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Abstract

Atmospheric visibility is an important input for road and air transportation safety, as well as a good proxy to estimate the air quality.
A model-driven approach is presented to monitor the meteorological visibility distance through use of ordinary outdoor cameras.
Unlike in previous data-driven approaches, a physics-based model is proposed which describes the mapping function between the
contrast in the image and the atmospheric visibility. The model is non-linear, which allows encompassing a large spectrum of
applications. The model assumes a continuous distribution of objects with respect to the distance in the scene and is estimated
by a novel process. It is more robust to illumination variations by selecting the Lambertian surfaces in the scene. To evaluate the
relevance of the approach, a publicly available database is used. When the model is fitted to short range data, the proposed method
is shown to be effective and to improve on existing methods. In particular, it allows envisioning an easier deployment of these
camera-based techniques on multiple observation sites.
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1. Introduction1

In the presence of fog, haze or air pollution, atmospheric2

visibility is reduced. This constitutes a common and vexing3

transportation problem for different public authorities in multi-4

ple countries throughout the world.5

First, low visibility is obviously a problem of traffic safety.6

Indeed, the behavior of drivers in fog is often inappropriate7

(e.g. reduced headways, altered reaction times) but the rea-8

sons for these dangerous behaviors are not fully understood9

(Kang et al., 2008; Caro et al., 2009). A recommendation in10

order to improve the safety in such situations was to use two11

rear fog lamps in the vehicles, as far apart as possible (Cavallo12

et al., 2001). It was also suggested that lowering the height of13

these lamps could lead to reduced headway estimation (Buch-14

ner et al., 2006). Various countermeasures have been tested on15

the roadside to reduce the impact of critically reduced visibil-16

ity (Shepard, 1996), among which automated warning systems17

employing road-side weather stations and visibility meters to18

provide automated detection (Mac Carley, 2005).19

In addition to the road safety problem, reduced visibility is20

cause of delays and disruption in air, sea and ground transporta-21

tion for passengers and freight. On highways, massive pile-22

ups create non-recurrent congestions which sometimes force23

the operator to momentarily close the road. Fog-related road24

closures are not an uncommon subject for news headlines. An-25

other example is the Heathrow airport which was blocked for26

three days during Christmas 2006. Such events have important27

economic impacts (Pejovic et al., 2009). According to Perry28

and Symons (1991), in 1974 fog was estimated to have cost29

over roughly £120 millions (at 2010 prices) on the roads of30

Great Britain. This figure includes the cost of medical treat-31

ment, damage to vehicles and property, as well as the adminis-32

trative costs of police, services and insurance, but they do not33

include the cost of delays to people not directly involved in the34

accident.35

Impaired visibility is also a symptom of environmental prob-36

lems because it is evidence of air pollution (Hyslop, 2009); in37

addition, it has been shown that impaired visibility in urban en-38

vironment and mortality are correlated (Thach et al., 2010). Ac-39

cording to Thach et al. (2010), visibility provides a useful proxy40

for the assessment of environmental health risks from ambient41

air pollutants, and a valid approach for the assessment of the42

public health impacts of air pollution where pollutant monitor-43

ing data are scarce.44

The ability to accurately monitor visibility helps solving45

these problems. Critical safety at important transportation fa-46

cilities such as airports are generally instrumented for mon-47

itoring visibility with devices that are expensive and hence,48

scarce. Cost is precisely the reason why highway meteorologi-49

cal stations are seldom equipped with visibility meters. In this50

context, using existing and ubiquitous highway cameras is of51

great interest, as these are low cost sensors already deployed52

for other purposes such as traffic monitoring (Jacobs et al.,53

2009). Furthermore, introducing new functionalities into road-54

side cameras would make them multipurpose and thus more55

cost-effective, easing their deployment along the roads.56

Attempts at estimating the visibility using outdoor cameras57

or webcams are reported in the literature. However, the visibil-58

ity range differs from one application to another, so that there is59

no general approach to tackle the problem by camera. For road60

safety applications, the range 0-400 m is usually considered.61

For meteorological observation and airport safety, the range 0-62

1000 m is usually considered. Visual range is also used for63

monitoring pollution in urban areas. In this case, higher visual64
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ranges, typically 1-5 km, are usually considered. In the follow-65

