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Regularization in Relevance Learning Vector Quantization Using l one Norms

We propose in this contribution a method for l1-regularization in prototype based relevance learning vector quantization (LVQ) for sparse relevance profiles. Sparse relevance profiles in hyperspectral data analysis fade down those spectral bands which are not necessary for classification. In particular, we consider the sparsity in the relevance profile enforced by LASSO optimization. The latter one is obtained by a gradient learning scheme using a differentiable parametrized approximation of the l1-norm, which has an upper error bound. We extend this regularization idea also to the matrix learning variant of LVQ as the natural generalization of relevance learning.

Introduction

Learning vector quantization (LVQ) as proposed by T. Kohonen is one of the most popular methods for prototype based classification of vectorized data [START_REF] Kohonen | Self-Organizing Maps[END_REF]. Sato&Yamada proposed a modification of this approach such that the learning heuristic of LVQ is replaced by a stochastic gradient descent learning based on a cost function [START_REF] Sato | Generalized learning vector quantization[END_REF]. The cost function is an approximation of the usual classification error based on dissimilarity evaluations for the best matching prototypes. This generalized LVQ (GLVQ) optimizes the hypothesis margin [START_REF] Crammer | Margin analysis of the LVQ algorithm[END_REF]. An improvement of GLVQ performance can be obtained by relevance learning (GRLVQ), i.e. weighting the data dimensions to distinguish the data classes [START_REF] Hammer | Generalized relevance learning vector quantization[END_REF]. High weighting values indicate high relevance. The resulting relevance profile provides the information about the importance of the data dimensions for the classification to be learned. Frequently, small but non-vanishing relevance values are obtained for large parts of the relevance profiles. This problem frequently occurs for highdimensional data like hyperspectra. This behavior is not sufficient in the light of sparse models, where negligible spectral bands should be dropped off, if the classification accuracy is sufficiently high.

In this contribution we propose a l 1 -regularization approach to obtain sparsity in relevance learning, i.e. sparsity in the relevance profile [START_REF] Kästner | Functional relevance learning in generalized learning vector quantization[END_REF]. It is based on the Least Absolute Selection and Shrinkage Operator approach (LASSO, [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]) but realizing a gradient descent learning scheme whereas original LASSO uses convex optimization. For this purpose, a differentiable approximation of the l 1 -norm is considered [START_REF] Schmidt | Fast optimization methods for l1 regularization: A comparative study and two new approaches[END_REF]. We show further that this approach can easily be transferred to the matrix learning GLVQ (GMLVQ, [START_REF] Schneider | Adaptive relevance matrices in learning vector quantization[END_REF]) using the consistent matrix norm. We illustrate the method for classification coffee hyperspectra to distinguish different coffee sorts.

We suppose for learning vector quantization approaches that the data are given as vectors v ∈ V ⊆ R n , and the prototypes of the LVQ model are collected in the set W = {w k ∈ R n , k = 1 . . . M }. Each training data vector v belongs to a class x v ∈ C = {1, . . . , C}. The prototypes have labels y w k ∈ C indicating their responsibility to the several classes. The GLVQ approach approximates the classification error to be minimized by the cost function

E (W ) = 1 2 v∈V f (µ (v)) with µ (v) = d + (v) -d -(v) d + (v) + d -(v) (1) 
as the classifier function and d + (v) = d (v, w + ) denotes the dissimilarity between the data vector v and the closest prototype w + with the same class label

y w + = x v , and d -(v) = d (v, w -)
is the dissimilarity degree for the best matching prototype w -with a class label y w -different from x v . The classifier function µ (v) becomes negative if the data point is classified correctly. The transformation function f is a monotonically increasing function usually chosen as sigmoid or the identity function. The dissimilarity measure d (v, w) is usually chosen as the squared Euclidean distance.

Learning in GLVQ of w + and w -is performed by the stochastic gradient with respect to the cost function E (W ) for a given data vector v according to

∂ S E (W ) ∂w + = ξ + • ∂d + ∂w + and ∂ S E (W ) ∂w -= ξ -• ∂d - ∂w - (2) 
with

ξ + = f • 2 • d -(v) (d + (v) + d -(v)) 2 and ξ -= -f • 2 • d + (v) (d + (v) + d -(v)) 2 . (3) 
For the squared Euclidean metric we simply have the derivative ∂d ± (v)

∂w ± = -2 (v -w ± )
realizing a vector shift of the prototypes.

