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Abstract The noise generated by the friction of two rough

surfaces under weak contact pressure is usually called rough-

ness noise. The underlying vibration which produces the

noise stems from numerous instantaneous shocks (in the mi-

crosecond range) between surface micro-asperities. The nu-

merical simulation of this problem using classical mechan-

ics requires a fine discretization in both space and time. This

is why the finite element method takes much CPU time.

In this study, we propose an alternative numerical approach

which is based on a truncated modal decomposition of the

vibration, a central difference integration scheme and two

algorithms for contact: The penalty algorithm and the La-

grange multiplier algorithm. Not only does it reproduce the

empirical laws of vibration level versus roughness and slid-

ing speed found experimentally but it also provides the sta-

tistical properties of local events which are not accessible by

experiment. The CPU time reduction is typically a factor of

10.

Keywords Roughness · Rough surface contact · Contact

mechanics · Friction noise

1 Introduction

Roughness noise is the sound produced by rubbing two rough

surfaces under light contact pressure [1]. This sound occurs

frequently in everyday situations as hand rubbing, stridula-

tory sound by insects [19] or tyre/road contact noise [15].
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In all these examples, the sound is produced by mechani-

cal events occurring in the contact at the scale of asperities.

These events may be mechanical shocks or pinning of as-

perities followed by a sudden release that produces a local

deformation of surfaces near the contact area. The transient

deformations then propagate in the solid and make it vibrate.

The main features of these events are that they are rapid,

numerous and unpredictable. In order to understand quanti-

tatively the vibrational and acoustical behaviour of the sys-

tem, it is necessary to understand the statistical characteris-

tics of shocks between asperities. However the calculation

of these transient dynamics is not straightforward due to the

non-linearity and non-differentiability of the rough contact

problem [10].

From the experimental point of view, in a series of pub-

lications [37, 38, 39, 40, 41], Yokoi and Nakai showed that

the noise level has a strong dependence with both the surface

roughness Ra and sliding speed V .

∆Lp(dB) = 20log10

[(

Ra

Rre f

)m(

V

Vre f

)n]

, (1)

where ∆Lp is the increase of sound pressure level from a

reference situation characterized by Rref,Vref. This law has

been confirmed with various types of materials and setups

by Othman and Elkholy [31] or Ben Abdelounis [6]. For a

contact between a steel rod and a rotating disc, Yokoi and

Nakai found m=0.8-1.2 and n=0.6-1.1 [41], while with a

plane-plane contact of steel surfaces, Ben Abdelounis found

m=0.8-1.16 and n=0.7-0.96 [6].

Boyko et al. investigated the effect of surface roughness

on the noise spectrum [9]. They found that the rougher the

surface, the closer the peak in the spectra to the bending

natural frequency of the system.

Recently, Le Bot et al. [24, 25] investigated the effect of

contact area on friction sound. They found the existence of
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two regimes for the relationship of the noise level with con-

tact area depending of the ratio of energy dissipated within

the contact and that dissipated by the whole vibrating sys-

tem. In the first regime, the noise level is constant i.e. does

not depend on the contact area, while in the second one, it is

proportional to the contact area. A simple reasoning based

on energy balance showed that a part of the vibrational en-

ergy is dissipated into the contact itself with a rate of dissi-

pation Pdiss ∝ mv2S proportional to the product of the local

vibrational energy mv2 and the contact area S.

The numerical simulation of the dynamics of two fric-

tional surfaces has been widely investigated thanks to the

rapid progress of computer technology [3, 13, 20, 33, 34,

14, 35, 2]. In particular, many models have been developed

to study the different types of friction noise. In Ref [4], An-

dersson and Kropp used the non-linear penalty method to

compute the contacts and the Green’s theory for the dynamic

response of tyres in order to handle the tyre/road noise prob-

lem. In Ref [27], the brake noise is simulated using a finite

element model and the forward increment Lagrange multi-

plier method. In Ref [7], it is shown that the relationship

between the vibration level Lv as a function of the surface

roughness and the sliding speed can be predicted by a 2D fi-

nite element model. However, due to the micrometer size of

asperities, it requires a very large number of mesh elements

and this method is currently not feasible for 3D models of

rough contact.

In this paper, we propose an alternative method based

on the modal decomposition to study the laws of rough-

ness noise. The modal decomposition is an efficient method

to analyze structure dynamics. The equation of motion is

developed in terms of new variables called the modal co-

ordinates which are the solutions of a set of modal equa-

tions [22]. The solution of the original equation is obtained

via a superposition of modes. The reduction is achieved by a

truncation on the mode number which has been used in the

computation [11]. This approach not only allows to predict

the evolution of the vibration level versus Ra and V but also

gives more quantitative and qualitative informations related

to the mechanical events at the micro-asperity scale.

The paper is organized as follows. In the next section, we

describe the numerical approach which consists in the math-

ematical formulation, a time integration scheme and two al-

gorithms for the contact. In Section 3, two validation tests

are presented. The first one is a comparison with an ana-

lytical solution and the second one with the finite element

method. In Section 4, a realistic problem is studied with an

emphasis on the statistics of local events. Eventually, a con-

clusion is presented in Section 5.

2 Simulation of sliding rough contact

The simulation is based on a 2D model which is made up

of two beams in contact as shown in Fig. 1. The top beam
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Fig. 1: Top: Sketch of the system under consideration. Bottom: sketch

of two rough profiles. The gap between the two profiles is δ . At time

t , the horizontal offset is imposed ∆ =Vt .

moves horizontally with a constant velocity V while the bot-

tom beam is fixed at both ends. The beams have nominally

flat rough surfaces described by their profiles. The initial

vertical gap i.e. the separation between the two reference

lines of the profiles is δ . During the movement asperities of

the top profile can hit asperities of the bottom profile. Since

a profile cannot penetrate the antagonist profile, repulsive

forces take place at contact points and lead to a global defor-

mation u of the profiles. Contacts are transient with a short

duration and they result in a vibration of the whole beams.

The vibrating beams then radiate sound in the surrounding

air although this dissipative process is not taken into account

in the present model.

We make the following assumptions:

– The vertical deflection u of the neutral axis follows the

Euler-Bernoulli theory of beams (Small flexural vibra-

tion, rotational inertia neglected).