ing, we address the whole spectrum of visual ranges, typically66

0-10 km.67

Two families of methods are proposed in the literature. The68

first one estimates the maximum distance at which a selected69

target can be detected. The methods differ depending on the70

nature of the target and how to estimate the distance. For in-71

telligent vehicles as well as for visual monitoring of highway72

traffic, a black target at the horizon is chosen and a flat road73

is assumed. Bush and Debes (1998) use a wavelet transform74

to detect the highest edge in the image with a contrast above75

5%. Based on a highway meteorology standard, Hautière et al.76

(2008) proposed a reference-free roadside camera-based sensor77

which not only estimates the visibility range but also estimates78

whether the visibility reduction is caused by fog. For meteoro-79

logical observations, regions of interest whose distance can be80

obtained on standard geographic maps are selected manually81

(Bäumer et al., 2008). An accurate geometric calibration of the82

camera with respect to the scene is necessary to calibrate and83

operate continuously these methods, which may be understood84

as direct approaches.85

A second family of methods correlates the contrast in the86

scene with the visual range estimated by reference additional87

sensors (Hallowell et al., 2007). No accurate geometric cali-88

bration is needed. Conversely, a learning phase is needed to89

estimate the function which maps the contrast in the scene to90

the visual range. The method proposed in this paper belongs to91

this second family. Usually, a gradient based on the Sobel filter92

or a high-pass filter in the frequency domain are used to com-93

pute the contrast (Liaw et al., 2010; Hagiwara et al., 2007; Xie94

et al., 2008). Luo et al. (2005) have shown that the visual range95

obtained with these two approaches are highly correlated. Liaw96

et al. (2010) proposed to use a homomorphic filter or a Haar97

function in addition to the high-pass filter in order to reduce the98

effects of non-uniform illumination. Once the contrast is com-99

puted, a linear regression is performed to estimate the mapping100

function (Hallowell et al., 2007; Xie et al., 2008; Liaw et al.,101

2010). Babari et al. (2010) propose a method which is robust102

to illumination variations in the scene by taking into account103

the physical properties of objects in the scene. Unlike previous104

methods, a non-linear data regression is performed which al-105

lows covering a wider spectrum of applications. Due to the step106

of data regression, these methods can be seen as data-driven107

approaches. Nevertheless, the major problem of data-driven108

methods is the need of a learning phase, which makes this kind109

of method difficult to deploy massively. Indeed, one must wait110

for an episode with impaired visibility, so as to collect learning111

data and compute the fitting parameters.112

The direct approaches are very sensitive to the geometric cal-113

ibration of the camera but no learning phase is necessary to use114

them. The data-driven approaches do not use any accurate geo-115

metric calibration. However, they need episodes with impaired116

visibility before they are operational. We believe that new tech-117

niques can be developed which need neither accurate geometric118

calibration nor learning phase. In this aim, one must model how119

the contrast in the scene is altered by the presence of reduced120

visibility conditions, so as to build an a priori mapping func-121

tion between the contrast and the atmospheric visibility distance122

in the scene. This constitues a model-driven approach. Hau-123

tière et al. (2010) propose such a probabilistic model-driven ap-124

proach which allows computing a physics-based mapping func-125

tion. In particular, the model takes into account an a priori126

distribution of contrasts in the scene. However, a uniform dis-127

tribution of targets is assumed which limits the applicability of128

the method on any scene. In this article, the method proposed129

in (Hautière et al., 2010) is generalized by adding new targets130

distributions, as well as a method to estimate the actual distri-131

bution of objects in the scene. A great attention is paid to the132

data fitting process, which greatly influences the final results.133

To assess the relevance of the approach, the different methods134

are compared using the MATILDA database (Hautière et al.,135

2010).136

This article is organized as follows. In section 2,137

Koschmieder’s model of fog visual effects is recalled. In sec-138

tion 3, the model-driven approach is presented, whose experi-139

mental evaluation is carried out in section 4. Finally, the results140

are discussed and perspectives for future work are given.141

2. Vision through the Atmosphere142

2.1. Koschmieder’s Theory143

The attenuation of luminance through the atmosphere was
studied by Koschmieder (Middleton, 1952), who derived an
equation relating the extinction coefficient of the atmosphere β ,
which is the sum of the scattering coefficient and of the absorp-
tion coefficient, the apparent luminance L of an object located at
distance d, and the luminance L0 measured close to this object:

