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A switched LQ regulator design in continuous time

Pierre Riedinger1

Abstract

In this paper, the design of a LQ regulator for linear switched systems in continuous time is

investigated. From a relaxation of the optimal control problem, a Lyapunov based switching law is

provided. Even if the subsystems are all unstable, the state feedback switching law can be applied

subject to a positiveness condition. In any cases, the real cost is always upper bounded by the

Lyapunov function value. The optimality of the switching law is also discussed and we prove that

the switching conditions are optimal in some generic cases. This point explains why the obtained

results over examples approach finely the optimal solutions. Finally, a design strategy is also given

that extends the results to the cases where the subsystems are controlled linear systems.

I. Introduction

In the last decade, many contributions have addressed the design of stabilizing switching

laws for switched systems both in continuous and discrete time (see for examples [1], [2],

[3], [4] for dynamic programming approaches, [5], [6], [7] for variational approaches, and

[8], [9], [10] for Lyapunov based approaches). This problem cannot be considered trivial even

numerically [11], [7] and the goal to design closed loop control, based on the optimization

of a criteria, is a challenging task.

LQ regulators play a central role in the control theory of linear systems due to their

simple design to meet performance requirements and their robustness properties. Up to

now, the exact solution of a switched LQ problem is not available. Only approximations

of the state feedback switching law have been proposed in the literature using the dynamic

programming [1], [2], [3], [4]. The practical obstacle to the application of these methods relies

on the difficulties to compute numerically a good approximation of the solution not only for

small dimensional problems. Alternatively, open loop control can be achieved using direct
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or indirect optimization methods [7], [6] but singular solutions [15], [5] entail numerical

difficulties [11].

In [10], Lyapunov based approaches are developed for a mode independent quadratic cost

and the authors show that the design conditions are not convex and the problem cannot be

solved by Linear Matrix Inequality (LMI) tools. A switched quadratic Lyapunov approach is

also proposed in [8], based on Lyapunov-Metzler inequalities. If some LMI conditions can

be guaranteed, the method allows to define a state feedback switching law and can be applied

even when subsystems are unstable. An upper bound on the cost is also provided but the

optimality of the proposed stabilizing switched law is not evaluated.

In this paper, a variational approach has been used to analyze the optimal necessary

conditions occurring in the switched LQ problem. A first result yields the right expression

of the optimal cost with respect to the state and the co-state. From this analysis, a control

Lyapunov function as well as a state feedback switching law is determined.

An important point which is discussed, is that the obtained switching conditions are actually

optimal in some generic cases when the optimal control is constant. This explains why the

state feedback switching law leads to some appealing results close to the optimal. In any

case, the value of Lyapunov function defines an upper bound on the real cost and gives a

guarantee on performances.

These results are established in a relaxed framework for which the singular arcs [15], [5]

that appear in the optimal solution, are properly taken into account. This is a key point since

for this class of systems, the optimal solutions are frequently singular as indicating by the

big quantity of randomly tested examples.

The paper is organized as follows. Section II is dedicated to the problem formulation

and to the necessary conditions that must be fulfilled to solve the optimal control problem.

A preliminary result establishes the right expression of the optimal cost when the optimal

switching law is said regular. In Section III, the main result of this paper is given. A control

Lyapunov function and an ad hoc switching law are determined. In Section IV, we discuss

the optimality of the proposed switching law. In Section V. several examples illustrate that

the proposed switching law is effectively optimal. We propose also a design strategy in the

case where the subsystems are, eventually all non stabilizable, controlled linear systems.
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II. Problem Formulation and preliminary results

We consider the class of linear switched systems in continuous time:

ẋ(t) = Aσ(t)x(t) x(0) = x0 (1)

where σ : [0,+∞) → S = {1, · · · , s} denotes the switching law that selects the active mode

at time t by choosing among a finite collection of matrices Ai ∈ R
n×n, i ∈ S . Our aim is

to design a state feedback switching law (i.e. x 7→ σ(x)) for system (1) that approaches the

optimal solution of the following optimization problem:

Problem 1: Minimize the switched quadratic criterion:

min
σ(·)

1

2

∫ ∞

0

xT (t)Qσ(t)x(t)dt (2)

where Qi = QT
i > 0, i ∈ S subject to ẋ(t) = Aσ(t)x(t), x(0) = x0.