– The beams are infinitely rigid in the horizontal direction

and therefore the horizontal position of profile nodes is

imposed (No longitudinal vibration).

– Profiles cannot penetrate each other (Signorini’s condi-

tion).

– The persistence of contact is ensured by a vertical grav-

ity force.

In this model, the beams thicknesses are intended to be

the actual thicknesses of the two solids under consideration.

The underlying assumption is that the effective thicknesses

of the rough layers are much smaller than the thicknesses

of the bulk of the beams. The validity of Euler-Bernoulli’s

theory is well-known: The wavelength of flexural vibrations
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must be large compared to the thickness. This condition im-

poses a high frequency limit of the order of 0.1c/H where c

is the sound speed in the material and H the thickness. Be-

yond this limit, higher order theories such as Timoshenko’s

beam must be considered.

The second major assumption of this model is that lon-

gitudinal vibration has been neglected. The main reason is

that in-plane motion does not contribute to the sound radi-

ation process (only out-of-plane motion is coupled with the

surrounding fluid). Furthermore, the longitudinal vibration

is generally much smaller than flexural vibration. Assuming

that modal energies are equal (thermal equilibrium), the ra-

tio of longitudinal energy to flexural energy is of order of

3
√

H f/c. Longitudinal vibration is therefore negligible (ra-

tio smaller than 0.1) up to a frequency of order 0.001c/H.

We emphasize the fact that, in our model, friction is ne-

glected. The first possible contribution of friction is to add a

horizontal component to the contact forces. Of course, this

force would influence the horizontal vibration but, as we

have just argued that the latter have a negligible contribu-

tion to the emitted sound, one may admit that friction does

not contribute to sound radiation at first order. The second

possible contribution arises from the fact that local contacts

are not horizontal. Thus, the vertical projection of the fric-

tion force should in principle be taken into account to cal-

culate the flexural vibration. However, this component is of

order of sin(θ ).µ .N where N is the normal contact force, µ
the friction coefficient and θ the mean slope of asperities.

In most practical situations, µ is about 0.1 and θ is smaller

than about 0.1, so this component is much smaller than N.

2.1 Mathematical formulation

Each profile is described in static condition by a function

h(x) giving the vertical position of nodes versus abscissa.

But since the top profile is moving, we introduce two frames

respectively attached to the bottom and top profiles. The

frame (O1,x1,y1) is fixed, the x1-axis is oriented to the right

and the y1-axis is oriented upward (Fig. 1). The bottom pro-

file h1(x1) is given in this frame. The frame (O2,x2,y2) is

shifted vertically by δ and is moving horizontally rightward

at speed V . The x2-axis is oriented rightward and the y2-

axis is oriented downward. The top profile h2(x2) is given

in this frame. Assuming that the origins O1 and O2 match

at t = 0, the transformation relationships are x2 = x1 −Vt

and y2 = δ − y1. Due to the presence of vibration, a vertical

deflection ui(xi, t) must be superimposed to the static posi-

tion hi(xi) of nodes. At time t, the coordinates of a bottom

node are therefore x1 and y1 = h1(x1)+u1(x1, t) in the fixed

frame. Similarly, the coordinates of a top node are x2 and

y2 = h2(x2) + u2(x2, t) in the moving frame. The apparent

contact zone at time t is Vt ≤ x1 ≤ min(L1,Vt + L2) and

0 ≤ x2 ≤ min(L2,L1 −Vt) where L1 and L2 are the length

of the bottom and top beams, respectively. Furthermore, the

contact force per unit width (unit : N/m) is specified by a

field f1(x1, t) in the fixed frame and f2(x2, t) in the moving

frame. By the third Newton law,

f1(x1, t) = f2(x1 −Vt, t) (2)

in the apparent contact zone.

The governing equations for the transverse motion of

profiles are:

Di∆
2ui(xi, t)+ ci

∂ui

∂ t
(xi, t)+mi

∂ 2ui

∂ t2
(xi, t)

= fi(xi, t)∓mig, (3)

where i is the beam index (bottom beam i = 1, top beam

i = 2 ), Di = EiIi the bending stiffness, Ei the Young’s mod-

ulus, Ii the moment of inertia, ci a viscous damping coeffi-

cient and mi the mass per unit length. The gravity force per

unit width is −m1g for the bottom beam but +m2g for the

top beam since the moving frame is oriented downward. In

Eq. (3), f has unit N/m and is therefore a contact force per

unit width of the beams (in the direction perpendicular to the

plane (O1x1y1)). For simplicity, f will hereafter be denoted

as ”contact force”.

The boundary conditions may be either pinned-pinned

without external moments ends,

ui(0, t) = ui(Li, t) =
∂ 2ui

∂x2
i

(0, t) =
∂ 2ui

∂x2
i

(Li, t) = 0, (4)

or free-free unloaded ends,

∂ 2ui

∂x2
i

(0, t) =
∂ 2ui

∂x2
i

(Li, t) = 0

∂ 3ui

∂x3
i

(0, t) =
∂ 3ui

∂x3
i

(Li, t) = 0. (5)

The beams are assumed to be at rest at t = 0 so that the initial

conditions are,

ui(xi,0) =
∂ui

∂ t
(xi,0) = 0. (6)

A gap function g is defined in the apparent contact zone as

the vertical distance between the bottom and top profiles at

any position,

g(x1, t) = δ − h1(x1)− u1(x1, t) (7)

− h2(x1 −Vt)− u2(x1 −Vt, t). (8)

The contact is managed through Signorini’s conditions:

g(x1, t)≥ 0 ; f1(x1, t)≤ 0 ; g(x1, t). f1(x1, t) = 0. (9)

The first condition represents the impenetrability constraint

while the second condition imposes the sign of contact force

(repulsive forces). The third equation is the complementary

condition: Either the contact force is zero (non contact) or

the gap is zero (contact) but in all cases the product f .g

is zero. These conditions are also known as Kuhn-Tucker’s

conditions in the field of optimization.
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2.2 Modal decomposition

In this sub-section, the mathematical problem (3)-(9) is for-

mulated in modal coordinates in consequence of which spa-

tial coordinates will be removed. We introduce the uncou-

pled natural mode shapes ψi,k(xi):(0,Li) → R which are in-

trinsic properties of beam. They are determined by solving

the following problem [17],

{

Di∆
2ψi,k = miω

2
i,kψi,k

Boundary conditions (4) or (5).
(10)

where ωi,k is the k-th angular eigenfrequency of beam i.

