– three transformators implemented in C++ and allowing to
translate (1) a π-ADL-C&C code into a π-ADL-Spec code,
(2) a π-ADL-Spec code into a π-ADL.NET code, and (3)
a π-ADL-Spec code into an IOSTS model.

– a π-ADL-C&C syntax checker implemented in C++.

The work presented in this paper adds a new method and
tool for architecture validation based on conformance testing.
Indeed, in order to validate the conformance of the executable
system with respect to its architectural specification, we apply
the conformance testing technique, i.e., tests are generated
automatically, using the STG tool [17]–[19], and then they are
executed on the system under test. To be able to generate tests
from a π-ADL-Spec architectural specification with STG, the
specification should be translated into a low-level IOSTS model.
This step is almost automatized. The STG tool generates
abstract test cases expressed by IOSTS, therefore we need also
to transform them into the π-ADL-C&C language (this step is
done manually, at the moment).

VI. Summary and Related Work

The main purpose of this paper is to propose an approach
that permits (1) to easily design the architecture of a system
under development using π-ADL, (2) to automatically generate
an implementation of this system that can be executed on
the platform .NET, and (3) to test the conformance of the
implemented system against its architectural specification.

As it is mentioned in [2] and [3], several works propose
different formal and semi-formal ADLs for the description of
software architecture. Some of these ADLs rely on Labeled
Transition Systems (LTSs) used to model the behaviors of a
software architecture, for example, Chemical Abstract Machine
(CHAM) [21], Finite State Process (FSP) [22], and π-ADL [4].
As this paper is based on our previous work [4], the choice of
π-ADL, as a language for architecture design, is natural for us.
Once the architecture of a software system is designed using
the user-friendly π-ADL-C&C language, we refine it into a low-
level π-ADL.NET architecture that can be compiled, using the
compiler [20] developed in our research team, and executed on
the .NET platform.

The choice of π-ADL allows us to use formal methods in
order to assure the quality of a system under development.
Indeed, π-ADL is a formal, well theoretically founded ADL.
Moreover, the behaviors of designed systems can be captured
by means of transition systems. In this work, we use a testing
technique in order to check the conformance of a system’s
implementation with respect to its architectural specification,
and therefore to assure the quality of this system. This work
is based on our previously proposed technique [19] and on a
tool [17], [18] allowing automatic test generation for reactive
programs (written in Java or C++) from low-level specifications
modeled by IOSTSs.

The closest works to our proposal are these of Muccini,
Bertolino, and Inverardi [11], [12], [23], [24]. Their approach
consists of the automatic derivation of suitable abstract test
cases from the behaviors of a system under test that is modeled
by LTS. The test cases are selected by the use of Abstract
LTS (ALTS) allowing to abstract away uninteresting, for the

moment, system’s actions, and then applying the coverage
criterion of McCabe (another criteria can also be used) to
obtained abstract test cases. One of the difficulties of this
approach underlined by the authors, is to establish a relation-
ship between the system at its abstract architectural level and
the system’s implementation. It is needed in order to obtain
concrete executable test cases from the abstract ones.

In the approach presented in this paper, we generate ab-
stract test cases from the IOSTS model of an architectural
specification written in π-ADL. We use the notion of test pur-
pose, as a test selection mechanism, in order to focus on specific
behaviors of the system under test. The inconvenient is that we
do not generate the test purposes automatically, therefore their
elaboration needs a human intervention. On the other hand,
the translation of abstract test cases is quite straightforward in
our approach as it was described in Section IV.

Bellow we listed other related works that have been done
in the domain of architectural testing. This list is certainly
not exhaustive. The authors of [6] define six architectural-
based testing criteria and use them in order to generate test
plans from the software architecture modeled by CHAM by
adapting existing specification-based techniques to the domain
of architecture-based testing. In [7], Bertolino and Inverardi
use the architectural testing in order to test extra-functional
properties of a system under test. Tracz [25] shows how to
use Domain-Specific Software Architecture (DSSA) in order to
capture structural and temporal properties of a system under
development. He gives some ideas on how architectures can be
specified to enable its analysis and testing. In [8], [26], the au-
thors propose dependence analysis techniques based on software
architecture and called chaining. In [27], Rosenblum adapts
its component-based test strategy based to an architecture-
based test of software systems. This approach is based on the
architectural models that can be simulated, executed, or used
to realize the integration or regression testing on the implemen-
tation of a system under test. Finally, the author describes how
formal models, combined with architectural models, can be used
to guide software testing. In [9], Harrold presents approaches
for using software architecture for effective regression testing.
In [28], she also discusses the use of software architecture
for testing. In [10], the authors define several test criteria,
and propose techniques, and automated tools for the specifi-
cation and generation of system level tests from architectural
descriptions. Muccini and his colleagues are also interested
by regression testing. Their contribution to this topic can be
found in [13], [29], [30]. These works explore the question how
regression testing can be systematically applied to the software
architecture to reduce the cost of regeneration tests for modified
systems. The authors are interested in two types of changes of a
software system, which are (1) modification of the architecture
and (2) modification of the implementation. There is also an
interesting work of Bertolino [31] discussing different important
achievements in the field of software testing and listing the most
relevant challenges to be addressed in this field.