L = L0e−βd +L∞(1− e−βd) (1)

(1) indicates that the luminance of the object seen through fog144

is attenuated by e−βd (Beer-Lambert law); it also reveals a lu-145

minance reinforcement of the form L∞(1−e−βd) resulting from146

daylight scattered by the slab of fog between the object and the147

observer, the so-called airlight. L∞ is the atmospheric lumi-148

nance.149

On the basis of this equation, Duntley developed a contrast
attenuation law (Middleton, 1952), stating that a nearby object
exhibiting contrast C0 with the fog in the background will be
perceived at distance d with the following contrast:

C =

[

L0 −L∞

L∞

]

e−βd =C0e−βd (2)

This expression serves to base the definition of a standard di-
mension called meteorological visibility distance V , i.e. the
greatest distance at which a black object (C0 = −1) of a suit-
able dimension can be seen on the horizon, with the threshold
contrast set at 5% (CIE, 1987). It is thus a standard parame-
ter that characterizes the opacity of a fog layer. This definition
yields the following expression:

V ≈ 3
β

(3)
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More recently, Koschmieder’s model has received a lot of at-150

tention in the computer vision community, e.g. (Narasimhan151

and Nayar, 2003; Hautière et al., 2007; Tan, 2008; He et al.,152

2009; Tarel and Hautière, 2009). Indeed, it is possible based on153

this model to infer the 3D structure of a scene in presence of154

fog, or to dehaze/defog images by reversing the model. How-155

ever, it is worth mentioning that in these works a relative esti-156

mation of the meteorological visibility is enough to restore the157

visibility. In this paper, Koschmieder’s model is used to esti-158

mate the actual meteorological visibility distance, which makes159

the problem quite different (an absolute estimation of the visi-160

bility is needed).161

2.2. Contrast of Lambertian Targets162

Assuming a linear response function of the camera, the in-
tensity I of a distant point located at distance d in an outdoor
scene is given by Koschmieder’s model (1):

I = Re−βd +A∞(1− e−βd) (4)

where R is the intrinsic intensity of the pixel, i.e. the inten-
sity corresponding to the intrinsic luminance value of the cor-
responding scene point and A∞ is the background sky intensity.
Two points located at roughly the same distance d1 ≈ d2 = d

with different intensities I1 , I2 form a distant target whose nor-
malized contrast is given by:

C =
I2 − I1

A∞
=

[

R2 −R1

A∞

]

e−βd =C0e−βd (5)

In this equation, the contrast C of a target located at distance
d depends on V = 3

β and on its intrinsic contrast C0. If we
now assume that the surface of the target is Lambertian, the
luminance L at each point i of the target is given by:

L = ρi

E

π
(6)

where E denotes the global illumination and ρi denotes the
albedo at i. Moreover, it is a classical assumption to set L∞ = E

π
so that (5) finally becomes:

C = (ρ2 −ρ1)e
−βd ≈ (ρ2 −ρ1)e

− 3d
V = ∆ρe−

3d
V (7)

Consequently, the contrast of a distant Lambertian target only163

depends on its physical properties and on its distance to the sen-164

sor and on the meteorological visibility distance, and no longer165

on the illumination. These surfaces are robust to strong illumi-166

nation variations in the computation of the contrast in the scene.167

3. The Model-Driven Approach168

3.1. Principle169

Let us consider an outdoor scene where targets are distributed
continuously at increasing distances from the camera. Let us
denote φ the probability density function of observing a con-
trast C in the scene:

P(C < X ≤C+dC) = φ(C)dC (8)

The expectation of the contrast m in the image is expressed as:

m = E[C] =
∫ 1

0
Cφ(C)dC (9)

Based on (7), C is a random variable which depends of the two
random variables d and ∆ρ . These two variables are assumed
to be independent, which allows expressing (9) as:

m = E

[

∆ρ
]

E

[

e−
3d
V

]