For the bottom profile (simply supported beam), the an-

gular frequency and the mode shape functions are,



















ψ1,k(x1) =

√

2

L1

sin(k+ 1)
πx1

L1

ω1,k =

√

D1

m1

(

(k+ 1)π

L1

)2

with k = 0,1,2...

(11)

While for the top profile (free-free beam), there is first of

all two rigid-body modes to describe the vertical translation

and rotation of the beam,

ψ2,0 =
1√
L2

(12)

ψ2,1 =

√

3

L2

2

L2

(x− L2

2
) (13)

and,

ω2,0 = ω2,1 = 0 (14)

Other vibration modes are,



























ψ2,k(x2) =
1√
L2

[sin(αkx2)+ sinh(αkx2) +

+ βk (cos(αkx2)+ cosh(αkx2))]

ω2,k = α2
k

√

D2

m2

with k = 2,3,4...

(15)

where αk is a modal parameter whose values are [17]: α2 =

4.73/L2,α3 = 7.85/L2 and αk ≃ π [2(k− 2)+ 3]/(2L2) for

k > 3.

βk is given by:

βk =
cos(αkL2)− cosh(αkL2)

sin(αkL2)− sinh(αkL2)
(16)

Mode shapes as written above verify the orthonormality

property,

∫ Li

0
ψi,k(xi)ψi,l(xi)dxi = δ kl . (17)

where δ kl is the Kronecker delta.

By using a modal decomposition, the transverse displace-

ment can be written as:

ui(xi, t) =
∞

∑
k=0

ψi,k(xi)Ui,k(t), (18)

and similarly for the contact force,

fi(xi, t) =
∞

∑
k=0

ψi,k(xi)Fi,k(t), (19)

and the gravity force,

mig =
∞

∑
k=0

ψi,k(xi)Gi,k, (20)

whereUi,k : (0,T )→R is the modal amplitude, Fi,k : (0,T )→
R is the modal contact force, Gi,k is the modal gravity force

and T is the simulation duration. In the above three formu-

las, the modal component Ai,k is given by

Ai,k(t) =

∫ Li

0
a(xi, t)ψi,k(xi)dxi, (21)

where Ai,k is respectively Ui,k,Fi,k and Gi,k and a is respec-

tively u, f and mig.

Substituting Eqs. (18)-(20) into Eq. (3), multiplying by

an arbitrary mode ψi,l , integrating over xi and applying the

orthonormality condition (17) give,

mi

[

Üi,k + 2ζi,kωi,kU̇i,k +ω2
i,kUi,k

]

= Fi,k(t)∓Gi,k, (22)

where ζi,k = ci/(2miωi,k) is the modal damping ratio. So, the

new problem to solve has two unknowns the time functions

Ui,k(t) and Fi,k(t), whose initial conditions are:

Ui,k(0) = U̇i,k(0) = Fi,k(0) = 0 (23)

with k = 0,1,2, ... and i = 1,2. At any time, the physical

fields ui(xi, t) and fi(xi, t) are given by Eqs. (18) and (19)

and automatically verify the boundary conditions (4) or (5).

The contact condition (9) to be verified requires the calcu-

lation of g through Eq. (8). In principle, an exact solution

of Eqs. (3)-(9) is obtained when using an infinite number of

natural modes. However, it would require a very small time

step and a huge CPU time. Thus in practice, a truncation of

the series (18) and (19) is made and only the first Mi modes

are taken into account in actual computations. For the study

of roughness noise, we may restrict to modes contained in

the audio range [20Hz- 20kHz]. For example for the steel

beam used here, having dimension 45 × 0.2 cm, the number

of modes is 30 ( f30=20900 Hz).
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2.3 Time integration scheme

The second order differential equation (22) is solved by us-

ing the numerical scheme called leap-frog or central differ-

ence scheme. It is explicit, second order consistent, condi-

tionally stable and simple to implement. This scheme has

been successfully applied by Carpenter and al [12] and Meziane

and al. [27]. The time is first discretized with a constant step

τ , the time sequence being t0 = 0, t1 = τ, ..., tn = nτ . The

modal displacement Ui,k(tn) defined as the exact solution of

Eq. (22) at instant tn, is approximated by the sequence Ui,k,n

and similarly the modal velocity U̇i,k(tn) by U̇i,k,n, the modal

acceleration Üi,k(tn) by Üi,k,n and the modal force Fi,k(tn) by

Fi,k,n. In the central difference scheme these approximations

are calculated by,










U̇i,k,n =
Ui,k,n+1 −Ui,k,n−1

2τ
,

Üi,k,n =
Ui,k,n+1 − 2Ui,k,n +Ui,k,n−1

τ2
.

(24)

Introducing Eq. (24) in Eq. (22) gives the linear recurrence

rule,

Ui,k,n+1 −
2− (τωi,k)

2

1+ τζi,kωi,k
Ui,k,n −

τζi,kωi,k − 1

1+ τζi,kωi,k
Ui,k,n−1 =

=
τ2

mi

(

Fi,k,n ∓Gi,k

)

. (25)

Since the central difference scheme is a scheme of second

order, we need to initialize the variables for the first two

steps. At t0 = 0 the displacement Ui,k,0, the velocity U̇i,k,0 are

set to zero. At t1 = τ , the first order explicit Euler scheme

applies to calculate Ui,k,1.

Ui,k,1 =∓Gi,k

mi

.
τ2

2
(26)

At t2 and subsequently, Eq. (25) applies.

The leap-frog method is stable and convergent if τ <

2/ωmax where ωmax is the highest value of ωi,k (k= 0,1, ..,Mi)

[36]. This time integration scheme is explicit one and the

calculation of the modal amplitude at instant tn+1 only re-

quires the evaluation of contact forces Fi,k,n at tn. The pro-

cedure to compute Fi,k,n will be presented in the next sub-

section.