A usual framework [11], [5] to solve optimal control problem for switched systems (ẋ =

fi(x), i ∈ S ) is to solve its relaxed version, replacing the vector field set ( fi(x)) by its convex

hull (ẋ = co{ fi(x)}). At least, three reasons justify the convexification of the problem: (i) the

solutions are well defined (Fillipov; [13]); (ii) the density of the switched system trajectories

into the trajectories of its relaxed version [14]; (iii) the existence of singular optimal solutions

are taking into account [15], [5].

The relaxed version of Problem 1 is then given as a pure continuous time optimal control

problem consisting of replacing the matrices Qi and Ai respectively by their convex com-

bination i.e. Q(λ(t)) =
∑s

i=1 λi(t)Qi and A(λ(t)) =
∑s

i=1 λi(t)Ai where λ(t) ∈ Λ = {λ ∈ Rs :
∑s

i=1 λi = 1, λi ≥ 0} plays the role of the control variable.

To apply Pontryagin Maximum Principle (PMP) for Problem 1 or its relaxed version, the

Hamiltonian function is defined as follow:

H(x, λ, p) =

s
∑

i=1

λiHi(x, p) (3)

with Hi(x, p) = pT Aix+
1
2
xT Qix and where p defines the co-state. This leads to the following

classical necessary conditions for optimality[16]:

Theorem 1: Suppose that λ∗ is optimal with the corresponding state x∗. Then, there exists

an absolutely continuous function p∗, named co-state, such that:

1) p∗ . 0,

2) ṗ∗ =
∑s

i=1 λ
∗
i (t)(−AT

i p∗ − Qix
∗) for almost all t ∈ R+,
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3) λ∗(t) = arg minλ∈ΛH(x∗(t), λ, p∗(t)),

4) H(x∗(t), λ∗(t), p∗(t)) = 0.

From Item 3 and equation (3), it is clear that if there exists i ∈ S at time t such that

Hi(x∗(t), p∗(t)) < H j(x∗(t), p∗(t)), ∀ j ∈ S \ {i}, then the optimal control has to satisfy λ∗i (t) = 1

and λ∗j(t) = 0, ∀ j ∈ S \ {i}.

A switching instant can occur at time t if there exists at least a pair (i, j) ∈ S 2 such

that Hi = H j = 0. At this time, the value of λ cannot be determined directly. Actually, if

we suppose that 0 = Hi = H j < Hk, ∀k ∈ S \ {i, j} then the values that satisfy the relation,

λi+λ j = 1, are potential candidate for optimality. Moreover, a so called singular control λ can

exist, for which 0 = Hi = H j < Hk, ∀k ∈ S \ {i, j} on a non empty time interval (a, b). This is

a well known situation in the literature [17], [18], [12] and second order necessary conditions

given by the Generalized Legendre-Clebsh Condition [19], [20] are generally necessary to

solve the optimal control problem.

Definition 1: A singular control λ(.) is such that there exist at least two indices i, j, for

which Hi = H j = 0 on a non zero measure time interval (a, b) and satisfying λ(t) ∈ Λ,

λk(t) , 1 ∀k ∈ S , ∀t ∈ (a, b). The corresponding part of the trajectory is named a singular

arc.

Remark 1: A singular control defines a Fillipov solution [21] for the original switched

system (1). Hence, it allows to extend properly the notion of optimal solution for switched

systems. Roughly speaking when an optimal solution of the relaxed problem possesses

singular arcs, these arcs define sliding surfaces for the switched system (1) which lead to

chattering if the surface is attractive. It is noteworthy that only suboptimal solutions can be

achieved for the switched systems due to the limited switching frequency; see for example

[5].

Theorem 2: If p∗(0) is an optimal value for the co-state at a given x0, then ηp∗(0) is

an optimal value for the initial state ηx0, for all η ∈ R. Moreover, the optimal cost V∗ is

homogenous of degree 2 : V∗(ηx0) = η2V∗(x0).