VII. Conclusion

This paper has presented a formal approach which, starting
from the architecture of a software system, generates a system
implementation and tests it at the architectural level. In par-
ticular, this approach has been applied to software systems de-



signed using high-level architecture description language called
π-ADL. The test part of the approach is based on symbolic
test generation, which (1) automatically derives test cases in
order to check the conformance of a system with respect to the
behavior of an architectural specification selected by the test
purposes; (2) automatically determines whether the results of
the test execution are correct with respect to the architectural
specification. It performs test derivation as a symbolic process,
up to and including the generation of test program source code.
The reason to use symbolic techniques instead of enumerative
is that symbolic test generation allows us to produce (1) more
general test cases with parameters and variables, which should
be instantiated only before the test cases execution, and (2)
test cases that are more readable by humans. We validated our
approach on a simple example of the coffee machine.

As it was mentioned in this paper, some steps of our
approach are semi-automatized, therefore, the first direction of
our future work is to render the approach completely automatic
from test generation down to test execution. To show the
feasibility and utility of our approach we plan to apply it to a
realistic case study. Second, we plan to work on the implemen-
tation of a mechanism to automatically compute test purposes
from the system architectural specification using, for example,
coverage criteria instead of test purposes written by hand.
Third, we plan to extend our approach by incorporating in it a
technique of model checking in order to enable the automatic
verification of critical parts of a system under development.

References

[1] S. Shaw and D. Garlan, Software Architecture: Perspectives on
an Emerging Discipline. Prentice Hall, 1996.

[2] N. Medvidovic and R. N. Taylor, “A classification and compari-
son framework for software architecture description languages,”
IEEE Trans. on Software Eng., vol. 26, no. 1, pp. 70–93, 2000.

[3] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang,
“What industry needs from architectural languages: A survey,”
IEEE Trans. Software Eng., vol. 39, no. 6, pp. 869–891, 2013.

[4] F. Oquendo, “π-adl: an architecture description language based
on the higher-order typed pi-calculus for specifying dynamic
and mobile software architectures,” SIGSOFT Softw. Eng.
Notes, vol. 29, no. 3, pp. 1–14, 2004.

[5] G. Myers, The Art of Software Testing. John Wiley & Sons,
1979.

[6] D. J. Richardson and A. L. Wolf, “Software testing at the
architectural level,” in Proc. of ISAW and Viewpoints’96 on
SIGSOFT’96 workshops, ser. ISAW’96. New York, NY, USA:
ACM, 1996, pp. 68–71.

[7] A. Bertolino and P. Inverardi, “Architecture-based software
testing,” in Proc. of ISAW-2 and Viewpoints’96 on SIGSOFT
’96 workshops, ser. ISAW’96. New York, NY, USA: ACM,
1996, pp. 62–64.

[8] J. A. Stafford, D. J. Richardson, and A. L. Wolf, “Chaining: A
software architecture dependence analysis technique,” 1997.

[9] M. J. Harrold, “Architecture-based regression testing of evolv-
ing systems,” in Proc. of the Int. Workshop on the Role of Soft-
ware Architecture In Testing and Analysis, ser. ROSATEA’98,
1998, pp. 73–77.

[10] Z. Jin and J. Offutt, “Deriving tests from software architec-
tures,” in Proc. of the IEEE Int. Symposium on Software
Reliability Engineering, ser. ICSE’01, 2001, pp. 308–313.

[11] A. Bertolino, P. Inverardi, and H. Muccini, “Formal methods
in testing software architectures,” in SFM, 2003, pp. 122–147.