2.4 Contact algorithm

The horizontal position of nodes of profile i is denoted xi,l =
χ .l with l = 1...Ni in frame i, where Ni is the total number

of nodes on profile. The vertical static position is noted hi,l

while the deflection is ui,l,n at time tn and position xi,l . It is

obtained from Ui,k,n by the modal composition of Eq. (18),

ui,l,n =
Mi

∑
k=0

ψi,k(xi,l)Ui,k,n, (27)

where Mi is the number of modes of profile i . The contact

force per unit length at time tn and position xi,l is noted fi,l,n.

The contact condition (9) is to be applied only on the dis-

crete set of nodes [21] but not at other points between two

nodes.

2.4.1 Detection of contact

For contact detection, the fast and flexible node-to-segment

algorithm has been used [42]. The principle of the method

consists of selecting a profile, called the slave profile, and

checking if its nodes are in contact with the antagonist pro-

file, called the master profile. In order to ensure the symme-

try of the algorithm, the node-to-segment procedure is ap-

plied two times by exchanging the role of master and slave

profiles. Such a two-pass algorithm is used to detect more

efficiently the contact points. Possible artefacts of this pro-

cedure [32], related to the discontinuity of the slope of the

discretized topography, are expected to be avoided through

smoothing of the topography (see Eqs. (30) and (31)), as

done e.g. in Ref [5].

Considering a slave node of abscissa xi,l , the first step is

to identify the corresponding master segment. From here, we

use the symbol i to denote the slave profile, i′ the master one

with i, i′ = 1,2. Since we have assumed that the horizontal

position of nodes is imposed, the master segment is found by

selecting the segment which contains the vertical projection

of the slave node. The master segment has index say l′ so

that the condition

xi′,l′ ≤ xi,l ∓V.tn < xi′,l′+1, (28)

is fulfilled where the sign depends on the relevant change of

coordinates (minus for i = 1 and plus for i = 2).

Let us introduce a local dimensionless coordinate of the

vertical projection of the slave node xi,l ,

ξ =
xi,l ∓V.tn − xi′,l′

χ
. (29)

The gap defined by Eq. (8) is the vertical distance between

the slave node and the interpolated master segment (Fig. 2).

Interpolation is used to ensure that the slope of the topogra-

phy is everywhere continuous. We have chosen a Hermite

cubic smoothing procedure to interpolate the master seg-

ments so that the gap at node l on profile i becomes [23],

gi,l,n =δ − (hi,l + ui,l,n)

−
3

∑
r=0

Nr(ξ )
(

hi′,l′+r−1 + ui′,l′+r−1,n

)

, (30)

where






















N0(ξ ) =−0.5ξ + ξ 2 − 0.5ξ 3,

N1(ξ ) = 1− 2.5ξ 2+ 1.5ξ 3,

N2(ξ ) = 0.5ξ + 2ξ 2− 1.5ξ 3,

N3(ξ ) =−0.5ξ 2+ 0.5ξ 3.

(31)



6 Viet Hung DANG, Joel PERRET-LIAUDET, Julien SCHEIBERT, Alain LE BOT

The Hermite interpolation requires four nodes l′− 1, l′, l′+
1, l′ + 2 and cannot be used for the two extremities (l′ = 0

and l′ = Ni′ − 1). For these two special cases a linear inter-

polation is used,

gi,l,n = δ − (hi,l + ui,l,n)− (1− ξ )
(

hi′,l′ + ui′,l′,n
)

−ξ
(

hi′,l′+1 + ui′,l′+1,n

)

. (32)

If gi,l,n < 0 then a contact is active. To avoid any miss of

contact detection, the role slave/master of the two surfaces is

swapped and the node-to-segment procedure is applied two

times at each time step. In the next section, two methods for

computing the contact forces are presented: The penalty and

the Lagrange multiplier methods.

������ �����	�
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Fig. 2: Node-to-segment contact detection

2.4.2 Penalty method

In the penalty method, the contact forces are deduced from

an explicit relationship with penetration,

fi,l,n = κ .gi,l,n, (33)

where κ is the penalty coefficient. By applying the equilib-

rium condition for the master segment (the sum of force and

moment must be zero), the contact reactions at master nodes

are,

fi′,l′−1+r,n = Nr(ξ ) fi,l,n with r = 0,1,2,3, (34)

for 1 < l′ < Ni′ − 1, and,

fi′,l′ ,n = (1− ξ ). fi,l,n, fi′,l′+1,n = ξ . fi,l,n

for l′ = 1 or Ni′ − 1.

The contact forces are determined for all slave nodes by

Eq. (33) and master segments by Eq. (34). Since the role

of slave and master is reversed in the second step of the

contact algorithm, the contact force at any node of a profile

is the sum of the penalty force and the possible reactions.

The modal forces are obtained by a modal projection from

Eq. (21). Using the trapezoidal rule yields,

Fi,k,n =
χ

2

Ni−1

∑
l=1

(

ψi,k

(

xi,l

)

fi,l,n +ψi,k

(

xi,l+1

)

fi,l+1,n

)

. (35)

By Eq. (35), the right-hand side of Eq. (25) is well-

determined at each time step. The penalty method is simple,

fast and easy to implement (Algorithm 1). However the re-

sults depend on the penalty coefficient κ . A too low value

of κ causes large penetrations, while a too high value of κ
may induce unstable motion. Following Mohammadi [28], a

first estimate for κ is 0.5E < κ < 2.0E where E is Young’s

modulus.

Algorithm 1 Penalty algorithm

Initialize Ui,k,0 = 0, Ui,k,1 =∓Gi,k

mi
. τ2

2
.

Loop over time steps:

for n = 1 to NT do

Initialize fi,l,n

Loop for two passages algorithms:

for i = 1 to 2 do

compute displacement ui,l,n by Eq. (27)

for l = 1 to Ni do

Determine master segment l ′, local coordinate ξ by

Eqs. (28) and (29).

Compute gap gi,l,n by Eq. (30)

if gi,l,n > 0 then

fi,l,n = κ .gi,l,n

Compute fi′,l′,n of master surface by Eq. ( 34)

end if

end for

end for

Compute Fi,k,n by Eq. (35)

Compute Ui,k,n+1, U̇i,k,n, go to next time step

end for

2.4.3 Lagrange multiplier

The second method for computing contact forces is the for-

ward increment Lagrange multipliers [12, 26]. With this method,

the contact forces are calculated at instant tn to satisfy ex-

actly the non-penetration condition at time tn+1.