Proof: First, observe by linearity that applying the same control λ from two initial

positions x0 and ηx0 that the resulting trajectories are homogeneous of degree one i.e.

x(t, ηx0) = ηx(t, x0). It follows that the associated cost V(x0, λ) := 1
2

∫ ∞

0
xT (t)Qλ(t)x(t)dt

are also given by : V(ηx0, λ(.)) = η
2V(x0, λ(.)). In particular, it is obvious that if λ∗ is an

optimal control for initial state x0, then it is also an optimal one for the initial position

ηx0 (easy to show by contradiction). It remains to show that if p∗(0) is an optimal value
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for the co-state for a given initial position x0 then ηp∗(0) is for ηx0. This is achieved if

the two corresponding control laws are the same. Due to the homogeneity of (x, p), the

switching condition λ∗(t) = arg minλ∈ΛH(x∗(t), λ, p∗(t)) is not modified when we integrate

the Hamiltonian system from (x0, p(0)) or from (ηx0, ηp(0)).

Remark 2: If the value function V∗ is homogeneous with degree two then its gradient is

also homogeneous with degree one (at points where it can be defined).

Theorem 3: Assuming that Problem 1 admits a solution for each x0, then the value function

V∗(x0) is continuous.

Proof: It can be achieved using the fact that for given control λ ∈ Λ and a given R > 0,

A(λ)x is clearly Lipschitz on any ball B(0,R) as well as xT Q(λ)x. Then, an adapted proof

and inspired by [chap. 8 pp. 188-189, [22]] can be applied to get the result.

Remark 3: Unfortunately, we fail to prove that V∗ is also Lipschitz and then differentiable

almost everywhere (which is the case for the optimal control problem states in finite time).

Now, consider the set of Lyapunov equations corresponding to each subsystem (Ai), i ∈ S

for which a symmetric solution Pi exists and is unique:

AT
i Pi + PiAi + Qi = 0. (4)

Let us define the variables pi from the co-state p as:

p = pi + Pix,∀i ∈ S , (5)

then, the Hamiltonian function H can be simplified to H =
∑s

i=1 λiHi with Hi = pT
i Aix.

It is straightforward to verify that when subsystem i is active on a time interval (a, b) i.e.

∀t ∈ (a, b), λi(t) = 1 and λ j(t) = 0, ∀ j ∈ S \ {i}, the dynamic of pi is given by:

ṗi = −AT
i pi, (6)

while the evolutions of the others p j for all j ∈ S \ {i} follow from (5):

p j = pi + (Pi − P j)x. (7)

Item 4 in above Theorem 1 yields:

Hi = pT
i Aix ≡ 0, on (a, b) (8)

October 17, 2013 DRAFT
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and a switch can only occur from subsystem (Ai) to subsystem (A j) at time t = b, if

Hi = H j ⇔ pT
i Aix = pT

j A jx = 0, (9)

and before this switch, the following conditions are fulfilled:

H j = pT
j A jx > 0, for all j ∈ S \ {i}. (10)

Theorem 4: Assume there exists a non singular stabilizing control law λ and a co-state

p such that Theorem 1 is satisfied. Denote by {t0, t1, t2, · · · } with t0 = 0, the associated

switching time sequence (possibly infinite) and by {i0, i1, i2, · · · } the corresponding mode

sequence. Then, the cost function is determined by:

V(x0, λ) =
1

2
(xT

0 Pi0 x0 + pi0(0)T x0 − L). (11)

where L = limk→N xT
k

pik(tk) with xk := x(tk) and N ∈ N
⋃

{+∞} the number of switchings. If

the trajectory is optimal, L = 0 and the co-state pi0(t) for t0 ≤ t ≤ t1 can be identified with:

pi0(t) =

N
∑

k=1

ΠT (t, tk)(Pik − Pik−1
)xk. (12)

where Π(t, tk) is the transition function from time t to tk.