Standard relevance learning replaces the squared Euclidean distance in GLVQ by a parametrized bilinear form

d Λ (v, w) = (v -w) Λ (v -w) (4) 
with Λ being a positive semi-definite diagonal matrix [START_REF] Hammer | Generalized relevance learning vector quantization[END_REF]. The diagonal elements λ i = √ Λ ii form the relevance profile weighting the data dimensions. During the learning phase, the relevance parameter λ i are adapted according to

Λ ∼ - ∂ S E (W ) ∂Λ = -ξ + • ∂d + Λ (v) ∂λ j -ξ -• ∂d - Λ (v) ∂λ j (5) 
realizing a stochastic gradient descent. An subsequent normalization has to be applied such that i λ 2 i = i Λ i,i = 1 is assured. The obvious generalization of this scheme is to take the matrix Λ as a positive semi-definite quadratic form Λ = Ω Ω with an arbitrary matrix Ω ∈ R m×n [START_REF] Bunte | Limited rank matrix learning, discriminative dimension reduction and visualization[END_REF][START_REF] Schneider | Adaptive relevance matrices in learning vector quantization[END_REF]. To avoid degeneracy det (Λ) > 0 is required [START_REF] Schneider | Regularization in matrix relevance learning[END_REF]. Then equation ( 4) can be written as d Ω (v, w) = (Ω (v -w))

2 . The resulting derivatives in (2) are obtained as ∂d ± (v) ∂w ± = -2Λ (v -w ± ), which are accompanied by the Ω-update

Ω r1,r2 ∼ - ∂ S E (W ) ∂Ω r1,r2 = ξ + • ∂d + Ω (v) ∂Ω r1,r2 + ξ -• ∂d - Ω (v) ∂Ω r1,r2 (6) 
and subsequent normalization i,j Ω 2 i,j = 1 [START_REF] Schneider | Regularization in matrix relevance learning[END_REF]. We refer to this matrix variant as GMLVQ.

Sparsity in Relevance and Matrix Learning by Gradient LASSO Learning

For the LASSO method it is assumed that we want to optimize a cost function depending on a parameter vector λ which has to follow a regularization condition according to the l 1 -norm [START_REF] Hastie | The Elements of Statistical Learning[END_REF][START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF]. In the context of GRLVQ this cost function is E (W, λ) according to (1) with the parameters λ i obtained from the relevance metric (4). The LASSO approach adds a regularization term such that

min λ E * (W, λ) = E (W, λ) + ξ λ 1 (7) 
with a weighting factor ξ > 0. Many optimization methods are known to solve this problem. Yet, in the context of gradient descent learning in GRLVQ it would be desirable to have a gradient learning scheme of LASSO, too. However, the

regularization term R (λ) = λ 1 = n i=1
|λ i | is not differentiable with respect to the λ i . Fortunately, a differentiable approximation for R (λ) can be found [START_REF] Schmidt | Fast optimization methods for l1 regularization: A comparative study and two new approaches[END_REF]:

We split the absolute value |x| into |x| = (x) + + (-x) + with (x) + = max {x, 0}. This allows an approximation |x| α of |x| using the relation

(x) + ≈ x + 1 α ln 1 + e -αx (8) 
depending on the approximation parameter α [START_REF] Chen | Smoothing methods for convex inequalities and linear complementarity problems[END_REF]. We obtain

|x| α = 1 α ln 2 + e -αx + e αx (9) 
with the upper bound ||x| -|x| α | ≤ 2 ln 2 α . Inserting this in R (λ) the gradients are obtained as

∂R (λ) ∂λ j ≈ tanh αλ j 2 . ( 10 
)
Analogously, for GMLVQ with l 1 -regularization via LASSO a regularization term R (Ω) = Ω 1 is added with