First of all, one must evaluate how a unit variation of

contact force at instant tn and position xi,l modifies the gap

elsewhere at the next instant tn+1. Let us fix a node l in slave

profile i. A unit contact force ∆ fi,l,n = −1 is applied at xi,l .

The reaction forces on the master profile are

∆ fi′,l′−1+r,n =−Nr(ξ ) with r = 0,1,2,3, (36)

where ξ is the local coordinate of node xi,l on the corre-

sponding master segment l′ of profile i′.
The resulting variations of modal forces are obtained

again by a modal projection. Applying Eq. (35) with ∆ fi,l,n

and ∆ fi′ ,l′−1+r,n as above,











∆Fi,k,n =−χ .ψi,k(xi,l),

∆Fi′,k,n =−χ .
3

∑
r=0

Nr(ξ ).ψi′,k(xi′,l′−1+r).
(37)
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The variation of modal amplitudes of the slave profile at time

tn+1 which results from this variation of modal forces is ob-

tained by Eq. (25).

∆Ui,k,n+1 =
τ2

mi

∆Fi,k,n, (38)

and similarly ∆Ui′,k,n+1 for the master profile.

By applying Eq. (27), the variation of deflection at any

point xi,m on the slave profile is

∆ui,m,n+1 =
Mi

∑
k=0

ψi,k (xi,m)∆Ui,k,n+1, (39)

and similarly for the master profile.

Eq. (30) gives the variation in gap at any point xi,m on

profile i caused by a unit contact force applied at xi,l ,

∆gi,m,n+1 =−∆ui,m,n+1 −
3

∑
r=0

Nr(ξ )∆ui′,m′−1+r,n+1 (40)

where m′,m′+ 1 is the master segment containing the verti-

cal projection of slave node m.

Let us introduce the influence matrix [∆ ] of size Ni ×Ni

whose component ∆m,l is the variation of gap at node xi,m on

profile i due to a unit contact force ∆ fi,l,n = −1 applied at

xi,l on slave profile i. We have

∆m,l = ∆gi,m,n+1. (41)

Then the computational procedure is the following. The con-

tact force fi,l,n is initialized to f 0
i,l,n which may be either 0 or

fi,l,n−1. Then the gap g0
i,l,n+1 is predicted by Eqs. (25),(27)

and (30). Detection of penetration at instant tn+1 is then re-

alized. We denote Nc the number of predicted penetration

nodes. In practice, this number is much smaller than the

number of nodes Nc << Ni [18]. Let us denote {q} the vec-

tor containing the indices of penetrating nodes in increasing

order qα < qα+1 and {e} the Nc penetration values. If qα = l

then eα = g0
i,l,n+1. The effective influence matrix [∆ ′] of di-

mension Nc ×Nc is extracted from the influence matrix [∆ ],

∆ ′
α ,β = ∆qα ,qβ

. (42)

Now, we introduce the vector of Lagrange multipliers

{λ} which is the variation of contact force to apply at pene-

trating node λα =∆ fi,qα ,n. In order to cancel the penetration,

we solve the following linear system equation,

−{e}= [∆ ′].{λ}. (43)

The obtained solution λ is used to correct the calculation of

contact force:

fi,qα ,n = f 0
i,qα ,n +λα . (44)

However, it is not ensured that all these contact forces

are non-positive. Furthermore, we have imposed the gap to

be zero only in the formerly detected contact zone. But it

may happen that new penetrating nodes appear with fi,qα ,n.

So, all the above steps are implemented in an iterative algo-

rithm (see Algorithm 2). The contact force f 0
i,l,n is updated

with the last value fi,l,n. At each step, the iterative process

stops when the gap is non-negative everywhere and the con-

tact forces are all non-positive. In practice, the number of

penetrated nodes is relatively small compared with the total

number of nodes and the distance between contact asperities

is quite large. In these conditions, only one iteration of the

algorithm is sufficient to provide accurate results.

The main advantage of the Lagrange multipliers method

is that the contact condition is satisfied exactly, without re-

quiring the use of any empirical parameter contrary to the

penalty method. However, it introduces a set of unknown

variables and extra equations associated with the Lagrange

multipliers. As a result, the computational procedure is more

complex and takes more CPU time.

Algorithm 2 Lagrange multiplier algorithm

Initialize Ui,k,0 = 0, U̇i,k,0 = 0, Ui,k,1 =∓Gi,k

mi
. τ2

2
.

Loop over time steps:

for n = 1 to NT do

Suppose f 0
i,l,n = 0, predict U0

i,k,n+1, u0
i,l,n by Eqs. (25) and (27).

Loop for two passages algorithms:

for i = 1 to 2 do

Compute influence matrix [G] by Eqs. (37)-(40)

Gauss-Seidel iterations :

for j = 0, 1, 2, . . . ,till convergence do

for l = 1 to Ni do

Determine master segment l ′, local coordinate ξ by

Eqs. (28), (29).

Compute gap g
j
i,l,n+1 by Eq. (30)

Initialize number of penetration node Nc = 0;

if g
j

i,l,n+1 > 0 then

Nc = Nc +1, eNc
= g

j
i,l,n+1, qNc

= l, q′Nc
= l ′

end if

end for

Compute effective influence matrix Eα,β = Gqα ,qβ

Solve linear equations: [E].{λ}= {e}
Correct contact force

for α = 1 to Nc do

if f
j

qα +λα < 0 then

f
j+1

qα = f
j

qα +λα

Compute reaction forces of master surface by

Eq. (34)

end if

end for

Correct gap {g
j+1
i,n+1}= [G].{ f

j+1
i,n }

if non-penetration condition of {g
j+1
i,n+1} is tolerable then

Leave Gauss-Seidel iteration

else

Go to next Gauss-Seidel iteration.

end if

end for

end for

Corrector Ui,k,n+1, compute U̇i,k,n, go to next time step

end for
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3 Validation tests

The algorithms presented above have been implemented in

the program RA2D written in C language. Two numerical

tests are presented in this section in order to validate the

accuracy of the proposed approach. In the first test, we com-

pare RA2D with an analytical solution of the problem of a

mass moving on a flexible horizontal beam. This problem

is common in civil engineering applications when structures

such as bridges, rails or roadways are subjected to vehicles

load. The model consists of a moving mass with a constant

horizontal velocity on an Euler-Bernoulli beam (see Fig. 3).