Proof: As it is assumed that the switching sequence is non singular, the cost function

can be written:

V(x0, λ) =
1

2

∫ t1

0

xT Qi0 xdt +
1

2

∫ t2

t1

xT Qi1 xdt + · · ·

Using (4) and integrating, we get:

V(x0, λ) =
1

2
xT

0 Pi0 x0 +
1

2

N
∑

k=1

xT
k (Pik − Pik−1

)xk (13)

where xk := x(tk) is the state at switching times tk, k = {0, ...,N}.
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Define G :=
∑N

k=1 xT
k
(Pik − Pik−1

)xk. Using (7), G can be written as:

G =

N
∑

k=1

xT
k (pik−1

− pik)(tk)

= xT
1 pi0(t1) − xT

1 pi1(t1) + xT
2 pi1(t2) + · · ·

− xT
N−1 piN−1

(tN−1) + xT
N piN−1

(tN ) − xT
N piN (tN )

= xT
1 pi0(t1) − xT

N piN (tN )

The last equality is due to the fact that the product xT (t)pik(t) is constant on time interval

(tk, tk+1) which implies that all the differences disappear. Denoting L by L = xT
N

piN (tN )

establishes the cost expression (11).

Now, we assume that the switching sequence is optimal. If N is finite then it means a last

mode is used. Consequently, as for a classical LQ problem, the co-state after the last switch

equals to p = PN x and it follows that piN = 0 and L = 0.

If N is infinite, the term G defines a telescoping series which is convergent if and only

if xT
N piN (tN) converges to a limit L. The value of the series is then xT

1
pi0(t1) − L. As the

control problem is homogenous (By homogenous, we means that if p0 is the optimal co-state

value corresponding to an initial condition x0 then αp0 is for αx0), the only possible value

for L is zero when the extremal is optimal. Else it implies that p goes to infinity when

x is steered to the origin which contradicts the homogeneity of the problem. This can be

also viewed as follows: Considering the optimal control problem in finite time t f , then the

necessary condition p(t f ) = 0 implies from (5) that pi(t f ) = −Pi(t f )x(t f ). Then, taking the limit

limt f→+∞ pi(t f ) = limt f→+∞ −Pi(t f )x(t f ) = 0 since limt f→+∞ x(t f ) = 0 and i(t f ) ∈ S is finite.

Using one more time the fact that the product xT (t)pi0(t) is constant between (t0, t1), it can

be concluded that the value function equals to:

V∗(x0) =
1

2
(xT

0 Pi0 x0 + pi0(t0)T x0). (14)

Moreover, denote by Π(a, b) the transition function from time t = a to time t = b, then

the cost function can be explicitly defined in terms of x0 and of the switching time sequence

T = (t0, t1, t2, ...) by:

V(x0,T ) =
1

2
(xT

0 Pi0 x0 + xT
0 (

N
∑

k=1

ΠT (t0, tk)(Pik − Pik−1
)Π(t0, tk))x0), (15)

and pi0(t) in (11) could be identified as in (12).
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Remark 4: Equation (11) shows that the cost function not only depends on x0 as in the

standard LTI LQ Problem. Unfortunately, as we can see in equation (15), to obtain the value

of the cost, the switching states xk (or the switching instants tk) must be available.

Theorem 5: The variable pik defined by (5) in the time interval (tk, tk + 1) is given by

pik(t) = P̃ik(t)x(t) where the time variant symmetric matrix P̃ik(·) follows the differential

Lyapunov equation:

− ˙̃Pik(t) = AT
ik

P̃ik(t) + P̃ik(t)Aik (16)

P̃ik(tk+1) = P̃ik+1
(tk+1) + Pik+1

− Pik . (17)

Proof: The proof is obvious in view of equation (15) and from the fact that for tk ≤ t ≤

tk+1, P̃ik(t) = e
AT

ik
(tk+1−t)

P̃ik(tk+1)eAik
(tk+1−t).

In view of these preliminary results, it appears that the state space is partitioned following

the mode i ∈ S which is used. Along an optimal trajectory, when mode ik ∈ S is used, the

optimal cost is of the form V∗(x) = xT Pik x+cik with cik = xT P̃ik x a constant. At switching time

i.e. on the boundary of the partition, the next constant is given by cik+1
= cik + xT (Pik −Pik+1

)x.

Unfortunately, as the given expression of the optimal cost is related to a trajectory (particularly

the constants cik), the right expression of the value function is not available on the whole state

space and it is not possible to use directly Hamilton-Jacobi-Bellman equation to determine

the state space partition. In the next section, a control Lyapunov function is exhibited that

allows to approach finely the optimal solution in some generic cases as the section IV and

V will show.

III. Lyapunov based switching law

The aim of this part is to define a Lyapunov function as a tight upper bound on the value

function. We means tight in the sense that the two functions may coincide at some points.