= ∆ρ

∫ +∞

0
ψ(d)e−

3d
V dd (10)

where ∆ρ denotes the mean albedo difference between the ob-170

jects in the scene and ψ denotes the p.d.f. of there being an171

object at the distance d in the scene. To compute m, a realistic172

expression for the density of objects ψ in the scene is needed.173

3.2. Expectation of the Contrast174

Choosing a suitable target distribution ψ allows us comput-175

ing the expectation of the contrast (10) with respect to the me-176

teorological visibility distance. In (Hautière et al., 2010), (10)177

was solved assuming a uniform distribution of targets between178

0 and dmax, which leads to the following solution:179

mu =
V ∆ρ

3dmax

[

1− exp
(

− 3dmax

V

)

]

(11)

This assumption may be useful when the scene is not known180

a priori but may limit the applicability of the method on any181

scene. The problem has received little consideration in the liter-182

ature. Torralba and Oliva (2002) proposed some a priori depth183

distributions in natural or man-made scenes which are Gaussian184

distributions. To circumvent this problem, a solution is to esti-185

mate the actual distribution and to solve m for this distribution.186

Let us first examine if mathematical solutions exist for classical187

statistical distributions.188

Assuming a Gaussian distribution of parameters µ and σ , the
density of targets is given by:

ψG(d) =
1

σ
√

2π
exp

[

− 1
2

(d −µ

σ

)2
]

(12)

(10) then has an analytical solution mg ,which is given by:

mG(V ) =
∆ρ

2
exp

(

9σ2

2V 2 − 3µ

V

)

erfc

[

1

σ
√

2

(

3σ2

V
−µ

)

]

(13)
where erfc denotes the complementary error function:

erfc(z) =
2√
π

∫ ∞

z
exp(−ζ 2)dζ (14)

In the same way, assuming a Rayleigh distribution of param-189

eter σ :190

ψR(d) =
d

σ2 exp

(−d2

2σ2

)

(15)

mR(V ) = 1− 3σ∆ρ

V
exp

(

9σ2

2V 2

)
√

π

2
erfc

(

3σ

V
√

2

)

(16)
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Figure 1: Plots of the different contrast expectation models assuming (a) a uniform distribution (dmax ∈ [100;1000]); (b) an exponential distribution of targets density
(ν ∈ [0.01;0.1]); (c) a Rayleigh distribution of targets density (σ ∈ [10;100]); (d) a Gaussian distribution of targets density (σ = 10 and µ ∈ [50;150]).

Finally, assuming an exponential distribution of parameter ν :191

ψe(d) = ν exp
(

−νd
)

(17)

me(V ) =
ν∆ρ

ν + 3
V

(18)

Other types of distributions can be tested, such as the log-192

normal distribution. However, mathematical solutions are not193

easy to find and then to handle, apart from the uniform and194

exponential distributions.195

3.3. Model Inversion and Error Estimation196

The different models are all increasing functions of V and
share the same limits towards 0 and ∞, see Eqs. (11,13,16,18):

lim
V−→0

m = 0 lim
V−→∞

m = 1 (19)

which are obvious physical bounds that data-driven approaches197

do not always respect. The models of contrast expectation pre-198

sented in the previous section are plotted as functions of the199

meteorological visibility distance V in Fig. 1. As one can see,200

these models have roughly the same shape.201

In (Hautière et al., 2010), the solution for the uniform case
was found to be invertible:

V (mu) =
3mudmax

1+muW

(

e
−1/mu

mu

)
(20)

where W denotes the Lambert function, which is a transcenden-
tal function defined by solutions of the equation W (x)eW (x) = x

(Corless et al., 1996). Given the complexity of the equation,
it is somehow difficult to compute the partial derivatives of the
model and express error bounds of the model. In the case of
the Gaussian and Rayleigh distributions, it is also possible to
find analytical solutions to invert the models, but these ones
are not detailed here for the sake of readability of the article.
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Figure 2: Analogy between the charge/discharge of a capacitor and the shape
of the contrast expectation (blue curve) with respect to the meteorological visi-
bility. The red curve denotes the tangent at the origin.