The moving mass is a rigid solid of mass M=0.36 kg. The

beam has length L=11 m, Young’s modulus E =1.7e8 N/m2,

density ρ=3100 kg/m3, cross sectional area A =0.005 m2

and inertia I =2.6e-5 m4. The number of modes of the beams

taken into account is 20. The moving mass is modelled with

the sole two rigid modes (vertical translation and rotation,

the horizontal position being imposed), the action of gravity

and the contact force. The input and simulation parameters

are given in Tables 1 and 2, respectively.

Table 1: Input parameters of the moving mass problem

Mass L E ρ A I

(kg) (m) (N/m2) (kg/m3) (m2) (m4)
0.36 11.6 1.7e8 3100 0.005 2.6e-5

�����

�������	A 	B �C� D�EEF� �	�A�

Fig. 3: Moving mass problem

Table 2: Simulation parameters of the moving mass problem

Number of Space step Time step Duration T1

beam modes (m) (s) (s) (s)
20 1e-2 5e-6 10 5.11

This problem was analytically solved by Olsson [30]

who found a closed-form solution to the governing equation

as follows:

u(x, t) =
2PL3

π4EI

[

1

2α4
sin

(απx

L

)

(

sin
(απt

τ

)

− απt

τ
cos

(απt

τ

))]

+

+
2PL3

π4EI

∞

∑
n=1,n 6=α

[

1

n2 (n2 −α2)
sin

(nπx

L

)

(

sin
(nπt

τ

)

− α

n
sin

(

n2πt

ατ

))]

. (45)

where P is the weight of the moving mass, L the beam length,

EI the bending stiffness, τ = L/V the traversing time of the

moving mass, α a dimensionless parameter characterizing

the velocity of the moving mass defined by α = T1/(2τ),

where T1 = 2L2/π
√

ρA/(EI) is the period of the first eigen-

mode of the beam.

Table 3: Moving speed of the mass

V (m/s) 0.57 1.15 2.3 4.6

α 0.125 0.25 0.5 1.0

In Fig. 4 is shown the time evolution of the beam deflec-

tion at its middle point for four values of α (see Table 3)

obtained by the analytical solution [30] and by the numer-

ical simulation with RA2D/Lagrange. A perfect agreement

between the results is observed. We observe at most 4 peri-

ods of vibration which validates a posteriori the choice of 20

modes to get satisfactory results. The study concerning the

influence of number of modes on results will be done in the

next section.
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Fig. 4: Comparison of the deflection at the middle point of the beam

obtained either with RA2D or with Olsson’s formula, for four values

of the sliding speed (α=.125, 0.25, 0.5, 1.0).

There is contact between mass and beam during the whole

simulation and the numerical contact force is at all times
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very close to the weight of the moving mass as shown in

Fig. 5. The fluctuations of the contact force can be reduced

by using a finer space and time discretization steps and a

higher number of modes. This first test validates the dynam-

ical part of our code.
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Fig. 5: Contact force obtained by RA2D with V = 0.57 m/s

(α = 0.125).

The second test concerns the contact part of the code. It

is a toy model formed by two simple rough surfaces rubbed

together. It is used to compare the program RA2D with the

finite element software ABAQUS Explicit. The two beams

have same dimensions, material properties and both have

pinned ends. The top profile consists of only one asperity

whereas the bottom profile consists of six asperities as illus-

trated in Fig. 6. The height of the asperities is of the order of

1 µm. A mesh with 2874 nodes and 850 CPE6 (6-node trian-

gular plane strain) elements is used in the ABAQUS model.

The space step χ is 80 µm, the time step τ = 0.02 µs. The

input and simulation parameters are given in Tables 4 and 5,

respectively.

Table 4: Input parameters of the simple asperity problem

L H E ρ Damping

(m) (m) (N/m2) (kg/m3)
0.01 5e-4 5e10 2000 0%

In Fig. 7 is shown the comparison of displacement and

contact force at the summit of the unique asperity of the

top profile. The results obtained by ABAQUS Explicit with

the penalty method with a penalty coefficient κ = 10E are

shown in Fig. 7a. They are taken as the reference. The mul-

tiplier Lagrange method with 15 modes shows a good agree-

ment in the displacement evolution (Fig. 7b). The results

are equally good using the penalty method κ = 10E and 15

����

�����

������

Fig. 6: Mesh in ABAQUS of the contact problem between a single

asperity surface (top) and a six asperities surface (bottom). Note that

two different scales are used for horizontal and vertical axis.

modes as shown in Fig. 7c. Fig. 7d shows the poor results

obtained by RA2D/penalty with a too low penalty coeffi-

cient (κ = 0.1E). The contact force is too low, the shock du-

ration is too large. Figure 7e highlights the insufficiency of a

calculation with a low number of modes (Mi=1). The force is

overestimated and all high frequency details of vibration are

filtered out. In order to quantify the quality of the results,

the relative error of the displacement at the summit of the

asperity on the top profile between both programs RA2D

and ABAQUS is calculated. The relative error is given by

the RMS-value (time average) of the difference of displace-

ments divided by the RMS-value of the displacement ob-

tained by ABAQUS. The displacement from 0 to 0.4 s is

used for the calculation of the relative error. In Fig. 8, the

evolution of the relative error as a function of the number of

modes is plotted. It is quite large for the first 10 modes while

increasing the number of modes reduces it. When more than

15 modes are used, the error becomes stable and around 6%.

This residual error comes from a slight time shift between

the ABAQUS and RA2D results which can be explained by

(i) the fact that the contact problem is highly non-linear and

as such, is very sensitive to initial conditions, numerical er-

rors (round-off error, local truncation error) and (ii) the in-

sufficiency of Euler-Bernoulli theory. The ratio L/H is 20

which appears to be sufficiently high for Euler-Bernoulli’s

theory to be applied. However, the wavelength for the high-

est natural frequency used, f15, is estimated to be 1 mm. The

ratio wavelength to thickness is only 2 which may explain

discrepancies between elasto-dynamic and Euler-Bernoulli

predictions.