Consider the set of Lyapunov equations corresponding to each subsystems (A(λ)), λ ∈ Λ

for which a symmetric solution Pλ exists and is unique if the eigenvalues, αk, k = 1, · · · , n

of A(λ), satisfy αi + α j , 0 for all pair (i, j):

A(λ)T Pλ + PλA(λ) + Q(λ) = 0. (18)

Definition 2: For a fixed M > 0 (arbitrary large), let us define the set:

Λ+(M) = {λ ∈ Λ : Pλ > 0,max(eig(Pλ)) ≤ M}, (19)
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where eig(P) stands for the set of eigenvalues of the matrix P.

The following proposition holds:

Proposition 1: If Qi > 0, for all i ∈ S then Λ+(M) is a compact set and there exists a

αmin = minλ∈Λ+(M) min(eig(Pλ)) > 0.

Proof: Λ+(M) is obviously bounded. Let us show it is a closed set. Suppose that there

exists a sequence λk ∈ Λ
+(M) such that min(eig(Pλk

))→ 0. As Λ is a compact set, there exists

a subsequence that converges to an element λ ∈ Λ and such that min(eig(Pλ)) = 0. Denote

by v0 the associated eigenvector. It follows the contradiction from 2vT
0

PλA(λ)v0+ vT
0

Q(λ)v0 =

vT
0

Q(λ)v0 = 0 which is absurd since Q(λ) =
∑

i∈S λiQi > 0. Then, Λ+(M) is a closed set and

there exists αmin > 0 such that ∀λ ∈ Λ+(M), min(eig(Pλ)) ≥ αmin.

It can now be introduced the following min-type function and proposition:

Proposition 2: The function defined by

x 7→ Vmin(x) := min
λ∈Λ+(M)

xT Pλx, (20)

is locally Lipschitz continuous and proper.

Proof: The solution of (18) are always well defined on Λ+(M) and vary continuously

with λ. Then, by compacity and for any fixed x, the minimum exists and infλ∈Λ+(M) xT Pλx =

minλ∈Λ+(M) xT Pλx.

Moreover, the familly of function indexed by λ ∈ Λ+(M) and defined by x 7→ xT Pλx is

uniformly locally Liptchitz on any ball B(0,R) with a Lipschitz constant equals to K := 2MR.

This is obvious since for all λ ∈ Λ+(M),

αmin‖x‖
2 ≤ inf

λ∈Λ+(M)
xT Pλx ≤ xT Pλx ≤ M‖x‖2. (21)

So, as any xT Pλx have a Lipschitz constant equals to K on a ball of radius R, we can

conclude that it is also the case for the minimum. Indeed, for any pair (x, y) (∈ B(0,R)), there

exists a pair (λ1, λ2) ∈ Λ+(M)2 such that:

|Vmin(x) − Vmin(y)| = |xT Pλ1
x − yT Pλ2

y|. (22)

Thus, by continuity, there exists z on the line segment [x y] such that zT Pλ1
z = zT Pλ2

z and it
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follows:

|Vmin(x) − Vmin(y)| ≤ |xT Pλ1
x − zT Pλ1

z| + |zT Pλ2
z − yT Pλ2

y| (23)

≤ K‖x − z‖ + K‖z − y‖ = K‖x − y‖. (24)

The min type function Vmin is also proper in view of the left part of inequality (21).

Definition 3: Let us define L(x) as the set of values λ ∈ Λ+(M) where the minimum Vmin(x)

is achieved and I(x) as the set of indices where the minimum over i ∈ S of xT (Pλ(x)−Pi)Aix,

λ ∈ L(x), is reached:

I(x) := arg min
i∈S ,λ∈L(x)

xT (Pλ − Pi)Aix. (25)

The following lemma is useful latter in order to define an appropriate descent direction for

Vmin:

Lemma 1: For every λ ∈ Λ, such that equation (18) admits a solution, mini∈S xT (Pλ−Pi)Aix

is non positive.