Fortunately in the case of an exponential distribution, a simpler
solution is available:

V (me,ν) =
3me

ν(1−me)
(21)

With this model, the partial derivatives of V with respect to m202

and ν (22) can be obtained and an upper bound of the error of203

the model (23) is derived:204

dV =
∂V (me,ν)

∂me

dme +
∂V (me,ν)

∂ν
dν (22)

∆V ≤ 3∆me

ν(1−me)2 +
3me∆ν

ν2(1−me)
(23)

At this stage, we can make a comparison with the charg-
ing/discharging of a capacitor. Assuming a uniform distribu-
tion, (11) can be expressed as following:

mu = ∆ρ
V

τ

[

1− exp
(

− τ

V

)

]

(24)

where τ = 3dmax. When V = τ , we have mu = 1− e−1 ≈ 0.63.205

This is the same constant as the one used to characterize the206
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charging speed of a capacitor. Fig. 2 shows the curve obtained207

when plotting (24) with respect to the ratio V
τ .208

In the general case, the capacitance of the system is deter-209

mined by the distribution of distances in the scene, the texture210

of the objects in the scene and the quality (MTF, resolution) of211

the camera along with the response of the image processing fil-212

ter (e.g. the Sobel filter). The smaller the capacitance of the213

system, the faster the curves go to 1. We thus define an indica-214

tor τ of the system quality which is the meteorological visibility215

distance at which 0.63 of the "capacitance" is reached.216

3.4. Estimation of the Distribution of Targets217

The direct computation of m and V strongly depends on the
distribution ψ . Thus, an important task is to guess which dis-
tribution is best suited for a given scene. Following the method
proposed by Narasimhan and Nayar (2003), the scene struc-
ture can be approximated from two weather conditions 1 and 2
thanks to Koschmieder’s law (1):

(β2 −β1)d =− log

[

A∞2 − I2

A∞1 − I1

]

− log
A∞1

A∞2

(25)

Using this method, it is possible to roughly estimate a depth218

for each pixel of the scene image. Starting from Narasimhan219

and Nayar (2003), we used landmarks of known depth and we220

adjusted the sky intensities A∞1 and A∞2 so as to improve the221

accuracy of the global map.222

Second, due to the noise of the camera sensor, a simple com-223

putation of the depth distribution is useless. Soft-voting is often224

used to obtain reliable data from multiple uncertain data sources225

(Latif-Shabgahi et al., 2004). In computer vision and pattern226

recognition, this process is often used to deduce a global infor-227

mation from local information, e.g. the Hough transform (Duda228

and Hart, 1972), the fast radial symmetry transform (Loy and229

Zelinsky, 2003) or the v-disparity transform (Labayrade et al.,230

2002). In a similar way, the distribution of Lambertian targets231

can be estimated using a Parzen’s like approach (Parzen, 1962).232

In this aim, a cumulative histogram of depth h(d) is com-233

puted for d ∈ [0,dmax] which takes into account a bandwidth234

parameter. This one is related to the confidence ui on the esti-235

mation of the distance associated to each pixel. For each pixel,236

a normal distribution N (d|di,ui) is cumulated in the histogram237

with center di and standard deviation ui. In addition to the238

standard Parzen’s approach, we also use a weighting parame-239

ter wi which accounts for the contribution of each data to the240

histogram. This histogram of depth is then expressed by:241

h(d) =
P

∑
i=1

wiNi(d|di,ui) (26)

where P denotes the total number of pixels. The confidence u is
obtained by computing the sensitivity of (25) to its parameters:

u ∝ ∑
[

∂d

∂ (A∞1,2 , I1,2)
d(A∞1,2 , I1,2)

]2

(27)

Assuming dA∞1 ≈ dA∞2 ≈ dI1 ≈ dI2 = dI, (27) becomes:

u ∝
f1 + f2

(β2 −β1)2 dI2 (28)
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Figure 3: Samples of data collected in winter 2008-2009: (a) images with
strong illumination conditions and presence of shadows; (b) cloudy conditions;
(c) foggy weather situation; (d) meteorological visibility distance data and (e)
background luminance data collected in the field test during two days.

where fi is given by:

fi=1,2 =
1

A∞i

2 +2

[

1
(A∞i

− Ii)2 +
1

A∞i
(A∞i

− Ii)

]

(29)