In terms of CPU time, it takes 280 s with ABAQUS

but only 30 s with RA2D/Penalty on the same computer.

RA2D/Penalty is thus around ten times faster.

4 Realistic problem

A realistic sliding contact problem between two solids with

rough surfaces is outlined in this section. The system is made

of two solids, a parallelepipedic solid moving on a simply

supported Euler beam 9. The slider (top solid) is moving in

the x-direction at constant speed V in the range 0.02 ≤ V ≤
0.7 m/s. The resonator (bottom solid) has length 450 mm

and thickness 2 mm while the slider has length 20 mm and
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Table 5: Simulation parameters of the simple asperity problem

V Number of χ τ Duration δ f1 f15

(m/s) modes (m) (s) (s) (m) (Hz) (Hz)
1 15 8e-5 1e-8 1e-3 1.45e-6 1.13e4 2.55e6
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Fig. 7: Comparison of displacement (left) and contact force (right) at the summit of the unique asperity of the top surface, for ABAQUS (a) or

Ra2D (b to e) with different simulation parameters

thickness 5 mm. Both solids are made of steel with Young’s

modulus E = 210 GPa, Poisson’s ratio ν = 0.3, mass den-

sity ρ = 7800 kg/m3 and modal damping ratio ζ = 0.02 for

all modes.

The numerical simulations are performed with the fol-

lowing parameters: time step τ = 0.1 µs, duration of simu-

lation T = 1 s. All the input parameters are given in Tables 6

and 7. The rough surfaces are numerically generated by us-

ing the Garcia and Stoll’s method [16] and Bergstrom’s pro-
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Table 6: Input parameters of the realistic problem

Material Resonator Slider

E ρ ζ H L H L Speed

(Pa) (kg/m3) (m) (m) (m) (m) (m/s)

210E9 7800 2% 0.002 0.45 0.005 0.02 0.02−0.7

Table 7: Simulation parameters of the realistic problem

χ τ Duration Number of T1 T40 CPU time

(m) (s) (s) mode (s) (s) (s)

5e-6 1e-7 5 40 0.034 2.12e-5 9920
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Fig. 8: Evolution of the relative error of the displacement at the

summit of the top asperity between ABAQUS and RA2D as a

function of the number of modes. The displacement from 0 to 0.4 s is

used for the calculation of the relative error (see the inset).
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Fig. 9: Realistic model

gram [8] leading to surfaces having a roughness Ra from 3 to

30 µm. The space step is χ = 5 µm. These surfaces are char-

acterized by their standard statistical parameter Ra,Rq,Rsk

and Rku for respectively arithmetic roughness, quadratic rough-

ness, Skewness and Kurtosis (Table 8). In addition, the auto-

correlation function (ACF) describes the manner in which

the height varies along the surface. The correlation length

lc is defined by the value where the ACF reduces to 0.37

times its value at origin. Fig. 10 shows an example of slider

surface with roughness Ra=5 µm. The results presented in

this section are obtained using the penalty algorithm with
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Fig. 10: Numerical rough surface Ra5 (only 2 mm are shown) and its

height distribution. The curve is a Gaussian fit, vertical dashed lines

indicate ± one standard deviation.

a penalty coefficient κ=2.1e12 Pa. In general, to determine

the appropriate penalty coefficient, we realize a short dura-

tion simulation (T = 0.001 s) by two algorithms: Lagrange

multipliers algorithm and penalty algorithm. The results ob-

tained by the two algorithms are then compared. If the dif-

ference of the comparison is too large (>10%), the penalty

coefficient is modified.

By recording the dynamical response during the pro-

cess with a specified sampling frequency, one can access the

statistics of the contact events at all nodes of the surfaces.

The shock between one node with the antagonist surface is

determined mathematically from the time evolution of the

contact force of this node as shown in Fig. 11. When the

contact force is non-zero, the shock occurs.

A shock may be caracterized by three properties: the

shock duration ∆ t, the maximal absolute value of contact
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Table 8: Numerical rough surface

Profile Ra Rq Rsk Rku lc
(µm) (µm) (µm) (µm) (µm)

Ra3 2.89 3.57 -0.04 3.07 400

Ra5 4.86 6.02 -0.12 3.33 450

Ra8 7.72 9.65 0.05 3.10 450

Ra10 9.54 11.88 0.08 3.15 500

Ra20 20.39 25.80 -0.01 3.33 500

Ra30 30.91 38.61 -0.11 3.06 500

������ ����� ������
���

���

���

���

���

��

�

�

	ABCDEF�

�
�
�
��
��
D�
�
��
CD
�
�D
F�
�
��
DE
�
�

�����D�����A��

�� AB�!

�������

����C

Fig. 11: Evolution of contact force versus time at point x=0.012 m on

the top surface (Ra=5 µm, V =0.1 m/s). From this evolution, the

maximal absolute value of contact force and shock duration ∆t are

determined

force and the transferred energy ∆W . This energy is given

by the formula

∆W = ∑
n∈shock

χ fi,l,nu̇i,l,n.τ. (46)

where fi,l,n and u̇i,l,n are respectively the contact force and

vibrational velocity at node xi,l of profile i where the shock

occurs. The sum runs over all time steps of the shock.

In Fig. 12 are presented typical histograms and the cu-

mulative distribution functions (CDF) of ∆ t, the maximal

force and ∆W , on the example of V=70 cm/s and Ra=5

µm. Taking the weight of the slider as the reference value

(M=0.78 N), almost 30% of the maximal absolute value of

contact force is smaller than M, 57% is smaller than 10 M

and 100% is smaller than 100 M. More than 90% of the

shock durations are shorter than 1e-4 s (Fig. 12b), which is

very short compared to the period of the first eigenmode of

the resonator (T1=0.034 s). The histogram and the CDF of

∆W are presented in Fig. 12c. It is observed that ∆W can

be either positive or negative. This means that the contact

plays a double role. When ∆W > 0, shocks are injecting

vibrational energy into the resonator, and thus act as noise

sources. They transform the kinetic energy of the slider into

vibrational energy. Conversely when ∆W < 0, energy is trans-

ferred from the resonator to the slider. For the resonator, it

is a dissipation. However, the sum of energies being trans-

ferred to the resonator through all shocks remains positive.