Proof: For a given λ ∈ Λ, left-multiplying by xT and right-multiplying by x the equation

(18) and using Q(λ) =
∑

i∈S λiQi and AT
i Pi + PiAi + Qi = 0, we get:

∑

i∈S

λix
T (Pλ − Pi)Aix = 0. (26)

So, we cannot have xT (Pλ − Pi)Aix > 0 for every i ∈ S because in this case the left-hand

member of equality (26) would be positive.

We can now state one of the main result of this paper:

Theorem 6: Assume there exists at least a λ ∈ Λ such that A(λ) is Hurwitz. Then, the

state feedback switching rule defined by:

i∗(x) ∈ I(x) = arg min
i∈S ,λ∈L(x)

xT (Pλ − Pi)Aix, (27)

stabilizes the switching system (1) with a cost smaller than 1
2
Vmin(x0).

Proof: Let λ ∈ Λ such that A(λ) is Hurwitz, then the Lyapunov equation (18) admits

a (unique) solution Pλ > 0. The matrix A(λ0) is still Hurwitz if λ0 belongs to a sufficiently

small neighborhood of λ and so equation (18) admits a unique solution for every λ0 in some

neighborhood of λ. Thus, the interior of Λ+ is non empty and Vmin is well defined.

Let us now consider the directional derivative of Vmin(x(t)) with respect to ẋ = A(ν)x, ν ∈ Λ

October 17, 2013 DRAFT
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as:

V ′min(x; ν) = lim
h→0;h>0

Vmin(x + hA(ν)x) − Vmin(x)

h
. (28)

Denote by gλ(x) := xT Pλx the continuous function defined on Λ+(M) × Rn. Then, as the

following conditions are met: 1. the set Λ+(M) is compact, 2. for each λ ∈ Λ+(M), the

directional derivative g′λ(x, ·) exists, 3. ∀w ∈ Rn,
gλ(x+hw)−gλ(x)

h
→ g′(x; w) uniformly in λ as

h→ 0, it can be concluded (from Theorem 6.1, p. 350-353 in [23]),

V ′min(x; ν) = min
λ∈L(x)

2xT PλA(ν)x. (29)

Taking ν = i∗(x) ∈ I(x), it follows using Lemma 1 that:

V ′min(x, i∗(x)) = min
λ∈L(x)

2xT PλAi∗(x)x ≤ −xT Qi∗(x)x < 0, x , 0.

Therefore, for any initial condition x0,

Vmin(x(t)) +

∫ t

0

x(τ)T Qi∗(x(τ))x(τ)dτ ≤ Vmin(x0), ∀t ≥ 0.

As Qi > 0, ∀i ∈ S and as Vmin(·) is proper, it follows that: Vmin(x(t))→ 0 and x(t)→ 0 when

t → +∞.

IV. Discussion concerning the switching law and its optimality

In this part we want to discuss the degree of optimality of the provided switching law.

Observe first that in the case where all matrices Ai are Hurwitz, then the matrices Pi are

definite positive for each mode i and the Lyapunov function Vmin satisfies always the following

inequality: Vmin(x) ≤ mini∈S xT Pix. One can also observe that for a given initial state x, the

value 1
2
Vmin(x) is the best cost related to every constant convex combination that stabilizes

the relaxed system. As we will see, this is an important point if a singular control occurs in

the solution.

Now, in the general case, when can we say that 1
2
Vmin(x) is optimal? The answer is :‘Along

the part of trajectories where the optimal control λ∗ is constant to reach the origin”.

In order to prove this last sentence, consider an optimal solution and assume that the

optimal control is piecewise smooth with a countable number of discontinuities occurring at

time t1, t2, .... Then, on time interval (tk, tk+1), the optimal control λ∗ is smooth and we can

denote by Ā(t) = A(λ∗(t)), Q̄(t) = Q(λ∗(t)), the time varying matrices. The co-state p(t) can

be identified as for a time varying linear system to P̄(t)x(t) (as suggested by Theorem 5)
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12

where the time varying matrix P̄(t) satisfies the Lyapunov equation:

− ˙̄P = ĀT P̄ + P̄Ā + Q̄. (30)

As it is mandatory that the hamiltonian H = pT Āx+ 1
2
xT Q̄x remains equal to zero, it implies

that along the optimal trajectory: xT ˙̄Px = 0. Thus, H can be rewritten as in the case of

Equation (26) as follow:

H =
∑

i∈S

λ∗i xT (P̄ − Pi)Aix = 0, (31)

where the optimal control λ∗ satisfies the complementarity constraint:

0 ≤ λ∗i ⊥ xT (P̄ − Pi)Aix ≥ 0, i ∈ S . (x ⊥ y means xy = 0) (32)

Theorem 7: If after a given time instant t, the optimal control λ∗ stays constant on (t,+∞)

and if Pλ∗ > 0 then the switching law provided by Theorem 6 coincides with the optimal

one.