In section 4.4, we apply this method to actual data issued from a242

test site. In particular, we chose the relevant weight wi. Having243

estimated h, the relevant distribution model can be determined244

empirically or using classical statistical tests. If the distribution245

has different modes, a probability mixture model can also be246

used to fit h.247

4. Experimental Validation248

In this section, an experimental evaluation of the proposed249

approach for visibility estimation is carried out. In this aim,250

the publicly available MATILDA database is used. First, the251

methodology is presented. Second, a method to estimate wether252

a surface is Lambertian or not is recalled. Third, results are253

presented and discussed.254

4.1. Experimental Data255

The observation test field is equipped with a reference trans-256

missometer (Degreane Horizon TI8510). It serves to calibrate257

different scatterometers (Degreane Horizon DF320) used to258

monitor the meteorological visibility distance on the French ter-259

ritory, one of which provided our data. They are coupled with260

a background luminance sensor (Degreane Horizon LU320)261

which monitors the illumination received by the sensor. A cam-262

era grabs images of the field test every ten minutes. This camera263

is an 8-bit CCD camera (640×480 definition, mounting height264

8.3 m, pitch angle 9.8o, focal length fl = 4 mm and pixel size265

tpix = 9 µm). It is thus a low cost camera which is representative266

of common video surveillance cameras.267
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Figure 4: Map of Lambertian surfaces on the field test: The redder the pixel is,
the higher the probability that the surface is Lambertian.

Two fog events were collected at the end of February 2009.268

The fog occurred early in the morning and lasted a few269

hours after sunrise. During the same days, sunny weather270

periods also occurred. Fig. 3 shows sample images of (a)271

sunny weather , (b) cloudy weather and (c) foggy weather.272

The meteorological visibility distances and luminances are273

plotted in Figs. 3(d)&(e) versus time on a three day pe-274

riod. As one can see, the meteorological visibility distance275

ranges from 100 m to 35,000 m and the luminance ranges276

from 0 to 6,000 cd.m−2. This database made of 150 images277

grabbed every ten minutes is available on the LCPC’s web278

site http://www.lcpc.fr/en/produits/matilda/ for re-279

search purpose.280

4.2. Location of Lambertian surfaces281

To estimate m and thus V , the normalized gradient is com-282

puted on the Lambertian surfaces of the scene as proposed in283

section 3. Locating the Lambertian surfaces in the images is284

thus needed. Following the method proposed in Babari et al.285

(2010), the Pearson coefficient, denoted PL
i, j, is computed be-286

tween the intensity of pixels in image series where the position287

of the sun changes and the value of the background luminance288

estimated by the luminancemeter. The closer PL
i, j is to 1, the289

stronger the probability that the pixel belongs to a Lambertian290

surface. This technique provides an efficient way to locate the291

Lambertian surfaces in the scene. For the MATILDA database,292

the density map of Lambertian surfaces is shown in Fig.4. The293

redder the pixel, the higher the probability that the surface is294

Lambertian.295

4.3. Contrast Estimator296

Having located the Lambertian surfaces, the gradients in the
scene are estimated by means of the module of the Sobel filter.
For each pixel, the gradient ∇i, j is normalized by the intensity
of the background A∞. Since the camera is equipped with an
auto gain control, the background intensity A∞ is most of the
time equal to 28 −1, so that this step can be skipped. Each gra-
dient is then weighted by PL

i, j, the probability that a pixel (i, j)
belongs to a Lambertian surface. Consequently, only relevant
areas of the image are used for the visibility estimation, and

the scene need not be totally Lambertian. Finally, the estimated
contrast in the scene m̃ is given by:

m̃ =
1
N

∑
i, j

∆ρi, j exp

(

−3di, j

V

)

PL
i, j =

1
N

∑
i, j

∇i, j

A∞
(30)