In order to analyze the dynamical response of the res-

onator to the asperity shocks, we focus on the vibration ve-

locity of discretized nodes of surfaces. An example of the

time evolution of vibrational velocity and its power spectral

density (PSD) at node x = 0.165 m on the resonator is illus-

trated in Fig. 13 for the case V = 0.1 m/s and Ra=5 µm. The

dotted lines present the eigenfrequencies of the resonator.
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Fig. 12: CDF (top) and histogram (bottom) of shock properties (Ra= 5 µm, V =70 cm/s). (a) Maximal contact force of shock, (b) Shock duration,

(c) Transferred energy through the shock.
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The peaks in the PSD are found close to the natural frequen-

cies of the resonator which means that the shocks essentially

act as a source of excitation of the resonator, over a wide

spectrum of frequencies. The fact that the frequencies are

unchanged also means that the coupling between the two

profiles is weak.
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Fig. 13: Time evolution of vibrational velocity and its power spectral

density (PSD) at point x=0.165m on the resonator for Ra=5µm and

V=0.1m/s. The dotted lines present the natural frequencies of the

resonator ( f4, f7, f12, f15 and f18).

The vibration level Lv of the resonator is calculated us-

ing the following formula:

Lv = 20log10

(

vrms

vre f

)

. (47)

where vre f is a reference value vre f =1e-9 m/s [29] and vrms

is the root mean square value of vibration velocity (average

over both space and time) by

v2
rms =

1

T

1

Li

∫ T

0

∫ Li

0
u̇2

i (xi, t).dxi.dt (48)
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Fig. 14: Evolution of vibration level Lv versus sliding speed V for

various surface roughness
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Fig. 15: Evolution of vibration level Lv versus surface roughness Ra

for various velocity V

The evolution of Lv versus the sliding speed and the

surface roughness are plotted in log-log scale in Figs. 14

and 15 respectively. The roughness noise depends simulta-

neously on V and Ra in agreement with experiments and

with Eq. (1). The exponents in this equation are determined

from the figures. They are respectively 0.63 6 m 6 0.67

and 0.52 6 n 6 0.63. These values are slightly smaller than
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the values found experimentally by Ben Abdelounis m =

0.8− 1.16 and n = 0.7− 0.96 [6].

The viscous parameter is an important factor which af-

fects strongly the vibration level. It is well-known in en-

gineering that increasing dissipation (by adding a damping

layer for instance) reduces sound level. Since dissipation is

directly involved in the energy balance, a multiplication by

10 of the modal damping ratio results in a decrease by 10

dB of the vibrational level (see Fig. 16, on the example of

Ra=10 µm and V=0.1 m/s, for our realistic problem).
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Fig. 16: Evolution of vibration level Lv versus damping ratio ζ .

(Ra=10 µm, V = 0.1 m/s.)

Eventually, the CPU time is 9930 s (2.8 hours) per sim-

ulation. There are 6 rough profiles from Ra3 to Ra30 and

7 sliding speed from 0.02 m/s to 0.7 m/s which are used to

calculate the evolution of the vibration level. Thus, the total

CPU time for the realistic problem is around 116 hours.

5 Conclusion

In this paper, we have focused on the vibration induced by

the contact dynamics of rough surfaces. The motion of the

system is governed by a partial differential equation in which

two profiles are locally coupled by a contact force at some

of the highest asperities. Solving this problem by an analyt-

ical approach would be difficult due to the randomness of

surface and the non-linearity of the contact.

A direct numerical simulation for the sliding contact be-

tween rough surfaces has been presented. The modal decom-

position of the transverse vibration transforms the govern-

ing equation into a system of ordinary differential equation

which is numerically solved by a central difference scheme.

The contact is detected by the node-to-segment algorithm,

and the contact forces are calculated by using either the penalty

or Lagrange multipliers algorithm. This numerical approach

was implemented in the software program RA2D.

Two validation examples show the accuracy and the ra-

pidity of the program RA2D. The first example is a compar-

ison with the analytical solution of a moving mass problem

for which a perfect agreement is observed. The second ex-

ample is a comparison with the finite element method in a

toy model consisting in a simple asperity problem. This val-

idates the contact part of RA2D and highlights the influence

of the main parameters such as the number of modes and the

penalty coefficient.

The direct numerical simulation of a realistic problem

have been presented at two length scales. First, the asperity-

scale shocks can be determined from the time evolution of

contact forces. It allows the characterisation of the probabil-

ity distributions of the properties of shocks (duration, force,

transferred energy). Second, the macroscale vibration level

Lv of the resonator can be obtained as the space and time

average of the vibrational velocity of nodes in the simula-

tion. The vibration level is found to be a linearly increas-

ing function of the logarithm of both the surface roughness

and sliding speed, in good agreement with experimental re-

sults from the literature. Our method can thus predict the

evolution of the vibration level at macro scale by assessing

the characteristics of shock between asperities at the micro

scale. Furthermore, we can easily modify the input param-

eters in order to extend the results to other materials or di-

mension of solids. This numerical approach could be used

for more complex systems such as wheel/rail or tyre/road.

A significant advantage of our method is its potential for

drastic CPU time reduction. For instance, solving a realis-

tic problem with a space step of 5 µm and a time step of

0.01 µs takes only a few hours of CPU time for a 2D sim-

ulation. This is to be compared with several days of CPU

time using the finite element method. This is directly due

to the modal truncation that we used. The number of kept

modes is to be chosen according to the application consid-

ered. Here we have limited the simulation to the audio range

because we focused on the friction noise. However, if small

scale phenomena are investigated, higher frequency modes

will be required in order to account for the local deformation

of asperities. This will subsequently require a smaller time

step to ensure stability of the numerical results, and thus a

much longer CPU time. As a conclusion, we expect that, as

far as friction noise is concerned, extending our method to

3D will make realistic 3D simulations possible with a rea-

sonable (few days) CPU time.
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