Proof: This is obvious since as in the classical LQ problem and after the last switch,

the matrix P̄ is given by the solution Pλ∗ of the Lyapunov equation (18) where λ∗ stands

for the constant optimal control (eventually singular). Thus, as it is assumed that Pλ∗ > 0,

by optimality, xT Pλ∗ x = minλ∈Λ:Pλ>0 xT Pλx and it can be concluded that λ∗ ∈ L(x). Along

the optimal trajectory, the optimal switching condition is now based on the minimization of

xT (Pλ∗−Pi)Aix, i ∈ S which is exactly the switching condition provided by the switching rule

of Theorem 6. The resulting trajectories are then the same if λ∗ is admissible for the switched

system. Else a chattering motion occurs around the sliding surface defined by conditions

(32) and the trajectory can be considered to be similar of the optimal one provided that the

switching frequency is sufficiently high [5].

Remark 5: Theorem 7 applies at least for two important generic cases: when the switching

sequence is finite, and, in dimension 2, along the singular arcs which are necessarily defined

by lines passing through the origin and by a constant control [15].

Formally, we can justified the design of Vmin as follow. Assuming known the value function,

one can write for any T > 0, V∗(x0) = minσ
1
2

∫ T

0
xT (t)Qσ(t)x(t)dt+V∗(x(T )). The transversality

condition of PMP implies at time T , p(T ) =
∂V(x(T ))

∂x
(if exists). Now suppose that V∗(x(T ))

is approximated by Vmin. Then, an approximate of p(T ) is given by p(x(T )) ≈ Pλx(T ) with

λ ∈ L(x). Thus, it is easy to check that the minimization of the Hamiltonian at time T leads
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to the switching law (27). As the problem is homogenous and if the approximation is "good",

one can infer that p(x) ≈ Pλ(x)x with λ(x) ∈ L(x) on the whole state space.

V. Illustrative examples

Before presenting some examples, it is important to mention that it is not necessary to

ensure a stabilizing switched law to determine all the possible values of the set Λ+(M). Only

one value is sufficient to guarantee the stability. So, a reasonable finite number of values

ensures performances. A possibility to get this finite number is to discretize the set Λ.

A. Example 1 : a regular case

In [24], we have proposed a periodic solution that approximated the optimal one for a

switched system defined by two modes. The matrices corresponding to this example are:

A1 =



















−1.89 4.29

−2.41 −1.77



















, A2 =



















−1.14 0.95

−1.23 −1.57



















,

Q1 =



















0.99 −0.18

−0.18 4.59



















, Q2 =



















2.15 0.66

0.66 1.33



















.

For this example, there is no singular arc and the solution is always regular (and, thus,

admissible for the switched system). Figure 1 shows the state space trajectories for the

switching law given by (27) and the optimal one. The later is obtained by NL programming

in a suitable formulation taking into account singular arcs [11]. If not, numerical difficulties

in the control determination are often encountered. We can see that the two solutions match

well together. Thus, even if no argument has been advanced in this case, it seems that the

provided switching conditions are close to the optimal.

Figure 2 compares the optimal cost with the costs obtained by using the switching law,

only mode 1 and only mode 2, respectively. This comparison is made for initial states taken

on the unit ball, the x-axis represent the angle θ. It can be observed that the cost associated

to the switching law coincides the cost of the optimal numerical solution. Of course, the

essential difference is that the numerical solution is an open loop control while the switching

law defines a closed loop control.

B. Example 2 : a singular case

Let us take an example (chosen randomly) for which singular arcs occur in the solutions.

The matrices for this example are:
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Fig. 1. Example1: State space trajectories: (red) optimal solution (NLP); (blue) switching law
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Fig. 2. Example 1: Cost comparisons for different initial positions taken on the unit ball.