where ∆ρi, j is the intrinsic contrast of a pixel (7) and N denotes297

the number of pixels of the image.298

4.4. Selection of the Relevant Distribution299

In section 3.4, we have proposed a methodology to estimate300

the distribution ψ in a scene. In this section, we apply this301

method to the test site of the MATILDA database. Having the302

contrast estimator (see previous paragraph), we are now able to303

derive a relevant weight wi. Based on (30), the contribution of a304

data to the histogram is its weighted gradient ∇i, jP
L
i, j computed305

in good weather conditions, which leads to choose it as weight306

wi, see (26). The confidence ui on the depth of each pixel is307

given by (28) and it is controlled by the value of dI which is308

set empirically. The estimated distribution is shown in Fig. 5309

using the green plot (dI = 0.1), the purple plot (dI = 0.25) and310

the black curve (dI = 1). The exponential distribution fits the311

data quite well and is chosen to model the data of the histogram312

because it is the most easily revertible and is plotted in red.313

Based on this curve, we estimate dmax ≈ 325 m. We can thus314

expect a capacitance τ of approximately 1000 m.315
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0.015
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Figure 5: Histogram of weighted contrasts versus depth. The estimated distri-
bution is shown using the green plot (dI = 0.1), the purple plot (dI = 0.5) and
the black curve (dI = 1). The fitted exponential distribution is plotted in red.

4.5. Results316

As in Babari et al. (2010), m̃ is computed for the collection317

of 150 images of the MATILDA database using (30). The ex-318

ponential distribution model (18) has been fitted to all the data319

using a robust non-linear least squares fitting technique (R2 =320

0.91), namely the Levenberg-Marquardt algorithm. We have321

also fitted upper and lower bound curves which comprise 99%322

of the data points. The different curves are plotted in Fig. 6(a).323
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Application Highway fog Meteorological fog Haze Air quality

Range [m] 0-400 0-1000 0-5000 0-10000 0-15000
Number of data 13 19 45 70 150

Weighted logarithmic model (Babari et al., 2010) 10.4% 22.5% 23.4% 29.9% 41.9%
Uniform distribution (Hautière et al., 2010) 12.6% 18.1% 29.7% ∞ ∞

Exponential distribution 10.0% 16.2% 29% 60% 373%
Exponential distribution + enhanced fitting 9.7% 11.2% 33% 50% 63.5%

Table 1: Mean relative errors of meteorological visibility distance estimation with respect to the envisioned applications.
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Figure 6: Model fitting: (a) Data fitting with the exponential distribution model
in black. The upper bound is plotted in blue and the lower bound in magenta.
(b) Plot of estimated visibility distances versus reference visibility distances.