Ω 1 = max 1≤j≤n m i=1 |Ω ij | ( 11 
)
being the matrix norm consistent to the l 1 -vector norm. Using the recursion max (x 1 , x 2 , . . . , x n ) = max (x 1 , max (x 2 , . . . , x n )) and the relation max (x, y) = 1 2 (x + y -|x -y|) the regularization term dependency becomes R (Ω) = R (|Ω ij |). Thus we can apply again the above approximation [START_REF] Kohonen | Self-Organizing Maps[END_REF]. A lengthy but simple calculation yields

∂R (Ω) ∂Ω st ≈ 1 2 tanh αΩ st 2 - T 2 (12) 
with

T = exp -α Ω st + Ω st • (exp (2αΩ st ) -1) • exp 2αΩ st -exp(2αΩst) (1+exp(αΩst)) 4 2 + exp -α Ω st -Ω st + exp α Ω st + Ω st + exp(α(Ωst-Ωst)) (1+exp(αΩst)) 2
and

Ω st = m i=1;i =s |Ω it | α -max 1≤j≤d;j =t m i=1 |Ω ij | α (13) 
Further, it can be shown that

1 m Ω 2 1 ≤ Λ 1 ≤ n Ω 2 1 is valid.
In conclusion, we derived a differentiable approximation of the l 1regularization which can be used in gradient descent learning of, for example, GRLVQ and GMLVQ. We applied the sparsity relevance learning model to classify hyperspectral short-wave infrared range (SWIR) spectral vectors of five coffee types. Hyperspectral processing along with an appropriate analysis of the acquired highdimensional spectra has proven to be a suitable and very powerful method to quantitatively assess the biochemical composition of a wide range of biological samples [START_REF] Backhaus | Robust classification of the nutrition state in crop plants by hyperspectral imaging and artificial neural networks[END_REF]. By utilizing a hyperspectral camera (HySpex SWIR-320m-e, Norsk Elektro Optikk A/S) we obtained a rather extensive data base of spectra of five different coffee types (5000 spectra for each class). We used spectra in the SWIR between 970 nm and 2, 500 nm at 6 nm resolution yielding 256 bands per spectrum. Proper image calibration was done by using a standard reflection pad (polytetrafluoroethylene, PTFE) [START_REF] Backhaus | High-throughput quality control of coffee varieties and blends by artificial neural networks and hyperspectral imaging[END_REF]. After appropriate image segmentation the obtained spectra were normalized according to the l 2 -norm and reduced to 200 bands ignoring the range 2, 000 -2, 500 nm. The mean spectra of the five types are visualized in Fig. 1.

Simulation Results

After standard training the GRLVQ model with full relevance profile yields 83, 96% accuracy. Starting with this solution the LASSO-model ( 7) was applied with linearly increasing weighting factor ξ of the regularization term, the approximation parameter α in ( 9) was set constant α = 5. We compare this LASSOapproach with a sparsity model based on an entropy penalty term added to the cost function of GRLVQ as suggested in [START_REF] Kästner | Functional relevance learning in generalized learning vector quantization[END_REF]. Both models enforce the sparsity of the relevance profiles. We depict the results of the LASSO approach Fig. 2, the other result is similar and has dropped because the lack of space. However, the accuracy decrease differs. LASSO keeps longer a high accuracy than the entropy approach, see Fig. 3 . Moreover, the entropy based method shows heavy instabilities if the relevance weights for spectral bands approach zero values at the end of the regularization process.

Conclusion

Sparsity in hyperspectral data analysis play an important role to concentrate on those bands, which are important for classification. Relevance learning as proposed in GRLVQ offers a possibility to weight the bands. However, frequently it delivers small but non-vanishing weights. Additional regularization can help to obtain sparse models. We have shown in this contribution that LASSO l 1regularization can be applied in gradient based online learning using a differentiable approximation. We illustrate the method for an exemplary application of coffee classification based on hyperspectral signatures.
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 1 Figure 1: Mean spectra of the five investigated coffee types.
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 2 Figure 2: Development of the sparsity of the relevance profile during LASSO-learning. With increasing influence of the regularization term the profile becomes sparse.

Figure 3 :

 3 Figure 3: Development of the accuracies during sparsity adaptation according LASSO (red) and entropy based (blue) regularization. We observe instabilities of the entropy based method in the final phase of regularization.
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