A1 =



















−0.96 −9.93

0.68 −5.08



















, A2 =



















−1.10 0.95

1.88 −2.76



















Q1 =



















1.17 0.90

0.90 5.60



















, Q2 =



















2.11 −1.07

−1.07 2.04



















.

As shown in Figures 3 and 4, the result is clearly near optimal. By comparison, a min switch-

ing strategy defined by: i(x) = arg mini∈S {x
T Pix} leads to a cost given by 1

2
mini∈S {x

T Pix}

which is clearly not optimal as the two examples show.
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Fig. 3. Example 2 : State space trajectories: (red) optimal (NLP); (blue) switching law
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Fig. 4. Example 2: Cost comparisons for different initial positions taken on the unit ball.

C. Example 3 : extension to controlled linear switched systems

Consider the controlled linear switched systems in continuous time:

ẋ(t) = Aσ(t)x(t) + Bσ(t)uσ(t)(t), x(0) = x0, (33)

where σ : [0,+∞)→ S = {1, · · · , s} denotes the switching law that selects the active mode at

time t by choosing among a finite collection of controlled linear systems. For i ∈ S , Ai ∈ R
n×n,

Bi ∈ R
n×mi , x(∈ Rn) is the state and ui(t) ∈ R

mi (mi ≤ n) is the control associated to mode i.

We assume that the switched system is stabilizable but eventually all the pair (Ai, Bi), i ∈ S

cannot be stabilized.
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A direct extension of the proposed switching law consists to solve:

Problem 2: Minimize:

min
σ(·)

1

2

∫ ∞

0

xT (t)Q̃σ(t)x(t)dt, (34)

subject to ẋ(t) = (Aσ(t) − Bσ(t)Kσ(t))x(t), where Q̃i = Qi + KT
i RiKi and where matrices (Ri,Qi)

and Ki correspond to an LQ design for the subsystem (Ai, Bi), for all i ∈ S .

Then, a stabilizing switching law can be obtained in two steps: 1.) Define static gain Ki

that stabilize the controllable subspace of each subsystems using a LQ design, 2.) Check if

the switching law can be applied for Problem 2 i.e. if Λ+(M) is non empty for a sufficiently

large M.

Let us illustrate our purpose on an example. Consider two non stabilizable subsystems

defined by:

A2 =



















1 0

0 −2



















, A1 =



















−2 0

0 1



















, B2 =



















0

1



















, B1 =



















1

0



















.

Clearly the controllable subspace is generated by the canonical basis vector {e1 = (1, 0)T } for

the first system while it is {e2 = (0, 1)T } for the second. Thus, following the first step, an LQ

design is used on each controllable subspace to determine two static gains K1 and K2 such

that
∫ ∞

0
xT Qix + uT

i Riui is minimized by ui = −Kix. We have chosen Ri = Qi = 1, i = 1, 2

then K1 = K2 = 0.2361. Thus, the switched linear system is now defined by: ẋ = (Ai−BiKi)x,

i = 1, 2.

The second step consists in applying the switching law with weight matrices Q̃i. For this

example, we have chosen : Q̃i = Id + KT
i RiKi, i = 1, 2. The Figures (5) and (6) show once

again that the obtained switching law is optimal by comparison with the numerical solution.

It can be noticed that the solutions of (18) for mode 1 and 2 are not positive definite as

expected, see Figure (6).

VI. Conclusion

A state feedback switching law based on control Lyapunov function for switched LQ

regulator problems in continuous time has been proposed. The stabilizing feedback can be

applied even if the subsystems are all unstable. The only condition that is required, is the

existence of at least a stable convex combination of the subsystems. Even if the exact optimal

solution is not determined, we have shown that the switching conditions involved by the

switching law can be optimal. More precisely, this generic situation occurs along arcs (singular

or not) ending to the origin with a constant optimal control. As in dimension two, the singular
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Fig. 5. Example 3 : State space trajectories: (red) optimal (NLP); (blue) switching law
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Fig. 6. Example 3: Cost comparisons for different initial positions taken on the unit ball.

controls are constant, the switching law is really optimal in most of encountered 2-dimensional

examples. In any case, a guarantee on the cost is provided by an upper bound given by the

value of the Lyapunov function.
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