We estimated a capacitance of the scene τ ≈ 950m≈ 3dmax as324

expected. We invert the fitted model using (21) and estimate the325

meteorological visibility distance based on the contrast expec-326

tation m. Finally, we plot the estimated meteorological visibil-327

ity distance versus the reference meteorological visibility dis-328

tance in Fig. 6(b). From the same experimental data, Babari329

et al. (2010) fit an empirical logarithmic model, whereas Hau-330

tière et al. (2010) fit the contrast expectation of a uniform dis-331

tribution (11).332

The mean relative errors are compared in Tab. 1. Since the333

applications are very different depending on the range of me-334

teorological visibility distances, the relative error for various335

applications are computed: road safety, meteorological obser-336

vation and air quality.337

Compared to data-driven approaches, one can see that the338

error remains low with model-driven approaches for critical339

safety applications, increases for higher visibility ranges, and340

becomes huge for visibility distances above 7 km. On the test341

site, using the actual target distribution, i.e. the exponentiel342

model, improves the previous results obtained with the uniform343

distribution (Hautière et al., 2010) and covers a large spectrum344

of applications with a limited error. Due to the unbalanced345

data fitting process, the error is slightly higher for low visibil-346

ity ranges (<1.000 m) using the data-driven approach (Babari347

et al., 2010) despite the weighting introduced by the authors. It348

remains limited for higher visibility ranges (>5000 m).349

In the previous results, all the data have been used to fit the350

models. This is the principle underlying the data-driven ap-351

proach. Conversely, this approach should not be followed for352

the model-driven approach, since the model may not be valid353

for the whole ranges of visibility. According to section 4.4, we354

are sure that the model is valid in the range 0− τ , i.e. 0-1000355

m in our case. A new data fitting process is deduced. First, the356

exponential distribution model (18) has been fitted to the data357

in the range 0-1000 m using a robust non-linear least squares358

fitting technique, namely the Levenberg-Marquardt algorithm.359

The confidence in the fitting is higher (R2 = 0.97). The fitted360

curve is shown in Fig. 7. Second, the model is extrapolated on361

the range τ − 15000 m. The mean relative error is then com-362

puted between the adjusted model and the ground truth data.363

The results are given in the last line of Tab. 1. Since the model364

has been fitted to short visibility data, the results are improved365

at short ranges. At higher ranges, the errors are reduced as well,366

which illustrates the benefits of performing a data fitting pro-367

cess only on reliable data.368

Finally, according to metrology practices in the field of visi-369

bility observations, a measurement device is considered as cor-370

rect if the error is smaller than 20% in 90% of the cases. The371

10% worst cases are thus excluded from the error computation.372

In this way, we are able to obtain a correct estimate of the me-373

teorological visibility up to 3320 m.374

5. Discussion375

The data-driven approach requires visibility data for its cal-376

ibration and implementation. Both model-driven approaches377

need only to determine the type of targets distribution in the378

scene. The distributions used in this article, namely uniform379

and exponential, are parameterized by a single parameter dmax380
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Figure 7: Enhanced data fitting process with the exponential distribution model
on short visibility data and extrapolated on higher visibility ranges. The data
are plotted in blue. The fitted model is plotted in red.

and can be guessed using only two images grabbed in different381

foggy weather conditions. Visibility data are thus no longer re-382

quired, which is an important progress towards generic methods383

without any learning phase.384

However, a continuous distribution of object with respect to385

the distance in the scene is assumed. This assumption may be386

false in urban areas, where depth discontinuities exist because387

of the presence of vertical buildings. Using the actual depth388

distribution of the scene could improve the results. In this aim,389

spatial information systems could be used to estimate a more390

accurate depth distribution at a camera location, so as to get391

rid of the process proposed in section 3.4. However, it may be392

difficult to register accurately the 3-D GIS on the image.393

Another limitation observed in the test scene is due to the394

fact that the range of distribution of Lambertian targets is a395

few hundred meters. We are thus not able to use all the vi-396

sual cues which are present in the landscape. This can be due397

to non-uniform illumination when selecting Lambertian targets398

and could be reduced using the image processing filter proposed399

by Liaw et al. (2010). A second solution consists in chang-400

ing the location of the camera and for example increasing its401

mounting height, so as to get a better perspective. A comple-402

mentary solution consists in using a camera of better quality, so403

as to get less noisy images. We aim at exploring these different404

strategies.405

Nevertheless, thanks to results shown in this article, we be-406

lieve that an ordinary camera is able to monitor the atmospheric407

visibility whatever the envisaged application: road safety, aero-408

nautic and air quality. This allows envisioning the development409

of multipurpose environmental monitoring cameras.410

6. Conclusion411

Camera-based methods are being developed to estimate the412

atmospheric visibility. However, the methods are either dedi-413

cated to road safety (low visibility ranges) or to air quality mon-414

itoring (high visibility ranges).415

In this article, a generic model-driven approach is presented,416

which estimates the atmospheric visibility distance through use417

of ordinary outdoor cameras based on the contrast expecta-418

tion in the scene. Unlike previous data-driven approaches, a419

physics-based model is proposed which expresses the mapping420

between the contrast and the atmospheric visibility distance.421

Contrary to previous approaches, the model is non-linear which422

explains why it is able to encompass a larger spectrum of appli-423

cations. Due to its intrinsic physical constraints, the calibration424

of the system is also less sensitive to the input data. In particu-425

lar, the model takes into account the actual distribution of visual426

targets in the scene, which is estimated by a novel dedicated427

process which only needs two different fog images. Visibility428

data are thus not mandatory anymore to calibrate the system. It429

is also invariant to illumination variations in the scene by se-430

lecting the Lambertian surfaces in the scene.431

To evaluate the relevance of our approach, the publicly avail-432

able MALTILDA database is used. Using these experimental433

data, promising results are obtained, which improve the previ-434

ous the results obtained with this database. When models are435

fitted to all data, data-driven approaches seem to be more effec-436

tive for high visibility ranges. When the non-linear models are437

fitted to the reliable data only, the data-driven approach and the438

model-driven approach give more or less the same results.439

In future work, an ambitious objective is to estimate the con-440

trast expectation function without any additional meteorolog-441

ical sensor, based only on the characteristics of the camera442

and the properties of the scene (geometry, texture) collected by443

remote sensing techniques. Such a generic model-driven ap-444

proach would pave the road to methods without any constrain-445

ing learning phase.446
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