[12] H. Muccini, A. Bertolino, and P. Inverardi, “Using software
architecture for code testing,” IEEE Trans. on Software En-
gineering, vol. 30, no. 3, pp. 160–171, March 2004.

[13] H. Muccini, M. S. Dias, and D. J. Richardson, “Reasoning
about software architecture-based regression testing through a
case study,” in Proc. of the Computer Software and Applications
Conf., ser. COMPSAC’05, 2005, pp. 189–195.

[14] B. Beizer, Software Testing Techniques. New York: Van
Nostrand Reinhold, 1990.

[15] G. J. Tretmans, “A formal approach to conformance testing,”
Ph.D. dissertation, University of Twente, the Netherlands, De-
cember 1992.

[16] D. Sangiorgi, “Expressing mobility in process algebras: First-
order and higher-order paradigms,” Ph.D. dissertation, Univer-
sity Edinburgh, UK, February 1992.

[17] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva, “STG: A
Symbolic Test Generation tool,” in Proc. of the 8th Int. Conf.
on Tools and Algorithms for the Construction and Analysis of
System (TACAS’02), ser. LNCS, vol. 2280, Grenoble, France,
April 2002, pp. 470–475.

[18] F. Ployette and F.-X. Ponscarme, “The STG tool page,”
Available at http://www.irisa.fr/prive/ployette/stg-doc/stg-
web.html, October 18, 2007.

[19] E. Zinovieva-Leroux, “Symbolic methods in test generation for
reactive systems with data,” Ph.D. dissertation, University of
Rennes 1, France, November 22, 2004.

[20] Z. Qayyum and F. Oquendo, “The π-adl.net project: an inclu-
sive approach to adl compiler design,” WSEAS Transactions
on Computers, vol. 7, no. 5, pp. 414–423, May 2008.

[21] P. Inverardi and A. L. Wolf, “Formal specification and analysis
of software architectures using the chemical abstract machine
model,” IEEE Trans. on Software Eng., vol. 21, no. 4, pp. 373–
386, 1995.

[22] J. Magee, J. Kramer, R. Chatley, S. Uchitel, and H. Fos-
ter, “Ltsa - labelled transition system analyser,” Available at
http://www.doc.ic.ac.uk/ltsa/, June 04, 2009.

[23] A. Bertolino, F. Corradini, P. Inverardi, and H. Muccini, “De-
riving test plans from architectural descriptions,” in Proc. of the
22nd Int. Conf. on Software Engineering, ser. ICSE’00. New
York, NY, USA: ACM, 2000, pp. 220–229.

[24] A. Bertolino, P. Inverardi, and H. Muccini, “An explorative
journey from architectural tests definition downto code tets
execution,” in Proc. of IEEE Int. Symposium on Software
Reliability Engineering, ser. ICSE’01, 2001, pp. 211–220.

[25] W. Tracz, “Test and analysis of software architectures,” in
Proc. of the 1996 ACM SIGSOFT Int. Symposium on Software
Testing and Analysis, ser. ISSTA’96. New York, NY, USA:
ACM, 1996, pp. 1–3.

[26] J. Stafford, D. Richardson, and A. Wolf, “Aladdin: A tool
for architecture-level dependence analysis of software systems,”
University of Colorado, Tech. Rep. CU-CS-858-98, 1998.

[27] D. Rosenblum, “Challenges in exploiting architectural models
for software testing,” in Proc. of the Int. Workshop on the
Role of Software Architecture in Testing and Analysis, ser.
ROSATEA’98, Italy, Jul. 1998, pp. 49–53.

[28] M. J. Harrold, “Testing: a roadmap,” in Proc. of the Conf. on
The Future of Software Engineering, ser. ICSE’00. New York,
NY, USA: ACM, 2000, pp. 61–72.

[29] H. Muccini, M. Dias, and D.Richardson, “Towards software
architecture-based regression testing,” in Workshop on Archi-
tecting Dependable Systems (WADS), ser. ICSE’05, vol. 30:4.
St. Louis, Missouri (USA): ACM, May 2005, pp. 1–7.

[30] ——, “Towards software architecture-based regression testing,”
University of L’Aquila, Tech. Rep., 2005.

[31] A. Bertolino, “Software testing research: Achievements, chal-
lenges, dreams,” in Proc. of the Future of Software Engineering,
ser. ICSE’07. IEEE-CS Press, 2007, pp. 85–103.


